메뉴 건너뛰기




Volumn 17, Issue 5, 2012, Pages 655-666

River-Flow Forecasting Using Higher-Order Neural Networks

Author keywords

Forecasting; Honns; River flow; Synaptic operations

Indexed keywords

CONVENTIONAL MODELS; DAILY DISCHARGE; HIDDEN NEURONS; HIGHER ORDER; HIGHER ORDER NEURAL NETWORK; HONNS; HYDROLOGIC FORECASTING; LEADTIME; LINEAR SYNAPTIC OPERATIONS; MAHANADI RIVER BASIN; NEURAL MODELING; NEURAL NETWORK MODEL; NEURAL UNITS; OVERPARAMETERIZATION; PERFORMANCE INDICES; RAINFALL-RUNOFF MODELS; RIVER DISCHARGE; RIVER FLOW; SYNAPTIC OPERATIONS;

EID: 84860871281     PISSN: 10840699     EISSN: None     Source Type: Journal    
DOI: 10.1061/(ASCE)HE.1943-5584.0000486     Document Type: Article
Times cited : (15)

References (34)
  • 1
    • 79954992730 scopus 로고    scopus 로고
    • Forecasting monthly streamflow of spring-summer runoff season in Rio Grande headwaters basin using stochastic hybrid modeling approach
    • JHYEFF, 1084-0699, 10.1061/(ASCE)HE.1943-5584.0000322s
    • Abudu S. King J.P. Bawazir A.S. Forecasting monthly streamflow of spring-summer runoff season in Rio Grande headwaters basin using stochastic hybrid modeling approach. J. Hydrol. Eng. 2011, 16(4):384-390. JHYEFF, 1084-0699, 10.1061/(ASCE)HE.1943-5584.0000322.
    • (2011) J. Hydrol. Eng. , vol.16 , Issue.4 , pp. 384-390
    • Abudu, S.1    King, J.P.2    Bawazir, A.S.3
  • 2
    • 34548498867 scopus 로고    scopus 로고
    • Neural networks for real time catchment flow modeling and prediction
    • WRMAEJ, 0920-4741, 10.1007/s11269-006-9127-y.
    • Aqil M. Kita I. Yano A. Nishiyama S. Neural networks for real time catchment flow modeling and prediction. Water Resour. Manage. 2007, 21(10):1781-1796. WRMAEJ, 0920-4741, 10.1007/s11269-006-9127-y.
    • (2007) Water Resour. Manage. , vol.21 , Issue.10 , pp. 1781-1796
    • Aqil, M.1    Kita, I.2    Yano, A.3    Nishiyama, S.4
  • 3
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. II: Hydrologic applications
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology, JHYEFF, 1084-0699, 10.1061/(ASCE)1084-0699(2000)5:2(124)
    • Artificial neural networks in hydrology. II: Hydrologic applications. J. Hydrol. Eng. 2000, 5(2):124-137. ASCE Task Committee on Application of Artificial Neural Networks in Hydrology, JHYEFF, 1084-0699, 10.1061/(ASCE)1084-0699(2000)5:2(124).
    • (2000) J. Hydrol. Eng. , vol.5 , Issue.2 , pp. 124-137
  • 4
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. I: Preliminary concepts
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology, JHYEFF, 1084-0699, 10.1061/(ASCE)1084-0699(2000)5:2(115)
    • Artificial neural networks in hydrology. I: Preliminary concepts. J. Hydrol. Eng. 2000, 5(2):115-123. ASCE Task Committee on Application of Artificial Neural Networks in Hydrology, JHYEFF, 1084-0699, 10.1061/(ASCE)1084-0699(2000)5:2(115)
    • (2000) J. Hydrol. Eng. , vol.5 , Issue.2 , pp. 115-123
  • 5
    • 33644526990 scopus 로고    scopus 로고
    • A manifesto for the equifinality thesis
    • JHYDA7, 0022-1694, 10.1016/j.jhydrol.2005.07.007
    • Beven K. manifesto for the equifinality thesis. J. Hydrol. (Amsterdam) 2006, 320(1-2):18-36. JHYDA7, 0022-1694, 10.1016/j.jhydrol.2005.07.007.
    • (2006) J. Hydrol. (Amsterdam) , vol.320 , Issue.1-2 , pp. 18-36
    • Beven, K.1
  • 6
    • 0032688155 scopus 로고    scopus 로고
    • River flood forecasting with a neural network model
    • WRERAQ, 0043-1397, 10.1029/1998WR900086.
    • Campolo M. Andreussi P. Soldati A. River flood forecasting with neural network model. Water Resour. Res. 1999, 35(4):1191-1197. WRERAQ, 0043-1397, 10.1029/1998WR900086.
    • (1999) Water Resour. Res. , vol.35 , Issue.4 , pp. 1191-1197
    • Campolo, M.1    Andreussi, P.2    Soldati, A.3
  • 7
    • 33751401308 scopus 로고    scopus 로고
