-
1
-
-
19344378943
-
Rules of engagement: co-transcriptional recruitment of pre-mRNA processing factors
-
Bentley D.L. Rules of engagement: co-transcriptional recruitment of pre-mRNA processing factors. Curr. Opin. Cell Biol. 2005, 17:251-256.
-
(2005)
Curr. Opin. Cell Biol.
, vol.17
, pp. 251-256
-
-
Bentley, D.L.1
-
2
-
-
34249098071
-
Mammalian RNA polymerase II core promoters: insights from genome-wide studies
-
Sandelin A., Carninci P., Lenhard B., Ponjavic J., Hayashizaki Y., Hume D.A. Mammalian RNA polymerase II core promoters: insights from genome-wide studies. Nat. Rev. Genet. 2007, 8:424-436.
-
(2007)
Nat. Rev. Genet.
, vol.8
, pp. 424-436
-
-
Sandelin, A.1
Carninci, P.2
Lenhard, B.3
Ponjavic, J.4
Hayashizaki, Y.5
Hume, D.A.6
-
3
-
-
84857772692
-
Alternative mRNA polyadenylation in eukaryotes: an effective regulator of gene expression
-
Lutz C.S., Moreira A. Alternative mRNA polyadenylation in eukaryotes: an effective regulator of gene expression. Wiley Interdiscip. Rev. RNA 2011, 2:22-31.
-
(2011)
Wiley Interdiscip. Rev. RNA
, vol.2
, pp. 22-31
-
-
Lutz, C.S.1
Moreira, A.2
-
4
-
-
8544251268
-
Rpb4 and Rpb7: subunits of RNA polymerase II and beyond
-
Choder M. Rpb4 and Rpb7: subunits of RNA polymerase II and beyond. Trends Biochem. Sci. 2004, 29:674-681.
-
(2004)
Trends Biochem. Sci.
, vol.29
, pp. 674-681
-
-
Choder, M.1
-
5
-
-
80053453977
-
MRNA imprinting: additional level in the regulation of gene expression
-
Choder M. mRNA imprinting: additional level in the regulation of gene expression. Cell. Logist. 2011, 1:37-40.
-
(2011)
Cell. Logist.
, vol.1
, pp. 37-40
-
-
Choder, M.1
-
6
-
-
77951971286
-
Initiation of the TORC1-regulated G0 program requires Igo1/2, which license specific mRNAs to evade degradation via the 5'-3' mRNA decay pathway
-
Talarek N., Cameroni E., Jaquenoud M., Luo X., Bontron S., Lippman S., Devgan G., Snyder M., Broach J.R., De Virgilio C. Initiation of the TORC1-regulated G0 program requires Igo1/2, which license specific mRNAs to evade degradation via the 5'-3' mRNA decay pathway. Mol. Cell 2010, 38:345-355.
-
(2010)
Mol. Cell
, vol.38
, pp. 345-355
-
-
Talarek, N.1
Cameroni, E.2
Jaquenoud, M.3
Luo, X.4
Bontron, S.5
Lippman, S.6
Devgan, G.7
Snyder, M.8
Broach, J.R.9
De Virgilio, C.10
-
7
-
-
54149091257
-
Metabolism and regulation of canonical histone mRNAs: life without a poly(A) tail
-
Marzluff W.F., Wagner E.J., Duronio R.J. Metabolism and regulation of canonical histone mRNAs: life without a poly(A) tail. Nat. Rev. Genet. 2008, 9:843-854.
-
(2008)
Nat. Rev. Genet.
, vol.9
, pp. 843-854
-
-
Marzluff, W.F.1
Wagner, E.J.2
Duronio, R.J.3
-
8
-
-
0019419867
-
Yeast histone genes show dosage compensation
-
Osley M.A., Hereford L.M. Yeast histone genes show dosage compensation. Cell 1981, 24:377-384.
-
(1981)
Cell
, vol.24
, pp. 377-384
-
-
Osley, M.A.1
Hereford, L.M.2
-
9
-
-
84455200588
-
Single-molecule mRNA decay measurements reveal promoter-regulated mRNA stability in yeast
-
Trcek T., Larson D.R., Moldon A., Query C.C., Singer R.H. Single-molecule mRNA decay measurements reveal promoter-regulated mRNA stability in yeast. Cell 2011, 147:1484-1497.
-
(2011)
Cell
, vol.147
, pp. 1484-1497
-
-
Trcek, T.1
Larson, D.R.2
Moldon, A.3
Query, C.C.4
Singer, R.H.5
-
10
-
-
77953281765
-
Global coordination of transcriptional control and mRNA decay during cellular differentiation
-
Amorim M.J., Cotobal C., Duncan C., Mata J. Global coordination of transcriptional control and mRNA decay during cellular differentiation. Mol. Syst. Biol. 2010, 6:380.
-
(2010)
Mol. Syst. Biol.
, vol.6
, pp. 380
-
-
Amorim, M.J.1
Cotobal, C.2
Duncan, C.3
Mata, J.4
-
11
-
-
78650930357
-
Dynamic transcriptome analysis measures rates of mRNA synthesis and decay in yeast
-
Miller C., Schwalb B., Maier K., Schulz D., Dumcke S., Zacher B., Mayer A., Sydow J., Marcinowski L., Dolken L., Martin D.E., Tresch A., Cramer P. Dynamic transcriptome analysis measures rates of mRNA synthesis and decay in yeast. Mol. Syst. Biol. 2011, 7:458.
-
(2011)
Mol. Syst. Biol.
, vol.7
, pp. 458
-
-
Miller, C.1
Schwalb, B.2
Maier, K.3
Schulz, D.4
Dumcke, S.5
Zacher, B.6
Mayer, A.7
Sydow, J.8
Marcinowski, L.9
Dolken, L.10
Martin, D.E.11
Tresch, A.12
Cramer, P.13
-
12
-
-
53949098609
-
Transient transcriptional responses to stress are generated by opposing effects of mRNA production and degradation
-
Shalem O., Dahan O., Levo M., Martinez M.R., Furman I., Segal E., Pilpel Y. Transient transcriptional responses to stress are generated by opposing effects of mRNA production and degradation. Mol. Syst. Biol. 2008, 4:223.
-
(2008)
Mol. Syst. Biol.
, vol.4
, pp. 223
-
-
Shalem, O.1
Dahan, O.2
Levo, M.3
Martinez, M.R.4
Furman, I.5
Segal, E.6
Pilpel, Y.7
-
13
-
-
80053450954
-
Transcriptome kinetics is governed by a genome-wide coupling of mRNA production and degradation: a role for RNA Pol II
-
Shalem O., Groisman B., Choder M., Dahan O., Pilpel Y. Transcriptome kinetics is governed by a genome-wide coupling of mRNA production and degradation: a role for RNA Pol II. PLoS Genet. 2011, 7:e1002273.
-
(2011)
PLoS Genet.
, vol.7
-
-
Shalem, O.1
Groisman, B.2
Choder, M.3
Dahan, O.4
Pilpel, Y.5
-
14
-
-
0035162698
-
Genomic expression responses to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mec1p
-
Gasch A.P., Huang M., Metzner S., Botstein D., Elledge S.J., Brown P.O. Genomic expression responses to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mec1p. Mol. Biol. Cell 2001, 12:2987-3003.
