-
1
-
-
84877792802
-
Structural and functional control of the eukaryotic mRNA decapping machinery
-
Arribas-Layton M, Wu D, Lykke-Andersen J, Song H. 2013. Structural and functional control of the eukaryotic mRNA decapping machinery. Biochim. Biophys. Acta 1829:580-589. http://dx.doi.org/10.1016/j.bbagrm.2012.12.006.
-
(2013)
Biochim. Biophys. Acta
, vol.1829
, pp. 580-589
-
-
Arribas-Layton, M.1
Wu, D.2
Lykke-Andersen, J.3
Song, H.4
-
3
-
-
84877834690
-
The fate of the messenger is pre-determined: a new model for regulation of gene expression
-
Haimovich G, Choder M, Singer RH, Trcek T. 2013. The fate of the messenger is pre-determined: a new model for regulation of gene expression. Biochim. Biophys. Acta 1829:643-653. http://dx.doi.org/10.1016/j.bbagrm.2013.01.004.
-
(2013)
Biochim. Biophys. Acta
, vol.1829
, pp. 643-653
-
-
Haimovich, G.1
Choder, M.2
Singer, R.H.3
Trcek, T.4
-
4
-
-
84877819839
-
XRN 5'→3' exoribonucleases: structure, mechanisms and functions
-
Nagarajan VK, Jones CI, Newbury SF, Green PJ. 2013. XRN 5'→3' exoribonucleases: structure, mechanisms and functions. Biochim. Biophys. Acta 1829:590-603. http://dx.doi.org/10.1016/j.bbagrm.2013.03.005.
-
(2013)
Biochim. Biophys. Acta
, vol.1829
, pp. 590-603
-
-
Nagarajan, V.K.1
Jones, C.I.2
Newbury, S.F.3
Green, P.J.4
-
5
-
-
84885186311
-
Eukaryotic mRNAdecay: methodologies, pathways, and links to other stages of gene expression
-
Perez-Ortin JE, Alepuz P, Chavez S, Choder M. 2013. Eukaryotic mRNAdecay: methodologies, pathways, and links to other stages of gene expression. J. Mol. Biol. 425:3750-3775. http://dx.doi.org/10.1016/j.jmb.2013.02.029.
-
(2013)
J. Mol. Biol
, vol.425
, pp. 3750-3775
-
-
Perez-Ortin, J.E.1
Alepuz, P.2
Chavez, S.3
Choder, M.4
-
6
-
-
84877801967
-
RNA decay machines: deadenylation by the Ccr4-Not and Pan2-Pan3 complexes
-
Wahle E, Winkler GS. 2013. RNA decay machines: deadenylation by the Ccr4-Not and Pan2-Pan3 complexes. Biochim. Biophys. Acta 1829:561-570. http://dx.doi.org/10.1016/j.bbagrm.2013.01.003.
-
(2013)
Biochim. Biophys. Acta
, vol.1829
, pp. 561-570
-
-
Wahle, E.1
Winkler, G.S.2
-
7
-
-
0037041395
-
An extensive network of coupling among gene expression machines
-
Maniatis T, Reed R. 2002. An extensive network of coupling among gene expression machines. Nature 416:499-506. http://dx.doi.org/10.1038/416499a.
-
(2002)
Nature
, vol.416
, pp. 499-506
-
-
Maniatis, T.1
Reed, R.2
-
8
-
-
0038699144
-
Coupling transcription, splicing and mRNA export
-
Reed R. 2003. Coupling transcription, splicing and mRNA export. Curr. Opin. Cell Biol. 15:326-331. http://dx.doi.org/10.1016/S0955-0674(03) 00048-6.
-
(2003)
Curr. Opin. Cell Biol
, vol.15
, pp. 326-331
-
-
Reed, R.1
-
9
-
-
72849106592
-
RNA processing and its regulation: global insights into biological networks
-
Licatalosi DD, Darnell RB. 2010. RNA processing and its regulation: global insights into biological networks. Nat. Rev. Genet. 11:75-87. http://dx.doi.org/10.1038/nrg2673.
-
(2010)
Nat. Rev. Genet
, vol.11
, pp. 75-87
-
-
Licatalosi, D.D.1
Darnell, R.B.2
-
10
-
-
19344378943
-
Rules of engagement: co-transcriptional recruitment of pre-mRNA processing factors
-
Bentley DL. 2005. Rules of engagement: co-transcriptional recruitment of pre-mRNA processing factors. Curr. Opin. Cell Biol. 17:251-256. http://dx.doi.org/10.1016/j.ceb.2005.04.006.
-
(2005)
Curr. Opin. Cell Biol
, vol.17
, pp. 251-256
-
-
Bentley, D.L.1
-
11
-
-
0034307008
-
Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription
-
Komarnitsky P, Cho EJ, Buratowski S. 2000. Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev. 14:2452-2460. http://dx.doi.org/10.1101/gad.824700.
-
(2000)
Genes Dev
, vol.14
, pp. 2452-2460
-
-
Komarnitsky, P.1
Cho, E.J.2
Buratowski, S.3
-
12
-
-
16544388171
-
Shortcuts to the end
-
Kornblihtt AR. 2004. Shortcuts to the end. Nat. Struct. Mol. Biol. 11: 1156-1157. http://dx.doi.org/10.1038/nsmb1204-1156.
-
(2004)
Nat. Struct. Mol. Biol
, vol.11
, pp. 1156-1157
-
-
Kornblihtt, A.R.1
-
13
-
-
0037398519
-
How introns influence and enhance eukaryotic gene expression
-
Le Hir H, Nott A, Moore MJ. 2003. How introns influence and enhance eukaryotic gene expression. Trends Biochem. Sci. 28:215-220. http://dx.doi.org/10.1016/S0968-0004(03)00052-5.
-
(2003)
Trends Biochem. Sci
, vol.28
, pp. 215-220
-
-
Le Hir, H.1
Nott, A.2
Moore, M.J.3
-
14
-
-
19344363974
-
Promoter usage and alternative splicing
-
Kornblihtt AR. 2005. Promoter usage and alternative splicing. Curr. Opin. Cell Biol. 17:262-268. http://dx.doi.org/10.1016/j.ceb.2005.04.014.
-
(2005)
Curr. Opin. Cell Biol
, vol.17
, pp. 262-268
-
-
Kornblihtt, A.R.1
-
15
-
-
0034663604
-
Analysis of the splicing machinery in fission yeast: a comparison with budding yeast and mammals
-
Kaufer NF, Potashkin J. 2000. Analysis of the splicing machinery in fission yeast: a comparison with budding yeast and mammals. Nucleic Acids Res. 28:3003-3010. http://dx.doi.org/10.1093/nar/28.16.3003.
-
(2000)
Nucleic Acids Res
, vol.28
, pp. 3003-3010
-
-
Kaufer, N.F.1
Potashkin, J.2
-
16
-
-
84866055220
-
TREX exposes the RNA-binding domain of Nxf1 to enable mRNA export
-
Viphakone N, Hautbergue GM, Walsh M, Chang CT, Holland A, Folco EG, Reed R, Wilson SA. 2012. TREX exposes the RNA-binding domain of Nxf1 to enable mRNA export. Nat. Commun. 3:1006. http://dx.doi.org/10.1038/ncomms2005.
-
(2012)
Nat. Commun
, vol.3
, pp. 1006
-
-
Viphakone, N.1
Hautbergue, G.M.2
Walsh, M.3
Chang, C.T.4
Holland, A.5
Folco, E.G.6
Reed, R.7
Wilson, S.A.8
-
17
-
-
33748904910
-
Introns regulateRNAand protein abundance in yeast
-
Juneau K, Miranda M, Hillenmeyer ME, Nislow C, Davis RW. 2006. Introns regulateRNAand protein abundance in yeast. Genetics 174:511-518. http://dx.doi.org/10.1534/genetics.106.058560.