    • Data preprocessing for river flow forecasting using neural networks: Wavelet transforms and data partitioning
    • PCEAAV, 0079-1946, 10.1016/j.pce.2006.03.020.
    • Cannas B. Fanni A. See L. Sias G. Data preprocessing for river flow forecasting using neural networks: Wavelet transforms and data partitioning. Phys. Chem. Earth 2006, 31(18):1164-1171. PCEAAV, 0079-1946, 10.1016/j.pce.2006.03.020.
    • (2006) Phys. Chem. Earth , vol.31 , Issue.18 , pp. 1164-1171
    • Cannas, B.1    Fanni, A.2    See, L.3    Sias, G.4
  • 8
    • 62949110142 scopus 로고    scopus 로고
    • Flow forecast by SWAT Model and ANN in Pracana basin, Portugal
    • JHYDA7, 0022-1694.
    • Demirel M.C. Venancio A. Kahya E. Flow forecast by SWAT Model and ANN in Pracana basin, Portugal. Adv. Eng. Software 2009, 40(7):467-473. JHYDA7, 0022-1694.
    • (2009) Adv. Eng. Software , vol.40 , Issue.7 , pp. 467-473
    • Demirel, M.C.1    Venancio, A.2    Kahya, E.3
  • 9
    • 0001666851 scopus 로고
    • Efficient higher order neural networks for classification and function approximation
    • IJSZEG, 0129-0657, 10.1142/S0129065792000255.
    • Ghosh J. Shin Y. Efficient higher order neural networks for classification and function approximation. Int. J. Neural Syst. 1992, 3(4):323-350. IJSZEG, 0129-0657, 10.1142/S0129065792000255.
    • (1992) Int. J. Neural Syst. , vol.3 , Issue.4 , pp. 323-350
    • Ghosh, J.1    Shin, Y.2
  • 11
    • 52249122452 scopus 로고    scopus 로고
    • Static and dynamic neural networks: From fundamentals to advanced theory
    • Wiley/IEEE Press, New York.
    • Gupta M.M. Jin L. Homma N. Static and dynamic neural networks: From fundamentals to advanced theory. 2003, Wiley/IEEE Press, New York.
    • (2003)
    • Gupta, M.M.1    Jin, L.2    Homma, N.3
  • 12
    • 0028543366 scopus 로고
    • Training feed forward techniques with the marquardt algorithm
    • ITNNEP, 1045-9227, 10.1109/72.329697.
    • Hagan M.T. Menhaj M.B. Training feed forward techniques with the marquardt algorithm. IEEE Trans. Neural Netw. 1994, 5(6):989-993. ITNNEP, 1045-9227, 10.1109/72.329697.
    • (1994) IEEE Trans. Neural Netw. , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 13
    • 8844251703 scopus 로고    scopus 로고
    • Superimposing learning for backpropagation neural networks
    • Bull. Coll. Med., Tohoku Univ., Sendai, Japan.
    • Homma N. Gupta M.M. Superimposing learning for backpropagation neural networks. 2002, 11(2):253-259. Bull. Coll. Med., Tohoku Univ., Sendai, Japan.
    • (2002) , vol.11 , Issue.2 , pp. 253-259
    • Homma, N.1    Gupta, M.M.2
  • 14
    • 8844278265 scopus 로고    scopus 로고
    • Higher-order neural units for image processing and their applications to robot routing problems
    • World Scientific Publishing Co., Singapore.
    • Hou Z.-G. Song K.-Y. Gupta M.M. Higher-order neural units for image processing and their applications to robot routing problems. Proc., 6th Int. FLINS Conf. 2004, 13-18. World Scientific Publishing Co., Singapore.
    • (2004) Proc., 6th Int. FLINS Conf. , pp. 13-18
    • Hou, Z.-G.1    Song, K.-Y.2    Gupta, M.M.3
  • 15
    • 33750300692 scopus 로고    scopus 로고
    • Neural units with higher-order synaptic operations for robotic image processing applications
    • 1432-7643, 10.1007/s00500-006-0064-8.
    • Hou Z.-G. Song K.-Y. Gupta M.M. Tan M. Neural units with higher-order synaptic operations for robotic image processing applications. Soft Comput. 2007, 11(3):221-228. 1432-7643, 10.1007/s00500-006-0064-8.
    • (2007) Soft Comput. , vol.11 , Issue.3 , pp. 221-228
    • Hou, Z.-G.1    Song, K.-Y.2    Gupta, M.M.3    Tan, M.4
  • 16
    • 2442639370 scopus 로고    scopus 로고
    • Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded genetic algorithms and artificial neural network techniques