-
(2001)
Mol. Biol. Cell
, vol.12
, pp. 2987-3003
-
-
Gasch, A.P.1
Huang, M.2
Metzner, S.3
Botstein, D.4
Elledge, S.J.5
Brown, P.O.6
-
15
-
-
0033637153
-
Genomic expression programs in the response of yeast cells to environmental changes
-
Gasch A.P., Spellman P.T., Kao C.M., Carmel-Harel O., Eisen M.B., Storz G., Botstein D., Brown P.O. Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 2000, 11:4241-4257.
-
(2000)
Mol. Biol. Cell
, vol.11
, pp. 4241-4257
-
-
Gasch, A.P.1
Spellman, P.T.2
Kao, C.M.3
Carmel-Harel, O.4
Eisen, M.B.5
Storz, G.6
Botstein, D.7
Brown, P.O.8
-
16
-
-
0036728274
-
The genomics of yeast responses to environmental stress and starvation
-
Gasch A.P., Werner-Washburne M. The genomics of yeast responses to environmental stress and starvation. Funct. Integr. Genomics 2002, 2:181-192.
-
(2002)
Funct. Integr. Genomics
, vol.2
, pp. 181-192
-
-
Gasch, A.P.1
Werner-Washburne, M.2
-
17
-
-
0033772765
-
Regulatory networks revealed by transcriptional profiling of damaged Saccharomyces cerevisiae cells: Rpn4 links base excision repair with proteasomes
-
Jelinsky S.A., Estep P., Church G.M., Samson L.D. Regulatory networks revealed by transcriptional profiling of damaged Saccharomyces cerevisiae cells: Rpn4 links base excision repair with proteasomes. Mol. Cell. Biol. 2000, 20:8157-8167.
-
(2000)
Mol. Cell. Biol.
, vol.20
, pp. 8157-8167
-
-
Jelinsky, S.A.1
Estep, P.2
Church, G.M.3
Samson, L.D.4
-
18
-
-
79952120604
-
Heat shock response in yeast involves changes in both transcription rates and mRNA stabilities
-
Castells-Roca L., Garcia-Martinez J., Moreno J., Herrero E., Belli G., Perez-Ortin J.E. Heat shock response in yeast involves changes in both transcription rates and mRNA stabilities. PLoS One 2011, 6:e17272.
-
(2011)
PLoS One
, vol.6
-
-
Castells-Roca, L.1
Garcia-Martinez, J.2
Moreno, J.3
Herrero, E.4
Belli, G.5
Perez-Ortin, J.E.6
-
19
-
-
80955179977
-
The oxidative stress response in yeast cells involves changes in the stability of Aft1 regulon mRNAs
-
Castells-Roca L., Muhlenhoff U., Lill R., Herrero E., Belli G. The oxidative stress response in yeast cells involves changes in the stability of Aft1 regulon mRNAs. Mol. Microbiol. 2011, 81:232-248.
-
(2011)
Mol. Microbiol.
, vol.81
, pp. 232-248
-
-
Castells-Roca, L.1
Muhlenhoff, U.2
Lill, R.3
Herrero, E.4
Belli, G.5
-
20
-
-
34250735674
-
RNA regulons: coordination of post-transcriptional events
-
Keene J.D. RNA regulons: coordination of post-transcriptional events. Nat. Rev. Genet. 2007, 8:533-543.
-
(2007)
Nat. Rev. Genet.
, vol.8
, pp. 533-543
-
-
Keene, J.D.1
-
21
-
-
48749090496
-
Transcription in the nucleus and mRNA decay in the cytoplasm are coupled processes
-
Goler-Baron V., Selitrennik M., Barkai O., Haimovich G., Lotan R., Choder M. Transcription in the nucleus and mRNA decay in the cytoplasm are coupled processes. Genes Dev. 2008, 22:2022-2027.
-
(2008)
Genes Dev.
, vol.22
, pp. 2022-2027
-
-
Goler-Baron, V.1
Selitrennik, M.2
Barkai, O.3
Haimovich, G.4
Lotan, R.5
Choder, M.6
-
22
-
-
29144508551
-
The RNA polymerase II subunit Rpb4p mediates decay of a specific class of mRNAs
-
Lotan R., Bar-On V.G., Harel-Sharvit L., Duek L., Melamed D., Choder M. The RNA polymerase II subunit Rpb4p mediates decay of a specific class of mRNAs. Genes Dev. 2005, 19:3004-3016.
-
(2005)
Genes Dev.
, vol.19
, pp. 3004-3016
-
-
Lotan, R.1
Bar-On, V.G.2
Harel-Sharvit, L.3
Duek, L.4
Melamed, D.5
Choder, M.6
-
23
-
-
79960903971
-
Coupled evolution of transcription and mRNA degradation
-
Dori-Bachash M., Shema E., Tirosh I. Coupled evolution of transcription and mRNA degradation. PLoS Biol. 2011, 9:e1001106.
-
(2011)
PLoS Biol.
, vol.9
-
-
Dori-Bachash, M.1
Shema, E.2
Tirosh, I.3
-
24
-
-
84455167601
-
Promoter elements regulate cytoplasmic mRNA decay
-
Bregman A., Avraham-Kelbert M., Barkai O., Duek L., Guterman A., Choder M. Promoter elements regulate cytoplasmic mRNA decay. Cell 2011, 147:1473-1483.
-
(2011)
Cell
, vol.147
, pp. 1473-1483
-
-
Bregman, A.1
Avraham-Kelbert, M.2
Barkai, O.3
Duek, L.4
Guterman, A.5
Choder, M.6
-
25
-
-
0027490718
-
Determination of mRNA fate by different RNA polymerase II promoters
-
Enssle J., Kugler W., Hentze M.W., Kulozik A.E. Determination of mRNA fate by different RNA polymerase II promoters. Proc. Natl. Acad. Sci. U. S. A. 1993, 90:10091-10095.
-
(1993)
Proc. Natl. Acad. Sci. U. S. A.
, vol.90
, pp. 10091-10095
-
-
Enssle, J.1
Kugler, W.2
Hentze, M.W.3
Kulozik, A.E.4
-
26
-
-
79960284319
-
Requirement of TFIIH kinase subunit Mat1 for RNA Pol II C-terminal domain Ser5 phosphorylation, transcription and mRNA turnover
-
Helenius K., Yang Y., Tselykh T.V., Pessa H.K., Frilander M.J., Makela T.P. Requirement of TFIIH kinase subunit Mat1 for RNA Pol II C-terminal domain Ser5 phosphorylation, transcription and mRNA turnover. Nucleic Acids Res. 2011, 39:5025-5035.
-
(2011)
Nucleic Acids Res.
, vol.39
, pp. 5025-5035
-
-
Helenius, K.1
Yang, Y.2
Tselykh, T.V.3
Pessa, H.K.4
Frilander, M.J.5
Makela, T.P.6
-
27
-
-
84863540819
-
Comparative dynamic transcriptome analysis (cDTA) reveals mutual feedback between mRNA synthesis and degradation
-
Sun M., Schwalb B., Schulz D., Pirkl N., Etzold S., Lariviere L., Maier K.C., Seizl M., Tresch A., Cramer P. Comparative dynamic transcriptome analysis (cDTA) reveals mutual feedback between mRNA synthesis and degradation. Genome Res. 2012, 22:1350-1359.
-
(2012)
Genome Res.
, vol.22
, pp. 1350-1359
-
-
Sun, M.1
Schwalb, B.2
Schulz, D.3
Pirkl, N.4
Etzold, S.5
Lariviere, L.6
Maier, K.C.7
Seizl, M.8
Tresch, A.9
Cramer, P.10
-
28
-
-
0025272192
-
RNA polymerase II subunit composition, stoichiometry, and phosphorylation
-
Kolodziej P.A., Woychik N., Liao S.M., Young R.A. RNA polymerase II subunit composition, stoichiometry, and phosphorylation. Mol. Cell. Biol. 1990, 10:1915-1920.