-
(2006)
Genetics
, vol.174
, pp. 511-518
-
-
Juneau, K.1
Miranda, M.2
Hillenmeyer, M.E.3
Nislow, C.4
Davis, R.W.5
-
18
-
-
19344365530
-
Connections between mRNA 3' end processing and transcription termination
-
Buratowski S. 2005. Connections between mRNA 3' end processing and transcription termination. Curr. Opin. Cell Biol. 17:257-261. http://dx.doi.org/10.1016/j.ceb.2005.04.003.
-
(2005)
Curr. Opin. Cell Biol
, vol.17
, pp. 257-261
-
-
Buratowski, S.1
-
19
-
-
1542334001
-
Phosphorylation of serine 2 within the RNA polymerase II C-terminal domain couples transcription and 3' end processing
-
Ahn SH, Kim M, Buratowski S. 2004. Phosphorylation of serine 2 within the RNA polymerase II C-terminal domain couples transcription and 3' end processing. Mol. Cell 13:67-76. http://dx.doi.org/10.1016/S1097-2765(03)00492-1.
-
(2004)
Mol. Cell
, vol.13
, pp. 67-76
-
-
Ahn, S.H.1
Kim, M.2
Buratowski, S.3
-
20
-
-
70350442978
-
TFIIH-associated Cdk7 kinase functions in phosphorylation of C-terminal domain Ser7 residues, promoter-proximal pausing, and termination by RNA polymerase II
-
Glover-Cutter K, Larochelle S, Erickson B, Zhang C, Shokat K, Fisher RP, Bentley DL. 2009. TFIIH-associated Cdk7 kinase functions in phosphorylation of C-terminal domain Ser7 residues, promoter-proximal pausing, and termination by RNA polymerase II. Mol. Cell. Biol. 29: 5455-5464. http://dx.doi.org/10.1128/MCB.00637-09.
-
(2009)
Mol. Cell. Biol
, vol.29
, pp. 5455-5464
-
-
Glover-Cutter, K.1
Larochelle, S.2
Erickson, B.3
Zhang, C.4
Shokat, K.5
Fisher, R.P.6
Bentley, D.L.7
-
21
-
-
64749111945
-
Structure and function of the 5'→3' exoribonuclease Rat1 and its activating partner Rai1
-
Xiang S, Cooper-Morgan A, Jiao X, Kiledjian M, Manley JL, Tong L. 2009. Structure and function of the 5'→3' exoribonuclease Rat1 and its activating partner Rai1. Nature 458:784-788. http://dx.doi.org/10.1038/nature07731.
-
(2009)
Nature
, vol.458
, pp. 784-788
-
-
Xiang, S.1
Cooper-Morgan, A.2
Jiao, X.3
Kiledjian, M.4
Manley, J.L.5
Tong, L.6
-
22
-
-
33645844251
-
The role of Rat1 in coupling mRNA 3'-end processing to transcription termination: implications for a unified allosteric-torpedo model
-
Luo W, Johnson AW, Bentley DL. 2006. The role of Rat1 in coupling mRNA 3'-end processing to transcription termination: implications for a unified allosteric-torpedo model. Genes Dev. 20:954-965. http://dx.doi.org/10.1101/gad.1409106.
-
(2006)
Genes Dev
, vol.20
, pp. 954-965
-
-
Luo, W.1
Johnson, A.W.2
Bentley, D.L.3
-
23
-
-
84867847719
-
Surveillance pathways rescuing eukaryotic ribosomes lost in translation
-
Graille M, Seraphin B. 2012. Surveillance pathways rescuing eukaryotic ribosomes lost in translation. Nat. Rev. Mol. Cell Biol. 13:727-735. http://dx.doi.org/10.1038/nrm3457.
-
(2012)
Nat. Rev. Mol. Cell Biol
, vol.13
, pp. 727-735
-
-
Graille, M.1
Seraphin, B.2
-
24
-
-
84877830445
-
Regulation of nonsense-mediated mRNA decay: implications for physiology and disease
-
Karam R, Wengrod J, Gardner LB, Wilkinson MF. 2013. Regulation of nonsense-mediated mRNA decay: implications for physiology and disease. Biochim. Biophys. Acta 1829:624-633. http://dx.doi.org/10.1016/j.bbagrm.2013.03.002.
-
(2013)
Biochim. Biophys. Acta
, vol.1829
, pp. 624-633
-
-
Karam, R.1
Wengrod, J.2
Gardner, L.B.3
Wilkinson, M.F.4
-
25
-
-
77957821041
-
Power of yeast for analysis of eukaryotic translation initiation
-
Altmann M, Linder P. 2010. Power of yeast for analysis of eukaryotic translation initiation. J. Biol. Chem. 285:31907-31912. http://dx.doi.org/10.1074/jbc.R110.144196.
-
(2010)
J. Biol. Chem
, vol.285
, pp. 31907-31912
-
-
Altmann, M.1
Linder, P.2
-
26
-
-
77954356006
-
Eukaryotic protein synthesis: still a mystery
-
Merrick WC. 2010. Eukaryotic protein synthesis: still a mystery. J. Biol. Chem. 285:21197-21201. http://dx.doi.org/10.1074/jbc.R110.111476.
-
(2010)
J. Biol. Chem
, vol.285
, pp. 21197-21201
-
-
Merrick, W.C.1
-
27
-
-
0038813732
-
The interaction of the cap-binding complex (CBC) with eIF4G is dispensable for translation in yeast
-
Baron-Benhamou J, Fortes P, Inada T, Preiss T, Hentze MW. 2003. The interaction of the cap-binding complex (CBC) with eIF4G is dispensable for translation in yeast. RNA 9:654-662. http://dx.doi.org/10.1261/rna.5100903.
-
(2003)
RNA
, vol.9
, pp. 654-662
-
-
Baron-Benhamou, J.1
Fortes, P.2
Inada, T.3
Preiss, T.4
Hentze, M.W.5
-
28
-
-
66049158810
-
Polysomes, P bodies and stress granules: states and fates of eukaryotic mRNAs
-
Balagopal V, Parker R. 2009. Polysomes, P bodies and stress granules: states and fates of eukaryotic mRNAs. Curr. Opin. Cell Biol. 21:403-408. http://dx.doi.org/10.1016/j.ceb.2009.03.005.
-
(2009)
Curr. Opin. Cell Biol
, vol.21
, pp. 403-408
-
-
Balagopal, V.1
Parker, R.2
-
29
-
-
84858442444
-
Mechanisms of deadenylation-dependent decay
-
Chen CY, Shyu AB. 2011. Mechanisms of deadenylation-dependent decay. Wiley Interdiscip. Rev.RNA2:167-183. http://dx.doi.org/10.1002/wrna.40.
-
(2011)
Wiley Interdiscip. Rev.RNA2
, pp. 167-183
-
-
Chen, C.Y.1
Shyu, A.B.2
-
30
-
-
0037009517
-
The scavenger mRNA decapping enzyme DcpS is a member of the HIT family of pyrophosphatases
-
Liu H, Rodgers ND, Jiao X, Kiledjian M. 2002. The scavenger mRNA decapping enzyme DcpS is a member of the HIT family of pyrophosphatases. EMBO J. 21:4699-4708. http://dx.doi.org/10.1093/emboj/cdf448.