    • WRERAQ, 0043-1397, 10.1029/2003WR002355.
    • Jain A. Srinivasulu S. Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded genetic algorithms and artificial neural network techniques. Water Resour. Res. 2004, 40(4):W04302. WRERAQ, 0043-1397, 10.1029/2003WR002355.
    • (2004) Water Resour. Res. , vol.40 , Issue.4
    • Jain, A.1    Srinivasulu, S.2
  • 17
    • 0019227948 scopus 로고
    • Real-time forecasting with a conceptual hydrologic model: 2. Applications and results
    • WRERAQ, 0043-1397, 10.1029/WR016i006p01034.
    • Kitanidis P.K. Bras R.L. Real-time forecasting with conceptual hydrologic model: 2. Applications and results. Water Resour. Res. 1980, 16(6):1034-1044. WRERAQ, 0043-1397, 10.1029/WR016i006p01034.
    • (1980) Water Resour. Res. , vol.16 , Issue.6 , pp. 1034-1044
    • Kitanidis, P.K.1    Bras, R.L.2
  • 18
    • 7244245534 scopus 로고    scopus 로고
    • Physics-based hydrologic response simulation: Platinum bridge, 1958 Edsel, or useful tool
    • HYPRE3, 0885-6087, 10.1002/hyp.5737.
    • Loague L. VanderKwaak J.E. Physics-based hydrologic response simulation: Platinum bridge, 1958 Edsel, or useful tool. Hydrol. Processes 2004, 18(15):2949-2956. HYPRE3, 0885-6087, 10.1002/hyp.5737.
    • (2004) Hydrol. Processes , vol.18 , Issue.15 , pp. 2949-2956
    • Loague, L.1    VanderKwaak, J.E.2
  • 19
    • 66249107437 scopus 로고    scopus 로고
    • Flood forecasting using ANN, neuro-fuzzy, and neuro-GA models
    • JHYEFF, 1084-0699, 10.1061/(ASCE)HE.1943-5584.0000040.
    • Mukerji A. Chatterjee C. Raghuwanshi N.S. Flood forecasting using ANN, neuro-fuzzy, and neuro-GA models. J. Hydrol. Eng. 2009, 14(6):647-652. JHYEFF, 1084-0699, 10.1061/(ASCE)HE.1943-5584.0000040.
    • (2009) J. Hydrol. Eng. , vol.14 , Issue.6 , pp. 647-652
    • Mukerji, A.1    Chatterjee, C.2    Raghuwanshi, N.S.3
  • 20
    • 0014776873 scopus 로고
    • River flow forcasting through conceptual models: Part I-A discussion of principles
    • JHYDA7, 0022-1694, 10.1016/0022-1694(70)90255-6.
    • Nash J.E. Sutcliffe J.V. River flow forcasting through conceptual models: Part I-A discussion of principles. J. Hydrol. (Amsterdam) 1970, 10(3):282-290. JHYDA7, 0022-1694, 10.1016/0022-1694(70)90255-6.
    • (1970) J. Hydrol. (Amsterdam) , vol.10 , Issue.3 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 21
    • 33750282772 scopus 로고    scopus 로고
    • Development of neural units with higher-order synaptic operations and their applications to logic circuits and control problems
    • M.S. thesis, Dept. of Mechanical Engineering, Univ. of Saskatchewan, Saskatoon, SK, Canada.
    • Redlapalli S.K. Development of neural units with higher-order synaptic operations and their applications to logic circuits and control problems. 2004, M.S. thesis, Dept. of Mechanical Engineering, Univ. of Saskatchewan, Saskatoon, SK, Canada.
    • (2004)
    • Redlapalli, S.K.1
  • 24
    • 78449245647 scopus 로고    scopus 로고
    • Flood forecasting in regulated basins using the ensemble extended Kalman filter with the storage function method
    • JHYEFF, 1084-0699, 10.1061/(ASCE)HE.1943-5584.0000282.
    • Shamir E. Lee B.-J. Bae D.-H. Georgakakos K.P. Flood forecasting in regulated basins using the ensemble extended Kalman filter with the storage function method. J. Hydrol. Eng. 2010, 15(12):1030-1044. JHYEFF, 1084-0699, 10.1061/(ASCE)HE.1943-5584.0000282.
    • (2010) J. Hydrol. Eng. , vol.15 , Issue.12 , pp. 1030-1044
    • Shamir, E.1    Lee, B.-J.2    Bae, D.-H.3    Georgakakos, K.P.4
  • 25
    • 0026375443 scopus 로고
    • The pi-sigma network: An efficient higher order network for pattern classification and function approximation
    • IJCNN, Seattle.
    • Shin Y. Ghosh J. The pi-sigma network: An efficient higher order network for pattern classification and function approximation. Proc., Int. Joint Conf. on neural networks 1991, 1:13-18. IJCNN, Seattle.