-
(1990)
Mol. Cell. Biol.
, vol.10
, pp. 1915-1920
-
-
Kolodziej, P.A.1
Woychik, N.2
Liao, S.M.3
Young, R.A.4
-
29
-
-
0031785748
-
Rpb4, a subunit of RNA polymerase II, enables the enzyme to transcribe at temperature extremes in vitro
-
Rosenheck S., Choder M. Rpb4, a subunit of RNA polymerase II, enables the enzyme to transcribe at temperature extremes in vitro. J. Bacteriol. 1998, 180:6187-6192.
-
(1998)
J. Bacteriol.
, vol.180
, pp. 6187-6192
-
-
Rosenheck, S.1
Choder, M.2
-
30
-
-
0025962218
-
Two dissociable subunits of yeast RNA polymerase II stimulate the initiation of transcription at a promoter in vitro
-
Edwards A.M., Kane C.M., Young R.A., Kornberg R.D. Two dissociable subunits of yeast RNA polymerase II stimulate the initiation of transcription at a promoter in vitro. J. Biol. Chem. 1991, 266:71-75.
-
(1991)
J. Biol. Chem.
, vol.266
, pp. 71-75
-
-
Edwards, A.M.1
Kane, C.M.2
Young, R.A.3
Kornberg, R.D.4
-
31
-
-
0035971082
-
Dissociable Rpb4-Rpb7 subassembly of RNA polymerase II binds to single-strand nucleic acid and mediates a post-recruitment step in transcription initiation
-
Orlicky S.M., Tran P.T., Sayre M.H., Edwards A.M. Dissociable Rpb4-Rpb7 subassembly of RNA polymerase II binds to single-strand nucleic acid and mediates a post-recruitment step in transcription initiation. J. Biol. Chem. 2001, 276:10097-10102.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 10097-10102
-
-
Orlicky, S.M.1
Tran, P.T.2
Sayre, M.H.3
Edwards, A.M.4
-
32
-
-
40349114502
-
The Rpb4 subunit of RNA polymerase II contributes to cotranscriptional recruitment of 3' processing factors
-
Runner V.M., Podolny V., Buratowski S. The Rpb4 subunit of RNA polymerase II contributes to cotranscriptional recruitment of 3' processing factors. Mol. Cell. Biol. 2008, 28:1883-1891.
-
(2008)
Mol. Cell. Biol.
, vol.28
, pp. 1883-1891
-
-
Runner, V.M.1
Podolny, V.2
Buratowski, S.3
-
33
-
-
58149396843
-
Modulation of RNA polymerase II subunit composition by ubiquitylation
-
Daulny A., Geng F., Muratani M., Geisinger J.M., Salghetti S.E., Tansey W.P. Modulation of RNA polymerase II subunit composition by ubiquitylation. Proc. Natl. Acad. Sci. U. S. A. 2008, 105:19649-19654.
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, pp. 19649-19654
-
-
Daulny, A.1
Geng, F.2
Muratani, M.3
Geisinger, J.M.4
Salghetti, S.E.5
Tansey, W.P.6
-
34
-
-
58549106435
-
Mapping RNA exit channel on transcribing RNA polymerase II by FRET analysis
-
Chen C.Y., Chang C.C., Yen C.F., Chiu M.T., Chang W.H. Mapping RNA exit channel on transcribing RNA polymerase II by FRET analysis. Proc. Natl. Acad. Sci. U. S. A. 2009, 106:127-132.
-
(2009)
Proc. Natl. Acad. Sci. U. S. A.
, vol.106
, pp. 127-132
-
-
Chen, C.Y.1
Chang, C.C.2
Yen, C.F.3
Chiu, M.T.4
Chang, W.H.5
-
35
-
-
30044431985
-
RNA emerging from the active site of RNA polymerase II interacts with the Rpb7 subunit
-
Ujvari A., Luse D.S. RNA emerging from the active site of RNA polymerase II interacts with the Rpb7 subunit. Nat. Struct. Mol. Biol. 2006, 13:49-54.
-
(2006)
Nat. Struct. Mol. Biol.
, vol.13
, pp. 49-54
-
-
Ujvari, A.1
Luse, D.S.2
-
36
-
-
0038107498
-
Rpb4p, a subunit of RNA polymerase II, mediates mRNA export during stress
-
Farago M., Nahari T., Hammel C., Cole C.N., Choder M. Rpb4p, a subunit of RNA polymerase II, mediates mRNA export during stress. Mol. Biol. Cell 2003, 14:2744-2755.
-
(2003)
Mol. Biol. Cell
, vol.14
, pp. 2744-2755
-
-
Farago, M.1
Nahari, T.2
Hammel, C.3
Cole, C.N.4
Choder, M.5
-
37
-
-
78149478886
-
RNA polymerase II subunits link transcription and mRNA decay to translation
-
Harel-Sharvit L., Eldad N., Haimovich G., Barkai O., Duek L., Choder M. RNA polymerase II subunits link transcription and mRNA decay to translation. Cell 2011, 143:552-563.
-
(2011)
Cell
, vol.143
, pp. 552-563
-
-
Harel-Sharvit, L.1
Eldad, N.2
Haimovich, G.3
Barkai, O.4
Duek, L.5
Choder, M.6
-
38
-
-
34748850800
-
The Rpb7p subunit of yeast RNA polymerase II plays roles in the two major cytoplasmic mRNA decay mechanisms
-
Lotan R., Goler-Baron V., Duek L., Haimovich G., Choder M. The Rpb7p subunit of yeast RNA polymerase II plays roles in the two major cytoplasmic mRNA decay mechanisms. J. Cell Biol. 2007, 178:1133-1143.
-
(2007)
J. Cell Biol.
, vol.178
, pp. 1133-1143
-
-
Lotan, R.1
Goler-Baron, V.2
Duek, L.3
Haimovich, G.4
Choder, M.5
-
39
-
-
33845604554
-
Nucleo-cytoplasmic shuttling of the Rpb4p and Rpb7p subunits of yeast RNA polymerase II by two pathways
-
Selitrennik M., Duek L., Lotan R., Choder M. Nucleo-cytoplasmic shuttling of the Rpb4p and Rpb7p subunits of yeast RNA polymerase II by two pathways. Eukaryot. Cell 2006, 5:2092-2103.
-
(2006)
Eukaryot. Cell
, vol.5
, pp. 2092-2103
-
-
Selitrennik, M.1
Duek, L.2
Lotan, R.3
Choder, M.4
-
40
-
-
77956540817
-
Decapping activators in Saccharomyces cerevisiae act by multiple mechanisms
-
Nissan T., Rajyaguru P., She M., Song H., Parker R. Decapping activators in Saccharomyces cerevisiae act by multiple mechanisms. Mol. Cell 2010, 39:773-783.
-
(2010)
Mol. Cell
, vol.39
, pp. 773-783
-
-
Nissan, T.1
Rajyaguru, P.2
She, M.3
Song, H.4
Parker, R.5
-
41
-
-
0035930337
-
Targeting an mRNA for decapping: displacement of translation factors and association of the Lsm1p-7p complex on deadenylated yeast mRNAs
-
Tharun S., Parker R. Targeting an mRNA for decapping: displacement of translation factors and association of the Lsm1p-7p complex on deadenylated yeast mRNAs. Mol. Cell 2001, 8:1075-1083.