-
(2002)
EMBO J
, vol.21
, pp. 4699-4708
-
-
Liu, H.1
Rodgers, N.D.2
Jiao, X.3
Kiledjian, M.4
-
31
-
-
0035674477
-
The DEAD box helicase, Dhh1p, functions in mRNA decapping and interacts with both the decapping and deadenylase complexes
-
Coller JM, Tucker M, Sheth U, Valencia-Sanchez MA, Parker R. 2001. The DEAD box helicase, Dhh1p, functions in mRNA decapping and interacts with both the decapping and deadenylase complexes. RNA 7:1717-1727. http://dx.doi.org/10.1017/S135583820101994X.
-
(2001)
RNA
, vol.7
, pp. 1717-1727
-
-
Coller, J.M.1
Tucker, M.2
Sheth, U.3
Valencia-Sanchez, M.A.4
Parker, R.5
-
32
-
-
33645277360
-
Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation
-
Doma MK, Parker R. 2006. Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation. Nature 440:561-564. http://dx.doi.org/10.1038/nature04530.
-
(2006)
Nature
, vol.440
, pp. 561-564
-
-
Doma, M.K.1
Parker, R.2
-
33
-
-
79961060611
-
Dynamic profiling of mRNA turnover reveals gene-specific and system-wide regulation of mRNA decay
-
Munchel SE, Shultzaberger RK, Takizawa N, Weis K. 2011. Dynamic profiling of mRNA turnover reveals gene-specific and system-wide regulation of mRNA decay. Mol. Biol. Cell 22:2787-2795. http://dx.doi.org/10.1091/mbc.E11-01-0028.
-
(2011)
Mol. Biol. Cell
, vol.22
, pp. 2787-2795
-
-
Munchel, S.E.1
Shultzaberger, R.K.2
Takizawa, N.3
Weis, K.4
-
34
-
-
4444324795
-
Bringing the role of mRNA decay in the control of gene expression into focus
-
Wilusz CJ, Wilusz J. 2004. Bringing the role of mRNA decay in the control of gene expression into focus. Trends Genet. 20:491-497. http://dx.doi.org/10.1016/j.tig.2004.07.011.
-
(2004)
Trends Genet
, vol.20
, pp. 491-497
-
-
Wilusz, C.J.1
Wilusz, J.2
-
35
-
-
34250735674
-
RNA regulons: coordination of post-transcriptional events
-
Keene JD. 2007. RNA regulons: coordination of post-transcriptional events. Nat. Rev. Genet. 8:533-543. http://dx.doi.org/10.1038/nrg2111.
-
(2007)
Nat. Rev. Genet
, vol.8
, pp. 533-543
-
-
Keene, J.D.1
-
36
-
-
0036512117
-
Messenger-RNA-binding proteins and the messages they carry
-
Dreyfuss G, Kim VN, Kataoka N. 2002. Messenger-RNA-binding proteins and the messages they carry. Nat. Rev. Mol. Cell Biol. 3:195-205. http://dx.doi.org/10.1038/nrm760.
-
(2002)
Nat. Rev. Mol. Cell Biol
, vol.3
, pp. 195-205
-
-
Dreyfuss, G.1
Kim, V.N.2
Kataoka, N.3
-
37
-
-
19344365947
-
Extensive association of functionally and cytotopically related mRNAs with Puf family RNAbinding proteins in yeast
-
Gerber AP, Herschlag D, Brown PO. 2004. Extensive association of functionally and cytotopically related mRNAs with Puf family RNAbinding proteins in yeast. PLoS Biol. 2:E79. http://dx.doi.org/10.1371/journal.pbio.0020079.
-
(2004)
PLoS Biol
, vol.2
, pp. E79
-
-
Gerber, A.P.1
Herschlag, D.2
Brown, P.O.3
-
38
-
-
54949148332
-
Diverse RNA-binding proteins interact with functionally related sets of RNAs, suggesting an extensive regulatory system
-
Hogan DJ, Riordan DP, Gerber AP, Herschlag D, Brown PO. 2008. Diverse RNA-binding proteins interact with functionally related sets of RNAs, suggesting an extensive regulatory system. PLoS Biol. 6:e255. http://dx.doi.org/10.1371/journal.pbio.0060255.
-
(2008)
PLoS Biol
, vol.6
, pp. e255
-
-
Hogan, D.J.1
Riordan, D.P.2
Gerber, A.P.3
Herschlag, D.4
Brown, P.O.5
-
39
-
-
79952351662
-
Identification of RNA recognition elements in the Saccharomyces cerevisiae transcriptome
-
Riordan DP, Herschlag D, Brown PO. 2011. Identification of RNA recognition elements in the Saccharomyces cerevisiae transcriptome. Nucleic Acids Res. 39:1501-1509. http://dx.doi.org/10.1093/nar/gkq920.
-
(2011)
Nucleic Acids Res
, vol.39
, pp. 1501-1509
-
-
Riordan, D.P.1
Herschlag, D.2
Brown, P.O.3
-
40
-
-
84873582146
-
Pervasive and dynamic protein binding sites of the mRNA transcriptome in Saccharomyces cerevisiae
-
Freeberg MA, Han T, Moresco JJ, Kong A, Yang YC, Lu ZJ, Yates JR, Kim JK. 2013. Pervasive and dynamic protein binding sites of the mRNA transcriptome in Saccharomyces cerevisiae. Genome Biol. 14:R13. http://dx.doi.org/10.1186/gb-2013-14-2-r13.
-
(2013)
Genome Biol
, vol.14
, pp. R13
-
-
Freeberg, M.A.1
Han, T.2
Moresco, J.J.3
Kong, A.4
Yang, Y.C.5
Lu, Z.J.6
Yates, J.R.7
Kim, J.K.8
-
41
-
-
0034388021
-
The Puf3 protein is a transcript-specific regulator of mRNA degradation in yeast
-
Olivas W, Parker R. 2000. The Puf3 protein is a transcript-specific regulator of mRNA degradation in yeast. EMBO J. 19:6602-6611. http://dx.doi.org/10.1093/emboj/19.23.6602.
-
(2000)
EMBO J
, vol.19
, pp. 6602-6611
-
-
Olivas, W.1
Parker, R.2
-
42
-
-
77953281765
-
Global coordination of transcriptional control and mRNA decay during cellular differentiation
-
Amorim MJ, Cotobal C, Duncan C, Mata J. 2010. Global coordination of transcriptional control and mRNA decay during cellular differentiation. Mol. Syst. Biol. 6:380.
-
(2010)
Mol. Syst. Biol
, vol.6
, pp. 380
-
-
Amorim, M.J.1
Cotobal, C.2
Duncan, C.3
Mata, J.4
-
43
-
-
84862909013
-
RNA-binding protein HuR autoregulates its expression by promoting alternative polyadenylation site usage
-
Dai W, Zhang G, Makeyev EV. 2012. RNA-binding protein HuR autoregulates its expression by promoting alternative polyadenylation site usage. Nucleic Acids Res. 40:787-800. http://dx.doi.org/10.1093/nar/gkr783.
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 787-800
-
-
Dai, W.1
Zhang, G.2
Makeyev, E.V.3
-
44
-
-
84877811576
-
Functional and molecular insights into KSRP function in mRNA decay
-
Briata P, Chen CY, Ramos A, Gherzi R. 2013. Functional and molecular insights into KSRP function in mRNA decay. Biochim. Biophys. Acta 1829:689-694. http://dx.doi.org/10.1016/j.bbagrm.2012.11.003.
-
(2013)
Biochim. Biophys. Acta
, vol.1829
, pp. 689-694
-
-
Briata, P.1
Chen, C.Y.2
Ramos, A.3
Gherzi, R.4
-
45
-
-
84877793134
-
Tristetraprolin (TTP): interactions with mRNA and proteins, and current thoughts on mechanisms of action
-
Brooks SA, Blackshear PJ. 2013. Tristetraprolin (TTP): interactions with mRNA and proteins, and current thoughts on mechanisms of action. Biochim. Biophys. Acta 1829:666-679. http://dx.doi.org/10.1016/j.bbagrm.2013.02.003.