    • (1991) Proc., Int. Joint Conf. on neural networks , vol.1 , pp. 13-18
    • Shin, Y.1    Ghosh, J.2
  • 27
    • 70350432743 scopus 로고    scopus 로고
    • Design of a robust neuro-controller for complex dynamic systems
    • Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS 2009).
    • Song K.-Y. Gupta M.M. Jena D. Subudhi B. Design of a robust neuro-controller for complex dynamic systems. 2009, 1-5. Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS 2009).
    • (2009) , pp. 1-5
    • Song, K.-Y.1    Gupta, M.M.2    Jena, D.3    Subudhi, B.4
  • 29
    • 0037197571 scopus 로고    scopus 로고
    • A data-driven algorithm for constructing artificial neural network rainfall-runoff models
    • HYPRE3, 0885-6087, 10.1002/hyp.554.
    • Sudheer K.P. Gosain A.K. Ramasastri K.S. data-driven algorithm for constructing artificial neural network rainfall-runoff models. Hydrol. Processes 2002, 16(6):1325-1330. HYPRE3, 0885-6087, 10.1002/hyp.554.
    • (2002) Hydrol. Processes , vol.16 , Issue.6 , pp. 1325-1330
    • Sudheer, K.P.1    Gosain, A.K.2    Ramasastri, K.S.3
  • 30
    • 78751567890 scopus 로고    scopus 로고
    • Multivariate Bayesian regression approach to forecast releases from a system of multiple reservoirs
    • WRMAEJ, 0920-4741.
    • Ticlavilca A.M. McKee M. Multivariate Bayesian regression approach to forecast releases from system of multiple reservoirs. Water Resour. Manage 2010, 25(2):523-543. WRMAEJ, 0920-4741.
    • (2010) Water Resour. Manage , vol.25 , Issue.2 , pp. 523-543
    • Ticlavilca, A.M.1    McKee, M.2
  • 31
    • 79959790257 scopus 로고    scopus 로고
    • A new wavelet-bootstrap-ANN hybrid model for daily discharge forecasting
    • 1464-7141
    • Tiwari M.K. Chatterjee C. A new wavelet-bootstrap-ANN hybrid model for daily discharge forecasting. J. Hydroinf 2010, 13(3):500-519. 1464-7141.
    • (2010) J. Hydroinf , vol.13 , Issue.3 , pp. 500-519
    • Tiwari, M.K.1    Chatterjee, C.2
  • 32
    • 78149408167 scopus 로고    scopus 로고
    • Development of an accurate and reliable hourly flood forecasting model using wavelet-bootstrap-ANN hybrid approach
    • JHYDA7, 0022-1694, 10.1016/j.jhydrol.2010.10.001
    • Tiwari M.K. Chatterjee C. Development of an accurate and reliable hourly flood forecasting model using wavelet-bootstrap-ANN hybrid approach. J. Hydrol. (Amsterdam) 2010, 394(3-4):458-470. JHYDA7, 0022-1694, 10.1016/j.jhydrol.2010.10.001.
    • (2010) J. Hydrol. (Amsterdam) , vol.394 , Issue.3-4 , pp. 458-470
    • Tiwari, M.K.1    Chatterjee, C.2
  • 33
    • 75149131606 scopus 로고    scopus 로고
    • Uncertainty assessment and ensemble flood forecasting using bootstrap based artificial neural networks (BANNs)
    • JHYDA7, 0022-1694, 10.1016/j.jhydrol.2009.12.013
    • Tiwari M.K. Chatterjee C. Uncertainty assessment and ensemble flood forecasting using bootstrap based artificial neural networks (BANNs). J. Hydrol. (Amsterdam) 2010, 382(1-4):20-33. JHYDA7, 0022-1694, 10.1016/j.jhydrol.2009.12.013.
    • (2010) J. Hydrol. (Amsterdam) , vol.382 , Issue.1-4 , pp. 20-33
    • Tiwari, M.K.1    Chatterjee, C.2
  • 34
    • 77953342831 scopus 로고    scopus 로고
    • Comparing sigmoid transfer functions for neural network multistep ahead streamflow forecasting
    • JHYEFF, 1084-0699, 10.1061/(ASCE)HE.1943-5584.0000188.
    • Yonaba H. Anctil F. Fortin V. Comparing sigmoid transfer functions for neural network multistep ahead streamflow forecasting. J. Hydrol. Eng. 2010, 15(4):275-283. JHYEFF, 1084-0699, 10.1061/(ASCE)HE.1943-5584.0000188.
    • (2010) J. Hydrol. Eng. , vol.15 , Issue.4 , pp. 275-283
    • Yonaba, H.1    Anctil, F.2    Fortin, V.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.