-
(2001)
Mol. Cell
, vol.8
, pp. 1075-1083
-
-
Tharun, S.1
Parker, R.2
-
42
-
-
0029791555
-
Mutations in trans-acting factors affecting mRNA decapping in Saccharomyces cerevisiae
-
Hatfield L., Beelman C.A., Stevens A., Parker R. Mutations in trans-acting factors affecting mRNA decapping in Saccharomyces cerevisiae. Mol. Cell. Biol. 1996, 16:5830-5838.
-
(1996)
Mol. Cell. Biol.
, vol.16
, pp. 5830-5838
-
-
Hatfield, L.1
Beelman, C.A.2
Stevens, A.3
Parker, R.4
-
43
-
-
35348815020
-
Recycling of eukaryotic posttermination ribosomal complexes
-
Pisarev A.V., Hellen C.U., Pestova T.V. Recycling of eukaryotic posttermination ribosomal complexes. Cell 2007, 131:286-299.
-
(2007)
Cell
, vol.131
, pp. 286-299
-
-
Pisarev, A.V.1
Hellen, C.U.2
Pestova, T.V.3
-
44
-
-
0031011852
-
Yeast Pab1 interacts with Rna15 and participates in the control of the poly(A) tail length in vitro
-
Amrani N., Minet M., Le Gouar M., Lacroute F., Wyers F. Yeast Pab1 interacts with Rna15 and participates in the control of the poly(A) tail length in vitro. Mol. Cell. Biol. 1997, 17:3694-3701.
-
(1997)
Mol. Cell. Biol.
, vol.17
, pp. 3694-3701
-
-
Amrani, N.1
Minet, M.2
Le Gouar, M.3
Lacroute, F.4
Wyers, F.5
-
45
-
-
15444366645
-
Yeast poly(A)-binding protein Pab1 shuttles between the nucleus and the cytoplasm and functions in mRNA export
-
Brune C., Munchel S.E., Fischer N., Podtelejnikov A.V., Weis K. Yeast poly(A)-binding protein Pab1 shuttles between the nucleus and the cytoplasm and functions in mRNA export. RNA 2005, 11:517-531.
-
(2005)
RNA
, vol.11
, pp. 517-531
-
-
Brune, C.1
Munchel, S.E.2
Fischer, N.3
Podtelejnikov, A.V.4
Weis, K.5
-
46
-
-
60149091189
-
Regulation of translation initiation in eukaryotes: mechanisms and biological targets
-
Sonenberg N., Hinnebusch A.G. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 2009, 136:731-745.
-
(2009)
Cell
, vol.136
, pp. 731-745
-
-
Sonenberg, N.1
Hinnebusch, A.G.2
-
47
-
-
0141866883
-
Translation termination factor eRF3 mediates mRNA decay through the regulation of deadenylation
-
Hosoda N., Kobayashi T., Uchida N., Funakoshi Y., Kikuchi Y., Hoshino S., Katada T. Translation termination factor eRF3 mediates mRNA decay through the regulation of deadenylation. J. Biol. Chem. 2003, 278:38287-38291.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 38287-38291
-
-
Hosoda, N.1
Kobayashi, T.2
Uchida, N.3
Funakoshi, Y.4
Kikuchi, Y.5
Hoshino, S.6
Katada, T.7
-
48
-
-
33646099827
-
The decapping enzyme Dcp1 participates in translation termination through its interaction with the release factor eRF3 in budding yeast
-
Kofuji S., Sakuno T., Takahashi S., Araki Y., Doi Y., Hoshino S., Katada T. The decapping enzyme Dcp1 participates in translation termination through its interaction with the release factor eRF3 in budding yeast. Biochem. Biophys. Res. Commun. 2006, 344:547-553.
-
(2006)
Biochem. Biophys. Res. Commun.
, vol.344
, pp. 547-553
-
-
Kofuji, S.1
Sakuno, T.2
Takahashi, S.3
Araki, Y.4
Doi, Y.5
Hoshino, S.6
Katada, T.7
-
49
-
-
33746728252
-
Class-1 release factor eRF1 promotes GTP binding by class-2 release factor eRF3
-
Hauryliuk V., Zavialov A., Kisselev L., Ehrenberg M. Class-1 release factor eRF1 promotes GTP binding by class-2 release factor eRF3. Biochimie 2006, 88:747-757.
-
(2006)
Biochimie
, vol.88
, pp. 747-757
-
-
Hauryliuk, V.1
Zavialov, A.2
Kisselev, L.3
Ehrenberg, M.4
-
50
-
-
34548241720
-
PAB1 self-association precludes its binding to poly(A), thereby accelerating CCR4 deadenylation in vivo
-
Yao G., Chiang Y.C., Zhang C., Lee D.J., Laue T.M., Denis C.L. PAB1 self-association precludes its binding to poly(A), thereby accelerating CCR4 deadenylation in vivo. Mol. Cell. Biol. 2007, 27:6243-6253.
-
(2007)
Mol. Cell. Biol.
, vol.27
, pp. 6243-6253
-
-
Yao, G.1
Chiang, Y.C.2
Zhang, C.3
Lee, D.J.4
Laue, T.M.5
Denis, C.L.6
-
51
-
-
35649021387
-
A specific role for the C-terminal region of the Poly(A)-binding protein in mRNA decay
-
Simon E., Seraphin B. A specific role for the C-terminal region of the Poly(A)-binding protein in mRNA decay. Nucleic Acids Res. 2007, 35:6017-6028.
-
(2007)
Nucleic Acids Res.
, vol.35
, pp. 6017-6028
-
-
Simon, E.1
Seraphin, B.2
-
52
-
-
33644555054
-
Proteome survey reveals modularity of the yeast cell machinery
-
Gavin A.C., Aloy P., Grandi P., Krause R., Boesche M., Marzioch M., Rau C., Jensen L.J., Bastuck S., Dumpelfeld B., Edelmann A., Heurtier M.A., Hoffman V., Hoefert C., Klein K., Hudak M., Michon A.M., Schelder M., Schirle M., Remor M., Rudi T., Hooper S., Bauer A., Bouwmeester T., Casari G., Drewes G., Neubauer G., Rick J.M., Kuster B., Bork P., Russell R.B., Superti-Furga G. Proteome survey reveals modularity of the yeast cell machinery. Nature 2006, 440:631-636.
-
(2006)
Nature
, vol.440
, pp. 631-636
-
-
Gavin, A.C.1
Aloy, P.2
Grandi, P.3
Krause, R.4
Boesche, M.5
Marzioch, M.6
Rau, C.7
Jensen, L.J.8
Bastuck, S.9
Dumpelfeld, B.10
Edelmann, A.11
Heurtier, M.A.12
Hoffman, V.13
Hoefert, C.14
Klein, K.15
Hudak, M.16
Michon, A.M.17
Schelder, M.18
Schirle, M.19
Remor, M.20
Rudi, T.21
Hooper, S.22
Bauer, A.23
Bouwmeester, T.24
Casari, G.25
Drewes, G.26
Neubauer, G.27
Rick, J.M.28
Kuster, B.29
Bork, P.30
Russell, R.B.31
Superti-Furga, G.32
more..
-
53
-
-
36849079370
-
Mechanism of mRNA deadenylation: evidence for a molecular interplay between translation termination factor eRF3 and mRNA deadenylases
-
Funakoshi Y., Doi Y., Hosoda N., Uchida N., Osawa M., Shimada I., Tsujimoto M., Suzuki T., Katada T., Hoshino S. Mechanism of mRNA deadenylation: evidence for a molecular interplay between translation termination factor eRF3 and mRNA deadenylases. Genes Dev. 2007, 21:3135-3148.