-
(2013)
Biochim. Biophys. Acta
, vol.1829
, pp. 666-679
-
-
Brooks, S.A.1
Blackshear, P.J.2
-
46
-
-
84877826875
-
Post-transcriptional control of gene expression by AUF1: mechanisms, physiological targets, and regulation
-
White EJ, Brewer G, Wilson GM. 2013. Post-transcriptional control of gene expression by AUF1: mechanisms, physiological targets, and regulation. Biochim. Biophys. Acta 1829:680-688. http://dx.doi.org/10.1016/j.bbagrm.2012.12.002.
-
(2013)
Biochim. Biophys. Acta
, vol.1829
, pp. 680-688
-
-
White, E.J.1
Brewer, G.2
Wilson, G.M.3
-
48
-
-
33749234198
-
The yin and yang of P-TEFb regulation: implications for human immunodeficiency virus gene expression and global control of cell growth and differentiation
-
Zhou Q, Yik JH. 2006. The yin and yang of P-TEFb regulation: implications for human immunodeficiency virus gene expression and global control of cell growth and differentiation. Microbiol. Mol. Biol. Rev. 70:646-659. http://dx.doi.org/10.1128/MMBR.00011-06.
-
(2006)
Microbiol. Mol. Biol. Rev
, vol.70
, pp. 646-659
-
-
Zhou, Q.1
Yik, J.H.2
-
49
-
-
84872388407
-
The eukaryotic transcriptional machinery regulates mRNA translation and decay in the cytoplasm
-
Dahan N, Choder M. 2013. The eukaryotic transcriptional machinery regulates mRNA translation and decay in the cytoplasm. Biochim. Biophys. Acta 1829:169-173. http://dx.doi.org/10.1016/j.bbagrm.2012.08.004.
-
(2013)
Biochim. Biophys. Acta
, vol.1829
, pp. 169-173
-
-
Dahan, N.1
Choder, M.2
-
50
-
-
84455167601
-
Promoter elements regulate cytoplasmic mRNA decay
-
Bregman A, Avraham-Kelbert M, Barkai O, Duek L, Guterman A, Choder M. 2011. Promoter elements regulate cytoplasmic mRNA decay. Cell 147:1473-1483. http://dx.doi.org/10.1016/j.cell.2011.12.005.
-
(2011)
Cell
, vol.147
, pp. 1473-1483
-
-
Bregman, A.1
Avraham-Kelbert, M.2
Barkai, O.3
Duek, L.4
Guterman, A.5
Choder, M.6
-
51
-
-
84870913160
-
Widespread promoter-mediated coordination of transcription and mRNA degradation
-
Dori-Bachash M, Shalem O, Manor YS, Pilpel Y, Tirosh I. 2012. Widespread promoter-mediated coordination of transcription and mRNA degradation. Genome Biol. 13:R114. http://dx.doi.org/10.1186/gb-2012-13-12-r114.
-
(2012)
Genome Biol
, vol.13
, pp. R114
-
-
Dori-Bachash, M.1
Shalem, O.2
Manor, Y.S.3
Pilpel, Y.4
Tirosh, I.5
-
52
-
-
84455200588
-
Singlemolecule mRNA decay measurements reveal promoter-regulated mRNA stability in yeast
-
Trcek T, Larson DR, Moldon A, Query CC, Singer RH. 2011. Singlemolecule mRNA decay measurements reveal promoter-regulated mRNA stability in yeast. Cell 147:1484-1497. http://dx.doi.org/10.1016/j.cell.2011.11.051.
-
(2011)
Cell
, vol.147
, pp. 1484-1497
-
-
Trcek, T.1
Larson, D.R.2
Moldon, A.3
Query, C.C.4
Singer, R.H.5
-
53
-
-
0031900851
-
DBF2 protein kinase binds to and acts through the cell cycle-regulatedMOB1protein
-
Komarnitsky SI, Chiang YC, Luca FC, Chen J, Toyn JH, Winey M, Johnston LH, Denis CL. 1998. DBF2 protein kinase binds to and acts through the cell cycle-regulatedMOB1protein. Mol. Cell. Biol. 18:2100-2107.
-
(1998)
Mol. Cell. Biol
, vol.18
, pp. 2100-2107
-
-
Komarnitsky, S.I.1
Chiang, Y.C.2
Luca, F.C.3
Chen, J.4
Toyn, J.H.5
Winey, M.6
Johnston, L.H.7
Denis, C.L.8
-
54
-
-
0028981747
-
Glucose-dependent turnover of the mRNAs encoding succinate dehydrogenase peptides in Saccharomyces cerevisiae: sequence elements in the 5' untranslated region of the Ip mRNA play a dominant role
-
Cereghino GP, Atencio DP, Saghbini M, Beiner J, Scheffler IE. 1995. Glucose-dependent turnover of the mRNAs encoding succinate dehydrogenase peptides in Saccharomyces cerevisiae: sequence elements in the 5' untranslated region of the Ip mRNA play a dominant role. Mol. Biol. Cell 6:1125-1143. http://dx.doi.org/10.1091/mbc.6.9.1125.
-
(1995)
Mol. Biol. Cell
, vol.6
, pp. 1125-1143
-
-
Cereghino, G.P.1
Atencio, D.P.2
Saghbini, M.3
Beiner, J.4
Scheffler, I.E.5
-
55
-
-
0026629174
-
Control of mRNA turnover as a mechanism of glucose repression in Saccharomyces cerevisiae
-
Lombardo A, Cereghino GP, Scheffler IE. 1992. Control of mRNA turnover as a mechanism of glucose repression in Saccharomyces cerevisiae. Mol. Cell. Biol. 12:2941-2948.
-
(1992)
Mol. Cell. Biol
, vol.12
, pp. 2941-2948
-
-
Lombardo, A.1
Cereghino, G.P.2
Scheffler, I.E.3
-
56
-
-
0030058701
-
Genetic analysis of glucose regulation in Saccharomyces cerevisiae: control of transcription versus mRNA turnover
-
Cereghino GP, Scheffler IE. 1996. Genetic analysis of glucose regulation in Saccharomyces cerevisiae: control of transcription versus mRNA turnover. EMBO J. 15:363-374.
-
(1996)
EMBO J
, vol.15
, pp. 363-374
-
-
Cereghino, G.P.1
Scheffler, I.E.2
-
57
-
-
0034640518
-
Glucose-regulated turnover of mRNA and the influence of poly(A) tail length on half-life
-
Prieto S, de la Cruz BJ, Scheffler IE. 2000. Glucose-regulated turnover of mRNA and the influence of poly(A) tail length on half-life. J. Biol. Chem. 275:14155-14166. http://dx.doi.org/10.1074/jbc.275.19.14155.
-
(2000)
J. Biol. Chem
, vol.275
, pp. 14155-14166
-
-
Prieto, S.1
de la Cruz, B.J.2
Scheffler, I.E.3
-
58
-
-
0027490718
-
Determination of mRNA fate by different RNA polymerase II promoters
-
Enssle J, Kugler W, Hentze MW, Kulozik AE. 1993. Determination of mRNA fate by different RNA polymerase II promoters. Proc. Natl. Acad. Sci. U. S. A. 90:10091-10095. http://dx.doi.org/10.1073/pnas.90.21.10091.