-
(2007)
Genes Dev.
, vol.21
, pp. 3135-3148
-
-
Funakoshi, Y.1
Doi, Y.2
Hosoda, N.3
Uchida, N.4
Osawa, M.5
Shimada, I.6
Tsujimoto, M.7
Suzuki, T.8
Katada, T.9
Hoshino, S.10
-
54
-
-
0347093310
-
Identification of a human cytoplasmic poly(A) nuclease complex stimulated by poly(A)-binding protein
-
Uchida N., Hoshino S., Katada T. Identification of a human cytoplasmic poly(A) nuclease complex stimulated by poly(A)-binding protein. J. Biol. Chem. 2004, 279:1383-1391.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 1383-1391
-
-
Uchida, N.1
Hoshino, S.2
Katada, T.3
-
55
-
-
0032532439
-
MRNA stabilization by poly(A) binding protein is independent of poly(A) and requires translation
-
Coller J.M., Gray N.K., Wickens M.P. mRNA stabilization by poly(A) binding protein is independent of poly(A) and requires translation. Genes Dev. 1998, 12:3226-3235.
-
(1998)
Genes Dev.
, vol.12
, pp. 3226-3235
-
-
Coller, J.M.1
Gray, N.K.2
Wickens, M.P.3
-
56
-
-
78649729101
-
Cytoplasmic deadenylation: regulation of mRNA fate
-
Wiederhold K., Passmore L.A. Cytoplasmic deadenylation: regulation of mRNA fate. Biochem. Soc. Trans. 2010, 38:1531-1536.
-
(2010)
Biochem. Soc. Trans.
, vol.38
, pp. 1531-1536
-
-
Wiederhold, K.1
Passmore, L.A.2
-
57
-
-
0021702006
-
Identification of new genes involved in the regulation of yeast alcohol dehydrogenase II
-
Denis C.L. Identification of new genes involved in the regulation of yeast alcohol dehydrogenase II. Genetics 1984, 108:833-844.
-
(1984)
Genetics
, vol.108
, pp. 833-844
-
-
Denis, C.L.1
-
58
-
-
0028304670
-
CCR4 is a glucose-regulated transcription factor whose leucine-rich repeat binds several proteins important for placing CCR4 in its proper promoter context
-
Draper M.P., Liu H.Y., Nelsbach A.H., Mosley S.P., Denis C.L. CCR4 is a glucose-regulated transcription factor whose leucine-rich repeat binds several proteins important for placing CCR4 in its proper promoter context. Mol. Cell. Biol. 1994, 14:4522-4531.
-
(1994)
Mol. Cell. Biol.
, vol.14
, pp. 4522-4531
-
-
Draper, M.P.1
Liu, H.Y.2
Nelsbach, A.H.3
Mosley, S.P.4
Denis, C.L.5
-
59
-
-
0028268566
-
NOT1(CDC39), NOT2(CDC36), NOT3, and NOT4 encode a global-negative regulator of transcription that differentially affects TATA-element utilization
-
Collart M.A., Struhl K. NOT1(CDC39), NOT2(CDC36), NOT3, and NOT4 encode a global-negative regulator of transcription that differentially affects TATA-element utilization. Genes Dev. 1994, 8:525-537.
-
(1994)
Genes Dev.
, vol.8
, pp. 525-537
-
-
Collart, M.A.1
Struhl, K.2
-
60
-
-
0029860453
-
The NOT, SPT3, and MOT1 genes functionally interact to regulate transcription at core promoters
-
Collart M.A. The NOT, SPT3, and MOT1 genes functionally interact to regulate transcription at core promoters. Mol. Cell. Biol. 1996, 16:6668-6676.
-
(1996)
Mol. Cell. Biol.
, vol.16
, pp. 6668-6676
-
-
Collart, M.A.1
-
61
-
-
0032545665
-
Characterization of NOT5 that encodes a new component of the Not protein complex
-
Oberholzer U., Collart M.A. Characterization of NOT5 that encodes a new component of the Not protein complex. Gene 1998, 207:61-69.
-
(1998)
Gene
, vol.207
, pp. 61-69
-
-
Oberholzer, U.1
Collart, M.A.2
-
62
-
-
84862685172
-
Ccr4-Not complex: the control freak of eukaryotic cells
-
Miller J.E., Reese J.C. Ccr4-Not complex: the control freak of eukaryotic cells. Crit. Rev. Biochem. Mol. Biol. 2012, 47:315-333.
-
(2012)
Crit. Rev. Biochem. Mol. Biol.
, vol.47
, pp. 315-333
-
-
Miller, J.E.1
Reese, J.C.2
-
63
-
-
84155195139
-
The Ccr4-not complex
-
Collart M.A., Panasenko O.O. The Ccr4-not complex. Gene 2012, 492:42-53.
-
(2012)
Gene
, vol.492
, pp. 42-53
-
-
Collart, M.A.1
Panasenko, O.O.2
-
64
-
-
84872398471
-
The control of elongation by the yeast Ccr4-Not complex
-
Reese J.C. The control of elongation by the yeast Ccr4-Not complex. Biochim. Biophys. Acta 2013, 1829:127-133.
-
(2013)
Biochim. Biophys. Acta
, vol.1829
, pp. 127-133
-
-
Reese, J.C.1
-
65
-
-
0034971991
-
Genetic evidence supports a role for the yeast CCR4-NOT complex in transcriptional elongation
-
Denis C.L., Chiang Y.C., Cui Y., Chen J. Genetic evidence supports a role for the yeast CCR4-NOT complex in transcriptional elongation. Genetics 2001, 158:627-634.
-
(2001)
Genetics
, vol.158
, pp. 627-634
-
-
Denis, C.L.1
Chiang, Y.C.2
Cui, Y.3
Chen, J.4
-
66
-
-
33644775692
-
Genetic interactions between Nhp6 and Gcn5 with Mot1 and the Ccr4-Not complex that regulate binding of TATA-binding protein in Saccharomyces cerevisiae
-
Biswas D., Yu Y., Mitra D., Stillman D.J. Genetic interactions between Nhp6 and Gcn5 with Mot1 and the Ccr4-Not complex that regulate binding of TATA-binding protein in Saccharomyces cerevisiae. Genetics 2006, 172:837-849.
-
(2006)
Genetics
, vol.172
, pp. 837-849
-
-
Biswas, D.1
Yu, Y.2
Mitra, D.3
Stillman, D.J.4
-
67
-
-
79952609007
-
The multifunctional Ccr4-Not complex directly promotes transcription elongation
-
Kruk J.A., Dutta A., Fu J., Gilmour D.S., Reese J.C. The multifunctional Ccr4-Not complex directly promotes transcription elongation. Genes Dev. 2011, 25:581-593.
-
(2011)
Genes Dev.
, vol.25
, pp. 581-593
-
-
Kruk, J.A.1
Dutta, A.2
Fu, J.3
Gilmour, D.S.4
Reese, J.C.5
-
68
-
-
79952440464
-
Structural basis of RNA polymerase II backtracking, arrest and reactivation
-
Cheung A.C., Cramer P. Structural basis of RNA polymerase II backtracking, arrest and reactivation. Nature 2011, 471:249-253.