-
(1993)
Proc. Natl. Acad. Sci. U. S. A
, vol.90
, pp. 10091-10095
-
-
Enssle, J.1
Kugler, W.2
Hentze, M.W.3
Kulozik, A.E.4
-
59
-
-
78149478886
-
RNApolymerase II subunits link transcription andmRNAdecay to translation
-
Harel-Sharvit L, Eldad N, Haimovich G, Barkai O, Duek L, Choder M. 2010. RNApolymerase II subunits link transcription andmRNAdecay to translation. Cell 143: 552-563. http://dx.doi.org/10.1016/j.cell.2010.10.033.
-
(2010)
Cell
, vol.143
, pp. 552-563]]
-
-
Harel-Sharvit, L.1
Eldad, N.2
Haimovich, G.3
Barkai, O.4
Duek, L.5
Choder, M.6
-
60
-
-
29144508551
-
The RNA polymerase II subunit Rpb4p mediates decay of a specific class of mRNAs
-
Lotan R, Bar-On VG, Harel-Sharvit L, Duek L, Melamed D, Choder M. 2005. The RNA polymerase II subunit Rpb4p mediates decay of a specific class of mRNAs. Genes Dev. 19:3004-3016. http://dx.doi.org/10.1101/gad.353205.
-
(2005)
Genes Dev
, vol.19
, pp. 3004-3016
-
-
Lotan, R.1
Bar-On, V.G.2
Harel-Sharvit, L.3
Duek, L.4
Melamed, D.5
Choder, M.6
-
61
-
-
34748850800
-
The Rpb7p subunit of yeast RNA polymerase II plays roles in the two major cytoplasmicmRNAdecay mechanisms
-
Lotan R, Goler-Baron V, Duek L, Haimovich G, Choder M. 2007. The Rpb7p subunit of yeast RNA polymerase II plays roles in the two major cytoplasmicmRNAdecay mechanisms. J. Cell Biol. 178:1133-1143. http://dx.doi.org/10.1083/jcb.200701165.
-
(2007)
J. Cell Biol
, vol.178
, pp. 1133-1143
-
-
Lotan, R.1
Goler-Baron, V.2
Duek, L.3
Haimovich, G.4
Choder, M.5
-
62
-
-
0037107547
-
On the importance of being co-transcriptional
-
Neugebauer KM. 2002. On the importance of being co-transcriptional. J. Cell Sci. 115:3865-3871. http://dx.doi.org/10.1242/jcs.00073.
-
(2002)
J. Cell Sci
, vol.115
, pp. 3865-3871
-
-
Neugebauer, K.M.1
-
63
-
-
84878696439
-
Quantitative proteomics demonstrates that the RNA polymerase II subunits Rpb4 and Rpb7 dissociate during transcriptional elongation
-
Mosley AL, Hunter GO, Sardiu ME, Smolle M, Workman JL, Florens L, Washburn MP. 2013. Quantitative proteomics demonstrates that the RNA polymerase II subunits Rpb4 and Rpb7 dissociate during transcriptional elongation. Mol. Cell. Proteomics 12:1530-1538. http://dx.doi.org/10.1074/mcp.M112.024034.
-
(2013)
Mol. Cell. Proteomics
, vol.12
, pp. 1530-1538
-
-
Mosley, A.L.1
Hunter, G.O.2
Sardiu, M.E.3
Smolle, M.4
Workman, J.L.5
Florens, L.6
Washburn, M.P.7
-
64
-
-
55549121958
-
Genomeassociated RNA polymerase II includes the dissociable Rpb4/7 subcomplex
-
Jasiak AJ, Hartmann H, Karakasili E, Kalocsay M, Flatley A, Kremmer E, Strasser K, Martin DE, Soding J, Cramer P. 2008. Genomeassociated RNA polymerase II includes the dissociable Rpb4/7 subcomplex. J. Biol. Chem. 283:26423-26427. http://dx.doi.org/10.1074/jbc.M803237200.
-
(2008)
J. Biol. Chem
, vol.283
, pp. 26423-26427
-
-
Jasiak, A.J.1
Hartmann, H.2
Karakasili, E.3
Kalocsay, M.4
Flatley, A.5
Kremmer, E.6
Strasser, K.7
Martin, D.E.8
Soding, J.9
Cramer, P.10
-
65
-
-
84903471633
-
Rpb4 subunit functions mainly in mRNA synthesis by RNA polymerase II
-
Schulz D, Pirkl N, Lehmann E, Cramer P. 2014. Rpb4 subunit functions mainly in mRNA synthesis by RNA polymerase II. J. Biol. Chem. 289:17446-17452. http://dx.doi.org/10.1074/jbc.M114.568014.
-
(2014)
J. Biol. Chem
, vol.289
, pp. 17446-17452
-
-
Schulz, D.1
Pirkl, N.2
Lehmann, E.3
Cramer, P.4
-
66
-
-
0028268896
-
The yeast UME5 gene regulates the stability of meiotic mRNAs in response to glucose
-
Surosky RT, Strich R, Esposito RE. 1994. The yeast UME5 gene regulates the stability of meiotic mRNAs in response to glucose. Mol. Cell. Biol. 14:3446-3458.
-
(1994)
Mol. Cell. Biol
, vol.14
, pp. 3446-3458
-
-
Surosky, R.T.1
Strich, R.2
Esposito, R.E.3
-
67
-
-
0033965777
-
Differential post-transcriptional regulation of yeast mRNAs in response to high and low glucose concentrations
-
Yin Z, Hatton L, Brown AJ. 2000. Differential post-transcriptional regulation of yeast mRNAs in response to high and low glucose concentrations. Mol. Microbiol. 35:553-565. http://dx.doi.org/10.1046/j.1365-2958.2000.01723.x.
-
(2000)
Mol. Microbiol
, vol.35
, pp. 553-565
-
-
Yin, Z.1
Hatton, L.2
Brown, A.J.3
-
68
-
-
76349090199
-
CDK8 is a positive regulator of transcriptional elongation within the serum response network
-
Donner AJ, Ebmeier CC, Taatjes DJ, Espinosa JM. 2010. CDK8 is a positive regulator of transcriptional elongation within the serum response network. Nat. Struct. Mol. Biol. 17:194-201. http://dx.doi.org/10.1038/nsmb.1752.
-
(2010)
Nat. Struct. Mol. Biol
, vol.17
, pp. 194-201
-
-
Donner, A.J.1
Ebmeier, C.C.2
Taatjes, D.J.3
Espinosa, J.M.4
-
69
-
-
79960284319
-
Requirement of TFIIH kinase subunit Mat1 for RNA Pol II C-terminal domain Ser5 phosphorylation, transcription andmRNAturnover
-
Helenius K, Yang Y, Tselykh TV, Pessa HK, Frilander MJ, Makela TP. 2011. Requirement of TFIIH kinase subunit Mat1 for RNA Pol II C-terminal domain Ser5 phosphorylation, transcription andmRNAturnover. Nucleic Acids Res. 39:5025-5035. http://dx.doi.org/10.1093/nar/gkr107.
-
(2011)
Nucleic Acids Res
, vol.39
, pp. 5025-5035
-
-
Helenius, K.1
Yang, Y.2
Tselykh, T.V.3
Pessa, H.K.4
Frilander, M.J.5
Makela, T.P.6
-
70
-
-
0028341741
-
Coupling between mRNA synthesis and mRNA stability in Escherichia coli
-
Chow J, Dennis PP. 1994. Coupling between mRNA synthesis and mRNA stability in Escherichia coli. Mol. Microbiol. 11:919-931. http://dx.doi.org/10.1111/j.1365-2958.1994.tb00371.x.
-
(1994)
Mol. Microbiol
, vol.11
, pp. 919-931
-
-
Chow, J.1
Dennis, P.P.2
-
71
-
-
84878270249
-
Gene expression is circular: factors for mRNA degradation also foster mRNA synthesis
-
Haimovich G, Medina DA, Causse SZ, Garber M, Millan-Zambrano G, Barkai O, Chavez S, Perez-Ortin JE, Darzacq X, Choder M. 2013. Gene expression is circular: factors for mRNA degradation also foster mRNA synthesis. Cell 153:1000-1011. http://dx.doi.org/10.1016/j.cell.2013.05.012.
-
(2013)
Cell
, vol.153
, pp. 1000-1011
-
-
Haimovich, G.1
Medina, D.A.2
Causse, S.Z.3
Garber, M.4
Millan-Zambrano, G.5
Barkai, O.6
Chavez, S.7
Perez-Ortin, J.E.8
Darzacq, X.9
Choder, M.10
-
72
-
-
84885359411
-
Global analysis of eukaryotic mRNA degradation reveals Xrn1-dependent buffering of transcript levels
-
Sun M, Schwalb B, Pirkl N, Maier KC, Schenk A, Failmezger H, Tresch A, Cramer P. 2013. Global analysis of eukaryotic mRNA degradation reveals Xrn1-dependent buffering of transcript levels. Mol. Cell 52:52-62 http://dx.doi.org/10.1016/j.molcel.2013.09.010.
-
(2013)
Mol. Cell
, vol.52
, pp. 52-62
-
-
Sun, M.1
Schwalb, B.2
Pirkl, N.3
Maier, K.C.4
Schenk, A.5
Failmezger, H.6
Tresch, A.7
Cramer, P.8
-
73
-
-
0030726285
-
Lithium toxicity in yeast is due to the inhibition of RNA processing enzymes
-
Dichtl B, Stevens A, Tollervey D. 1997. Lithium toxicity in yeast is due to the inhibition of RNA processing enzymes. EMBO J. 16:7184-7195. http://dx.doi.org/10.1093/emboj/16.23.7184.
-
(1997)
EMBO J
, vol.16
, pp. 7184-7195
-
-
Dichtl, B.1
Stevens, A.2
Tollervey, D.3
-
74
-
-
0025938552
-
Recombination and RNA processing: a common strand?
-
Kearsey S, Kipling D. 1991. Recombination and RNA processing: a common strand? Trends Cell Biol. 1:110-112. http://dx.doi.org/10.1016/0962-8924(91)90101-E.
-
(1991)
Trends Cell Biol
, vol.1
, pp. 110-112
-
-
Kearsey, S.1
Kipling, D.2
-
75
-
-
79960065233
-
XUTs are a class of Xrn1-sensitive antisense regulatory non-coding RNA in yeast
-
van Dijk EL, Chen CL, d'Aubenton-Carafa Y, Gourvennec S, Kwapisz M, Roche V, Bertrand C, Silvain M, Legoix-Ne P, Loeillet S, Nicolas A, Thermes C, Morillon A. 2011. XUTs are a class of Xrn1-sensitive antisense regulatory non-coding RNA in yeast. Nature 475:114-117. http://dx.doi.org/10.1038/nature10118.
-
(2011)
Nature
, vol.475
, pp. 114-117
-
-
van Dijk, E.L.1
Chen, C.L.2
d'Aubenton-Carafa, Y.3
Gourvennec, S.4
Kwapisz, M.5
Roche, V.6
Bertrand, C.7
Silvain, M.8
Legoix-Ne, P.9
Loeillet, S.10
Nicolas, A.11
Thermes, C.12
Morillon, A.13
-
76
-
-
9644310314
-
The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II
-
Kim M, Krogan NJ, Vasiljeva L, Rando OJ, Nedea E, Greenblatt JF, Buratowski S. 2004. The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II. Nature 432:517-522. http://dx.doi.org/10.1038/nature03041.
-
(2004)
Nature
, vol.432
, pp. 517-522
-
-
Kim, M.1
Krogan, N.J.2
Vasiljeva, L.3
Rando, O.J.4
Nedea, E.5
Greenblatt, J.F.6
Buratowski, S.7
-
77
-
-
0027392423
-
An essential yeast gene with homology to the exonuclease-encoding XRN1/KEM1 gene also encodes a protein with exoribonuclease activity
-
Kenna M, Stevens A, McCammon M, Douglas MG. 1993. An essential yeast gene with homology to the exonuclease-encoding XRN1/KEM1 gene also encodes a protein with exoribonuclease activity. Mol. Cell. Biol. 13:341-350.
-
(1993)
Mol. Cell. Biol
, vol.13
, pp. 341-350
-
-
Kenna, M.1
Stevens, A.2
McCammon, M.3
Douglas, M.G.4
-
78
-
-
0032529291
-
Mutational analysis of exoribonuclease I from Saccharomyces cerevisiae
-
Page AM, Davis K, Molineux C, Kolodner RD, Johnson AW. 1998. Mutational analysis of exoribonuclease I from Saccharomyces cerevisiae. Nucleic Acids Res. 26:3707-3716. http://dx.doi.org/10.1093/nar/26.16.3707.
-
(1998)
Nucleic Acids Res
, vol.26
, pp. 3707-3716
-
-
Page, A.M.1
Davis, K.2
Molineux, C.3
Kolodner, R.D.4
Johnson, A.W.5
-
79
-
-
0037013898
-
The DEAD box protein Dhh1 stimulates the decapping enzyme Dcp1
-
Fischer N, Weis K. 2002. The DEAD box protein Dhh1 stimulates the decapping enzyme Dcp1. EMBO J. 21:2788-2797. http://dx.doi.org/10.1093/emboj/21.11.2788.
-
(2002)
EMBO J
, vol.21
, pp. 2788-2797
-
-
Fischer, N.1
Weis, K.2
-
80
-
-
84861419478
-
Activation of 5=-3= exoribonuclease Xrn1 by cofactor Dcs1 is essential for mitochondrial function in yeast
-
Sinturel F, Brechemier-Baey D, Kiledjian M, Condon C, Benard L. 2012. Activation of 5=-3= exoribonuclease Xrn1 by cofactor Dcs1 is essential for mitochondrial function in yeast. Proc. Natl. Acad. Sci. U. S. A. 109:8264-8269. http://dx.doi.org/10.1073/pnas.1120090109.
-
(2012)
Proc. Natl. Acad. Sci. U. S. A
, vol.109
, pp. 8264-8269
-
-
Sinturel, F.1
Brechemier-Baey, D.2
Kiledjian, M.3
Condon, C.4
Benard, L.5
-
81
-
-
0030764692
-
Rat1p and Xrn1p are functionally interchangeable exoribonucleases that are restricted to and required in the nucleus and cytoplasm, respectively
-
Johnson AW. 1997. Rat1p and Xrn1p are functionally interchangeable exoribonucleases that are restricted to and required in the nucleus and cytoplasm, respectively. Mol. Cell. Biol. 17:6122-6130.
-
(1997)
Mol. Cell. Biol
, vol.17
, pp. 6122-6130
-
-
Johnson, A.W.1
-
82
-
-
84856782922
-
Decapping of long noncoding RNAs regulates inducible genes
-
Geisler S, Lojek L, Khalil AM, Baker KE, Coller J. 2012. Decapping of long noncoding RNAs regulates inducible genes. Mol. Cell 45:279-291. http://dx.doi.org/10.1016/j.molcel.2011.11.025.