-
(2011)
Nature
, vol.471
, pp. 249-253
-
-
Cheung, A.C.1
Cramer, P.2
-
69
-
-
69449094660
-
The CCR4-NOT complex physically and functionally interacts with TRAMP and the nuclear exosome
-
Azzouz N., Panasenko O.O., Colau G., Collart M.A. The CCR4-NOT complex physically and functionally interacts with TRAMP and the nuclear exosome. PLoS One 2009, 4:e6760.
-
(2009)
PLoS One
, vol.4
-
-
Azzouz, N.1
Panasenko, O.O.2
Colau, G.3
Collart, M.A.4
-
70
-
-
79953152192
-
The ccr4-not complex interacts with the mRNA export machinery
-
Kerr S.C., Azzouz N., Fuchs S.M., Collart M.A., Strahl B.D., Corbett A.H., Laribee R.N. The ccr4-not complex interacts with the mRNA export machinery. PLoS One 2011, 6:e18302.
-
(2011)
PLoS One
, vol.6
-
-
Kerr, S.C.1
Azzouz, N.2
Fuchs, S.M.3
Collart, M.A.4
Strahl, B.D.5
Corbett, A.H.6
Laribee, R.N.7
-
71
-
-
0037086657
-
Ccr4p is the catalytic subunit of a Ccr4p/Pop2p/Notp mRNA deadenylase complex in Saccharomyces cerevisiae
-
Tucker M., Staples R.R., Valencia-Sanchez M.A., Muhlrad D., Parker R. Ccr4p is the catalytic subunit of a Ccr4p/Pop2p/Notp mRNA deadenylase complex in Saccharomyces cerevisiae. EMBO J. 2002, 21:1427-1436.
-
(2002)
EMBO J.
, vol.21
, pp. 1427-1436
-
-
Tucker, M.1
Staples, R.R.2
Valencia-Sanchez, M.A.3
Muhlrad, D.4
Parker, R.5
-
72
-
-
0035830508
-
The transcription factor associated Ccr4 and Caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae
-
Tucker M., Valencia-Sanchez M.A., Staples R.R., Chen J., Denis C.L., Parker R. The transcription factor associated Ccr4 and Caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae. Cell 2001, 104:377-386.
-
(2001)
Cell
, vol.104
, pp. 377-386
-
-
Tucker, M.1
Valencia-Sanchez, M.A.2
Staples, R.R.3
Chen, J.4
Denis, C.L.5
Parker, R.6
-
73
-
-
0037884974
-
An early function during transcription for the yeast mRNA export factor Dbp5p/Rat8p suggested by its genetic and physical interactions with transcription factor IIH components
-
Estruch F., Cole C.N. An early function during transcription for the yeast mRNA export factor Dbp5p/Rat8p suggested by its genetic and physical interactions with transcription factor IIH components. Mol. Biol. Cell 2003, 14:1664-1676.
-
(2003)
Mol. Biol. Cell
, vol.14
, pp. 1664-1676
-
-
Estruch, F.1
Cole, C.N.2
-
74
-
-
0032079407
-
Dbp5p, a cytosolic RNA helicase, is required for poly(A)+RNA export
-
Tseng S.S., Weaver P.L., Liu Y., Hitomi M., Tartakoff A.M., Chang T.H. Dbp5p, a cytosolic RNA helicase, is required for poly(A)+RNA export. EMBO J. 1998, 17:2651-2662.
-
(1998)
EMBO J.
, vol.17
, pp. 2651-2662
-
-
Tseng, S.S.1
Weaver, P.L.2
Liu, Y.3
Hitomi, M.4
Tartakoff, A.M.5
Chang, T.H.6
-
75
-
-
0032080030
-
Dbp5p/Rat8p is a yeast nuclear pore-associated DEAD-box protein essential for RNA export
-
Snay-Hodge C.A., Colot H.V., Goldstein A.L., Cole C.N. Dbp5p/Rat8p is a yeast nuclear pore-associated DEAD-box protein essential for RNA export. EMBO J. 1998, 17:2663-2676.
-
(1998)
EMBO J.
, vol.17
, pp. 2663-2676
-
-
Snay-Hodge, C.A.1
Colot, H.V.2
Goldstein, A.L.3
Cole, C.N.4
-
76
-
-
33846837482
-
The DEAD-box RNA helicase Dbp5 functions in translation termination
-
Gross T., Siepmann A., Sturm D., Windgassen M., Scarcelli J.J., Seedorf M., Cole C.N., Krebber H. The DEAD-box RNA helicase Dbp5 functions in translation termination. Science 2007, 315:646-649.
-
(2007)
Science
, vol.315
, pp. 646-649
-
-
Gross, T.1
Siepmann, A.2
Sturm, D.3
Windgassen, M.4
Scarcelli, J.J.5
Seedorf, M.6
Cole, C.N.7
Krebber, H.8
-
77
-
-
55749110920
-
Synthetic genetic array analysis in Saccharomyces cerevisiae provides evidence for an interaction between RAT8/DBP5 and genes encoding P-body components
-
Scarcelli J.J., Viggiano S., Hodge C.A., Heath C.V., Amberg D.C., Cole C.N. Synthetic genetic array analysis in Saccharomyces cerevisiae provides evidence for an interaction between RAT8/DBP5 and genes encoding P-body components. Genetics 2008, 179:1945-1955.
-
(2008)
Genetics
, vol.179
, pp. 1945-1955
-
-
Scarcelli, J.J.1
Viggiano, S.2
Hodge, C.A.3
Heath, C.V.4
Amberg, D.C.5
Cole, C.N.6
-
78
-
-
79960744910
-
Nucleocytoplasmic shuttling of Ssd1 defines the destiny of its bound mRNAs
-
Kurischko C., Kuravi V.K., Herbert C.J., Luca F.C. Nucleocytoplasmic shuttling of Ssd1 defines the destiny of its bound mRNAs. Mol. Microbiol. 2011, 81:831-849.
-
(2011)
Mol. Microbiol.
, vol.81
, pp. 831-849
-
-
Kurischko, C.1
Kuravi, V.K.2
Herbert, C.J.3
Luca, F.C.4
-
79
-
-
79951927106
-
The yeast Cbk1 kinase regulates mRNA localization via the mRNA-binding protein Ssd1
-
Kurischko C., Kim H.K., Kuravi V.K., Pratzka J., Luca F.C. The yeast Cbk1 kinase regulates mRNA localization via the mRNA-binding protein Ssd1. J. Cell Biol. 2011, 192:583-598.
-
(2011)
J. Cell Biol.
, vol.192
, pp. 583-598
-
-
Kurischko, C.1
Kim, H.K.2
Kuravi, V.K.3
Pratzka, J.4
Luca, F.C.5
-
80
-
-
72449136766
-
Cbk1 regulation of the RNA-binding protein Ssd1 integrates cell fate with translational control
-
Jansen J.M., Wanless A.G., Seidel C.W., Weiss E.L. Cbk1 regulation of the RNA-binding protein Ssd1 integrates cell fate with translational control. Curr. Biol. 2009, 19:2114-2120.
-
(2009)
Curr. Biol.
, vol.19
, pp. 2114-2120
-
-
Jansen, J.M.1
Wanless, A.G.2
Seidel, C.W.3
Weiss, E.L.4
-
81
-
-
77949429970
-
A novel link between Sus1 and the cytoplasmic mRNA decay machinery suggests a broad role in mRNA metabolism
-
Cuenca-Bono B., Garcia-Molinero V., Pascual-Garcia P., Garcia-Oliver E., Llopis A., Rodriguez-Navarro S. A novel link between Sus1 and the cytoplasmic mRNA decay machinery suggests a broad role in mRNA metabolism. BMC Cell Biol. 2010, 11:19.
-
(2010)
BMC Cell Biol.
, vol.11
, pp. 19
-
-
Cuenca-Bono, B.1
Garcia-Molinero, V.2
Pascual-Garcia, P.3
Garcia-Oliver, E.4
Llopis, A.5
Rodriguez-Navarro, S.6
-
82
-
-
0033031221
-
Assembly of the alpha-globin mRNA stability complex reflects binary interaction between the pyrimidine-rich 3' untranslated region determinant and poly(C) binding protein alphaCP
-
Chkheidze A.N., Lyakhov D.L., Makeyev A.V., Morales J., Kong J., Liebhaber S.A. Assembly of the alpha-globin mRNA stability complex reflects binary interaction between the pyrimidine-rich 3' untranslated region determinant and poly(C) binding protein alphaCP. Mol. Cell. Biol. 1999, 19:4572-4581.
-
(1999)
Mol. Cell. Biol.
, vol.19
, pp. 4572-4581
-
-
Chkheidze, A.N.1
Lyakhov, D.L.2
Makeyev, A.V.3
Morales, J.4
Kong, J.5
Liebhaber, S.A.6
-
83
-
-
0030891730
-
Destabilization of human alpha-globin mRNA by translation anti-termination is controlled during erythroid differentiation and is paralleled by phased shortening of the poly(A) tail
-
Morales J., Russell J.E., Liebhaber S.A. Destabilization of human alpha-globin mRNA by translation anti-termination is controlled during erythroid differentiation and is paralleled by phased shortening of the poly(A) tail. J. Biol. Chem. 1997, 272:6607-6613.
-
(1997)
J. Biol. Chem.
, vol.272
, pp. 6607-6613
-
-
Morales, J.1
Russell, J.E.2
Liebhaber, S.A.3
-
84
-
-
56549129201
-
Regulation of ARE transcript 3' end processing by the yeast Cth2 mRNA decay factor
-
Prouteau M., Daugeron M.C., Seraphin B. Regulation of ARE transcript 3' end processing by the yeast Cth2 mRNA decay factor. EMBO J. 2008, 27:2966-2976.
-
(2008)
EMBO J.
, vol.27
, pp. 2966-2976
-
-
Prouteau, M.1
Daugeron, M.C.2
Seraphin, B.3
-
85
-
-
57649140337
-
The Cth2 ARE-binding protein recruits the Dhh1 helicase to promote the decay of succinate dehydrogenase SDH4 mRNA in response to iron deficiency
-
Pedro-Segura E., Vergara S.V., Rodriguez-Navarro S., Parker R., Thiele D.J., Puig S. The Cth2 ARE-binding protein recruits the Dhh1 helicase to promote the decay of succinate dehydrogenase SDH4 mRNA in response to iron deficiency. J. Biol. Chem. 2008, 283:28527-28535.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 28527-28535
-
-
Pedro-Segura, E.1
Vergara, S.V.2
Rodriguez-Navarro, S.3
Parker, R.4
Thiele, D.J.5
Puig, S.6
-
86
-
-
78751484964
-
Early recruitment of AU-rich element-containing mRNAs determines their cytosolic fate during iron deficiency
-
Vergara S.V., Puig S., Thiele D.J. Early recruitment of AU-rich element-containing mRNAs determines their cytosolic fate during iron deficiency. Mol. Cell. Biol. 2011, 31:417-429.
-
(2011)
Mol. Cell. Biol.
, vol.31
, pp. 417-429
-
-
Vergara, S.V.1
Puig, S.2
Thiele, D.J.3
-
88
-
-
70350357201
-
Tristetraprolin impairs NF-kappaB/p65 nuclear translocation
-
Schichl Y.M., Resch U., Hofer-Warbinek R., de Martin R. Tristetraprolin impairs NF-kappaB/p65 nuclear translocation. J. Biol. Chem. 2009, 284:29571-29581.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 29571-29581
-
-
Schichl, Y.M.1
Resch, U.2
Hofer-Warbinek, R.3
de Martin, R.4
-
89
-
-
70350374222
-
RNA-destabilizing factor tristetraprolin negatively regulates NF-kappaB signaling
-
Liang J., Lei T., Song Y., Yanes N., Qi Y., Fu M. RNA-destabilizing factor tristetraprolin negatively regulates NF-kappaB signaling. J. Biol. Chem. 2009, 284:29383-29390.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 29383-29390
-
-
Liang, J.1
Lei, T.2
Song, Y.3
Yanes, N.4
Qi, Y.5
Fu, M.6
-
90
-
-
84859106748
-
Involvement of tristetraprolin in transcriptional activation of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase by insulin
-
Ness G.C., Edelman J.L., Brooks P.A. Involvement of tristetraprolin in transcriptional activation of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase by insulin. Biochem. Biophys. Res. Commun. 2012, 420:178-182.
-
(2012)
Biochem. Biophys. Res. Commun.
, vol.420
, pp. 178-182
-
-
Ness, G.C.1
Edelman, J.L.2
Brooks, P.A.3
-
91
-
-
84862833318
-
The role of KSRP in mRNA decay and microRNA precursor maturation
-
Gherzi R., Chen C.Y., Trabucchi M., Ramos A., Briata P. The role of KSRP in mRNA decay and microRNA precursor maturation. Wiley Interdiscip. Rev. RNA 2010, 1:230-239.
-
(2010)
Wiley Interdiscip. Rev. RNA
, vol.1
, pp. 230-239
-
-
Gherzi, R.1
Chen, C.Y.2
Trabucchi, M.3
Ramos, A.4
Briata, P.5
-
92
-
-
79961134494
-
Functional characterization of the HuR:CD83 mRNA interaction
-
Pieper D., Schirmer S., Prechtel A.T., Kehlenbach R.H., Hauber J., Chemnitz J. Functional characterization of the HuR:CD83 mRNA interaction. PLoS One 2011, 6:e23290.
-
(2011)
PLoS One
, vol.6
-
-
Pieper, D.1
Schirmer, S.2
Prechtel, A.T.3
Kehlenbach, R.H.4
Hauber, J.5
Chemnitz, J.6
-
93
-
-
84860320152
-
The regulation of mRNA stability in mammalian cells: 2.0
-
Wu X., Brewer G. The regulation of mRNA stability in mammalian cells: 2.0. Gene 2012, 500:10-21.
-
(2012)
Gene
, vol.500
, pp. 10-21
-
-
Wu, X.1
Brewer, G.2
-
94
-
-
53849124668
-
Diverse molecular functions of Hu proteins
-
Hinman M.N., Lou H. Diverse molecular functions of Hu proteins. Cell. Mol. Life Sci. 2008, 65:3168-3181.
-
(2008)
Cell. Mol. Life Sci.
, vol.65
, pp. 3168-3181
-
-
Hinman, M.N.1
Lou, H.2
-
95
-
-
33847076533
-
Hu proteins regulate polyadenylation by blocking sites containing U-rich sequences
-
Zhu H., Zhou H.L., Hasman R.A., Lou H. Hu proteins regulate polyadenylation by blocking sites containing U-rich sequences. J. Biol. Chem. 2007, 282:2203-2210.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 2203-2210
-
-
Zhu, H.1
Zhou, H.L.2
Hasman, R.A.3
Lou, H.4
-
96
-
-
84859355676
-
Neuron-specific ELAV/Hu proteins suppress HuR mRNA during neuronal differentiation by alternative polyadenylation
-
Mansfield K.D., Keene J.D. Neuron-specific ELAV/Hu proteins suppress HuR mRNA during neuronal differentiation by alternative polyadenylation. Nucleic Acids Res. 2012, 40:2734-2746.