-
(2012)
Mol. Cell
, vol.45
, pp. 279-291
-
-
Geisler, S.1
Lojek, L.2
Khalil, A.M.3
Baker, K.E.4
Coller, J.5
-
83
-
-
0028929369
-
Regulation and intracellular localization of Saccharomyces cerevisiae strand exchange protein 1 (Sep1/Xrn1/Kem1), a multifunctional exonuclease
-
Heyer WD, Johnson AW, Reinhart U, Kolodner RD. 1995. Regulation and intracellular localization of Saccharomyces cerevisiae strand exchange protein 1 (Sep1/Xrn1/Kem1), a multifunctional exonuclease. Mol. Cell. Biol. 15:2728-2736.
-
(1995)
Mol. Cell. Biol
, vol.15
, pp. 2728-2736
-
-
Heyer, W.D.1
Johnson, A.W.2
Reinhart, U.3
Kolodner, R.D.4
-
84
-
-
52049084405
-
The anchor-away technique: rapid, conditional establishment of yeast mutant phenotypes
-
Haruki H, Nishikawa J, Laemmli UK. 2008. The anchor-away technique: rapid, conditional establishment of yeast mutant phenotypes. Mol. Cell 31:925-932. http://dx.doi.org/10.1016/j.molcel.2008.07.020.
-
(2008)
Mol. Cell
, vol.31
, pp. 925-932
-
-
Haruki, H.1
Nishikawa, J.2
Laemmli, U.K.3
-
85
-
-
0025252545
-
Disruption of the gene XRN1, coding for a 5'→3' exoribonuclease, restricts yeast cell growth
-
Larimer FW, Stevens A. 1990. Disruption of the gene XRN1, coding for a 5'→3' exoribonuclease, restricts yeast cell growth. Gene 95:85-90. http://dx.doi.org/10.1016/0378-1119(90)90417-P.
-
(1990)
Gene
, vol.95
, pp. 85-90
-
-
Larimer, F.W.1
Stevens, A.2
-
86
-
-
0025674401
-
kem mutations affect nuclear fusion in Saccharomyces cerevisiae
-
Kim J, Ljungdahl PO, Fink GR. 1990. kem mutations affect nuclear fusion in Saccharomyces cerevisiae. Genetics 126:799-812.
-
(1990)
Genetics
, vol.126
, pp. 799-812
-
-
Kim, J.1
Ljungdahl, P.O.2
Fink, G.R.3
-
87
-
-
0030669030
-
Exploring the metabolic and genetic control of gene expression on a genomic scale
-
DeRisi JL, Iyer VR, Brown PO. 1997. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680-686. http://dx.doi.org/10.1126/science.278.5338.680.
-
(1997)
Science
, vol.278
, pp. 680-686
-
-
DeRisi, J.L.1
Iyer, V.R.2
Brown, P.O.3
-
88
-
-
38449110592
-
SNF1/AMPK pathways in yeast
-
Hedbacker K, Carlson M. 2008. SNF1/AMPK pathways in yeast. Front. Biosci. 13:2408-2420. http://dx.doi.org/10.2741/2854.
-
(2008)
Front. Biosci
, vol.13
, pp. 2408-2420
-
-
Hedbacker, K.1
Carlson, M.2
-
89
-
-
11844258269
-
A role for the nonphosphorylated form of yeast Snf1: tolerance to toxic cations and activation of potassium transport
-
Portillo F, Mulet JM, Serrano R. 2005. A role for the nonphosphorylated form of yeast Snf1: tolerance to toxic cations and activation of potassium transport. FEBS Lett. 579:512-516. http://dx.doi.org/10.1016/j.febslet.2004.12.019.
-
(2005)
FEBS Lett
, vol.579
, pp. 512-516
-
-
Portillo, F.1
Mulet, J.M.2
Serrano, R.3
-
90
-
-
0035965277
-
Regulation of Snf1 kinase. Activation requires phosphorylation of threonine 210 by an upstream kinase as well as a distinct step mediated by the Snf4 subunit
-
McCartney RR, Schmidt MC. 2001. Regulation of Snf1 kinase. Activation requires phosphorylation of threonine 210 by an upstream kinase as well as a distinct step mediated by the Snf4 subunit. J. Biol. Chem. 276: 36460-36466. http://dx.doi.org/10.1074/jbc.M104418200.
-
(2001)
J. Biol. Chem
, vol.276
, pp. 36460-36466
-
-
McCartney, R.R.1
Schmidt, M.C.2
-
91
-
-
84861840057
-
Glucose-induced posttranslational activation of protein phosphatases PP2A and PP1 in yeast
-
Castermans D, Somers I, Kriel J, Louwet W, Wera S, Versele M, Janssens V, Thevelein JM. 2012. Glucose-induced posttranslational activation of protein phosphatases PP2A and PP1 in yeast. Cell Res. 22: 1058-1077. http://dx.doi.org/10.1038/cr.2012.20.
-
(2012)
Cell Res
, vol.22
, pp. 1058-1077
-
-
Castermans, D.1
Somers, I.2
Kriel, J.3
Louwet, W.4
Wera, S.5
Versele, M.6
Janssens, V.7
Thevelein, J.M.8
-
92
-
-
0032568542
-
Glucose-regulated interaction of a regulatory subunit of protein phosphatase 1 with the Snf1 protein kinase in Saccharomyces cerevisiae
-
Ludin K, Jiang R, Carlson M. 1998. Glucose-regulated interaction of a regulatory subunit of protein phosphatase 1 with the Snf1 protein kinase in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U. S. A. 95:6245-6250. http://dx.doi.org/10.1073/pnas.95.11.6245.
-
(1998)
Proc. Natl. Acad. Sci. U. S. A
, vol.95
, pp. 6245-6250
-
-
Ludin, K.1
Jiang, R.2
Carlson, M.3
-
93
-
-
0033974002
-
Regulatory interactions between the Reg1-Glc7 protein phosphatase and the Snf1 protein kinase
-
Sanz P, Alms GR, Haystead TA, Carlson M. 2000. Regulatory interactions between the Reg1-Glc7 protein phosphatase and the Snf1 protein kinase. Mol. Cell. Biol. 20:1321-1328. http://dx.doi.org/10.1128/MCB.20.4.1321-1328.2000.
-
(2000)
Mol. Cell. Biol
, vol.20
, pp. 1321-1328
-
-
Sanz, P.1
Alms, G.R.2
Haystead, T.A.3
Carlson, M.4
-
94
-
-
84903906735
-
Phosphoproteomic analysis identifies proteins involved in transcription-coupledmRNAdecay as targets of Snf1 signaling
-
Braun KA, Vaga S, Dombek KM, Fang F, Palmisano S, Aebersold R, Young ET. 2014. Phosphoproteomic analysis identifies proteins involved in transcription-coupledmRNAdecay as targets of Snf1 signaling. Sci. Signal. 7:ra64. http://dx.doi.org/10.1126/scisignal.2005000.
-
(2014)
Sci. Signal
, vol.7
, pp. ra64
-
-
Braun, K.A.1
Vaga, S.2
Dombek, K.M.3
Fang, F.4
Palmisano, S.5
Aebersold, R.6
Young, E.T.7
-
95
-
-
84879533104
-
Towards systematic discovery of signaling networks in budding yeast filamentous growth stress response using interventional phosphorylation data
-
Zhang Y, Kweon HK, Shively C, Kumar A, Andrews PC. 2013. Towards systematic discovery of signaling networks in budding yeast filamentous growth stress response using interventional phosphorylation data. PLoS Comput. Biol. 9:e1003077. http://dx.doi.org/10.1371/journal.pcbi.1003077.
-
(2013)
PLoS Comput. Biol
, vol.9
, pp. e1003077
-
-
Zhang, Y.1
Kweon, H.K.2
Shively, C.3
Kumar, A.4
Andrews, P.C.5
-
96
-
-
0038506725
-
Multiple pathways are co-regulated by the protein kinase Snf1 and the transcription factors Adr1 and Cat8
-
Young ET, Dombek KM, Tachibana C, Ideker T. 2003. Multiple pathways are co-regulated by the protein kinase Snf1 and the transcription factors Adr1 and Cat8. J. Biol. Chem. 278:26146-26158. http://dx.doi.org/10.1074/jbc.M301981200.
-
(2003)
J. Biol. Chem
, vol.278
, pp. 26146-26158
-
-
Young, E.T.1
Dombek, K.M.2
Tachibana, C.3
Ideker, T.4
-
98
-
-
0035254656
-
Posttranscriptional regulation through the HO 3'-UTR by Mpt5, a yeast homolog of Pumilio and FBF
-
Tadauchi T, Matsumoto K, Herskowitz I, Irie K. 2001. Posttranscriptional regulation through the HO 3'-UTR by Mpt5, a yeast homolog of Pumilio and FBF. EMBO J. 20:552-561. http://dx.doi.org/10.1093/emboj/20.3.552.
-
(2001)
EMBO J
, vol.20
, pp. 552-561
-
-
Tadauchi, T.1
Matsumoto, K.2
Herskowitz, I.3
Irie, K.4
-
99
-
-
0031886351
-
Dhh1p, a putativeRNAhelicase, associates with the general transcription factors Pop2p and Ccr4p from Saccharomyces cerevisiae
-
Hata H, Mitsui H, Liu H, Bai Y, Denis CL, Shimizu Y, Sakai A. 1998. Dhh1p, a putativeRNAhelicase, associates with the general transcription factors Pop2p and Ccr4p from Saccharomyces cerevisiae. Genetics 148: 571-579.
-
(1998)
Genetics
, vol.148
, pp. 571-579
-
-
Hata, H.1
Mitsui, H.2
Liu, H.3
Bai, Y.4
Denis, C.L.5
Shimizu, Y.6
Sakai, A.7
-
100
-
-
78650424915
-
Identifying eIF4E-binding protein translationally-controlled transcripts reveals links to mRNAs bound by specific PUF proteins
-
Cridge AG, Castelli LM, Smirnova JB, Selley JN, Rowe W, Hubbard SJ, McCarthy JE, Ashe MP, Grant CM, Pavitt GD. 2010. Identifying eIF4E-binding protein translationally-controlled transcripts reveals links to mRNAs bound by specific PUF proteins. Nucleic Acids Res. 38:8039-8050. http://dx.doi.org/10.1093/nar/gkq686.
-
(2010)
Nucleic Acids Res
, vol.38
, pp. 8039-8050
-
-
Cridge, A.G.1
Castelli, L.M.2
Smirnova, J.B.3
Selley, J.N.4
Rowe, W.5
Hubbard, S.J.6
McCarthy, J.E.7
Ashe, M.P.8
Grant, C.M.9
Pavitt, G.D.10
-
101
-
-
34447128162
-
Regulation of snf1 protein kinase in response to environmental stress
-
Hong SP, Carlson M. 2007. Regulation of snf1 protein kinase in response to environmental stress. J. Biol. Chem. 282:16838-16845. http://dx.doi.org/10.1074/jbc.M700146200.
-
(2007)
J. Biol. Chem
, vol.282
, pp. 16838-16845
-
-
Hong, S.P.1
Carlson, M.2
-
102
-
-
18744388375
-
NRG1 is required for glucose repression of the SUC2 and GAL genes of Saccharomyces cerevisiae
-
Zhou H, Winston F. 2001. NRG1 is required for glucose repression of the SUC2 and GAL genes of Saccharomyces cerevisiae. BMC Genet. 2:5. http://dx.doi.org/10.1186/1471-2156-2-5.
-
(2001)
BMC Genet
, vol.2
, pp. 5
-
-
Zhou, H.1
Winston, F.2
-
103
-
-
0013329665
-
Nrg1 is a transcriptional repressor for glucose repression of STA1 gene expression in Saccharomyces cerevisiae
-
Park SH, Koh SS, Chun JH, Hwang HJ, Kang HS. 1999. Nrg1 is a transcriptional repressor for glucose repression of STA1 gene expression in Saccharomyces cerevisiae. Mol. Cell. Biol. 19:2044-2050.
-
(1999)
Mol. Cell. Biol
, vol.19
, pp. 2044-2050
-
-
Park, S.H.1
Koh, S.S.2
Chun, J.H.3
Hwang, H.J.4
Kang, H.S.5
-
104
-
-
0036265376
-
Snf1 protein kinase and the repressors Nrg1 and Nrg2 regulate FLO11, haploid invasive growth, and diploid pseudohyphal differentiation
-
Kuchin S, Vyas VK, Carlson M. 2002. Snf1 protein kinase and the repressors Nrg1 and Nrg2 regulate FLO11, haploid invasive growth, and diploid pseudohyphal differentiation. Mol. Cell. Biol. 22:3994-4000. http://dx.doi.org/10.1128/MCB.22.12.3994-4000.2002.
-
(2002)
Mol. Cell. Biol
, vol.22
, pp. 3994-4000
-
-
Kuchin, S.1
Vyas, V.K.2
Carlson, M.3
-
105
-
-
0037223751
-
The transcription factor Rim101p governs ion tolerance and cell differentiation by direct repression of the regulatory genes NRG1 and SMP1 in Saccharomyces cerevisiae
-
Lamb TM, Mitchell AP. 2003. The transcription factor Rim101p governs ion tolerance and cell differentiation by direct repression of the regulatory genes NRG1 and SMP1 in Saccharomyces cerevisiae. Mol. Cell. Biol. 23:677-686. http://dx.doi.org/10.1128/MCB.23.2.677-686.2003.
-
(2003)
Mol. Cell. Biol
, vol.23
, pp. 677-686
-
-
Lamb, T.M.1
Mitchell, A.P.2
-
106
-
-
0034977801
-
Interaction of the repressors Nrg1 and Nrg2 with the Snf1 protein kinase in Saccharomyces cerevisiae
-
Vyas VK, Kuchin S, Carlson M. 2001. Interaction of the repressors Nrg1 and Nrg2 with the Snf1 protein kinase in Saccharomyces cerevisiae. Genetics 158:563-572.
-
(2001)
Genetics
, vol.158
, pp. 563-572
-
-
Vyas, V.K.1
Kuchin, S.2
Carlson, M.3
-
107
-
-
33745148939
-
A specific catalytic subunit isoform of protein kinase CK2 is required for phosphorylation of the repressor Nrg1 in Saccharomyces cerevisiae
-
Berkey CD, Carlson M. 2006. A specific catalytic subunit isoform of protein kinase CK2 is required for phosphorylation of the repressor Nrg1 in Saccharomyces cerevisiae. Curr. Genet. 50:1-10. http://dx.doi.org/10.1007/s00294-006-0070-5.
-
(2006)
Curr. Genet
, vol.50
, pp. 1-10
-
-
Berkey, C.D.1
Carlson, M.2
-
108
-
-
84865083753
-
The mRNA decay pathway regulates the expression of the Flo11 adhesin and biofilm formation in Saccharomyces cerevisiae
-
Lo TL, Qu Y, Uwamahoro N, Quenault T, Beilharz TH, Traven A. 2012. The mRNA decay pathway regulates the expression of the Flo11 adhesin and biofilm formation in Saccharomyces cerevisiae. Genetics 191:1387-1391. http://dx.doi.org/10.1534/genetics.112.141432.
-
(2012)
Genetics
, vol.191
, pp. 1387-1391
-
-
Lo, T.L.1
Qu, Y.2
Uwamahoro, N.3
Quenault, T.4
Beilharz, T.H.5
Traven, A.6
|