-
(2012)
Nucleic Acids Res.
, vol.40
, pp. 2734-2746
-
-
Mansfield, K.D.1
Keene, J.D.2
-
97
-
-
33751257755
-
Endotoxic shock in AUF1 knockout mice mediated by failure to degrade proinflammatory cytokine mRNAs
-
Lu J.Y., Sadri N., Schneider R.J. Endotoxic shock in AUF1 knockout mice mediated by failure to degrade proinflammatory cytokine mRNAs. Genes Dev. 2006, 20:3174-3184.
-
(2006)
Genes Dev.
, vol.20
, pp. 3174-3184
-
-
Lu, J.Y.1
Sadri, N.2
Schneider, R.J.3
-
98
-
-
0038081021
-
Nuclear import and export functions in the different isoforms of the AUF1/heterogeneous nuclear ribonucleoprotein protein family
-
Sarkar B., Lu J.Y., Schneider R.J. Nuclear import and export functions in the different isoforms of the AUF1/heterogeneous nuclear ribonucleoprotein protein family. J. Biol. Chem. 2003, 278:20700-20707.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 20700-20707
-
-
Sarkar, B.1
Lu, J.Y.2
Schneider, R.J.3
-
99
-
-
58549113809
-
Identification of a signature motif in target mRNAs of RNA-binding protein AUF1
-
Mazan-Mamczarz K., Kuwano Y., Zhan M., White E.J., Martindale J.L., Lal A., Gorospe M. Identification of a signature motif in target mRNAs of RNA-binding protein AUF1. Nucleic Acids Res. 2009, 37:204-214.
-
(2009)
Nucleic Acids Res.
, vol.37
, pp. 204-214
-
-
Mazan-Mamczarz, K.1
Kuwano, Y.2
Zhan, M.3
White, E.J.4
Martindale, J.L.5
Lal, A.6
Gorospe, M.7
-
100
-
-
73949116438
-
The mammalian anti-proliferative BTG/Tob protein family
-
Winkler G.S. The mammalian anti-proliferative BTG/Tob protein family. J. Cell. Physiol. 2010, 222:66-72.
-
(2010)
J. Cell. Physiol.
, vol.222
, pp. 66-72
-
-
Winkler, G.S.1
-
101
-
-
2342633872
-
Cellular internal ribosome entry segments: structures, trans-acting factors and regulation of gene expression
-
Stoneley M., Willis A.E. Cellular internal ribosome entry segments: structures, trans-acting factors and regulation of gene expression. Oncogene 2004, 23:3200-3207.
-
(2004)
Oncogene
, vol.23
, pp. 3200-3207
-
-
Stoneley, M.1
Willis, A.E.2
-
102
-
-
77957195626
-
Upstream open reading frames: molecular switches in (patho)physiology
-
Wethmar K., Smink J.J., Leutz A. Upstream open reading frames: molecular switches in (patho)physiology. Bioessays 2010, 32:885-893.
-
(2010)
Bioessays
, vol.32
, pp. 885-893
-
-
Wethmar, K.1
Smink, J.J.2
Leutz, A.3
-
103
-
-
38549133531
-
The family of iron responsive RNA structures regulated by changes in cellular iron and oxygen
-
Leipuviene R., Theil E.C. The family of iron responsive RNA structures regulated by changes in cellular iron and oxygen. Cell. Mol. Life Sci. 2007, 64:2945-2955.
-
(2007)
Cell. Mol. Life Sci.
, vol.64
, pp. 2945-2955
-
-
Leipuviene, R.1
Theil, E.C.2
-
104
-
-
38549136876
-
Transcript-specific decapping and regulated stability by the human Dcp2 decapping protein
-
Li Y., Song M.G., Kiledjian M. Transcript-specific decapping and regulated stability by the human Dcp2 decapping protein. Mol. Cell. Biol. 2008, 28:939-948.
-
(2008)
Mol. Cell. Biol.
, vol.28
, pp. 939-948
-
-
Li, Y.1
Song, M.G.2
Kiledjian, M.3
-
105
-
-
0037168586
-
Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences
-
Strausberg R.L., Feingold E.A., Grouse L.H., Derge J.G., Klausner R.D., Collins F.S., Wagner L., Shenmen C.M., Schuler G.D., Altschul S.F., Zeeberg B., Buetow K.H., Schaefer C.F., Bhat N.K., Hopkins R.F., Jordan H., Moore T., Max S.I., Wang J., Hsieh F., Diatchenko L., Marusina K., Farmer A.A., Rubin G.M., Hong L., Stapleton M., Soares M.B., Bonaldo M.F., Casavant T.L., Scheetz T.E., Brownstein M.J., Usdin T.B., Toshiyuki S., Carninci P., Prange C., Raha S.S., Loquellano N.A., Peters G.J., Abramson R.D., Mullahy S.J., Bosak S.A., McEwan P.J., McKernan K.J., Malek J.A., Gunaratne P.H., Richards S., Worley K.C., Hale S., Garcia A.M., Gay L.J., Hulyk S.W., Villalon D.K., Muzny D.M., Sodergren E.J., Lu X., Gibbs R.A., Fahey J., Helton E., Ketteman M., Madan A., Rodrigues S., Sanchez A., Whiting M., Madan A., Young A.C., Shevchenko Y., Bouffard G.G., Blakesley R.W., Touchman J.W., Green E.D., Dickson M.C., Rodriguez A.C., Grimwood J., Schmutz J., Myers R.M., Butterfield Y.S., Krzywinski M.I., Skalska U., Smailus D.E., Schnerch A., Schein J.E., Jones S.J., Marra M.A., T.Mammalian Gene Collection Program Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc. Natl. Acad. Sci. U. S. A. 2002, 99:16899-16903.
-
(2002)
Proc. Natl. Acad. Sci. U. S. A.
, vol.99
, pp. 16899-16903
-
-
Strausberg, R.L.1
Feingold, E.A.2
Grouse, L.H.3
Derge, J.G.4
Klausner, R.D.5
Collins, F.S.6
Wagner, L.7
Shenmen, C.M.8
Schuler, G.D.9
Altschul, S.F.10
Zeeberg, B.11
Buetow, K.H.12
Schaefer, C.F.13
Bhat, N.K.14
Hopkins, R.F.15
Jordan, H.16
Moore, T.17
Max, S.I.18
Wang, J.19
Hsieh, F.20
Diatchenko, L.21
Marusina, K.22
Farmer, A.A.23
Rubin, G.M.24
Hong, L.25
Stapleton, M.26
Soares, M.B.27
Bonaldo, M.F.28
Casavant, T.L.29
Scheetz, T.E.30
Brownstein, M.J.31
Usdin, T.B.32
Toshiyuki, S.33
Carninci, P.34
Prange, C.35
Raha, S.S.36
Loquellano, N.A.37
Peters, G.J.38
Abramson, R.D.39
Mullahy, S.J.40
Bosak, S.A.41
McEwan, P.J.42
McKernan, K.J.43
Malek, J.A.44
Gunaratne, P.H.45
Richards, S.46
Worley, K.C.47
Hale, S.48
Garcia, A.M.49
Gay, L.J.50
Hulyk, S.W.51
Villalon, D.K.52
Muzny, D.M.53
Sodergren, E.J.54
Lu, X.55
Gibbs, R.A.56
Fahey, J.57
Helton, E.58
Ketteman, M.59
Madan, A.60
Rodrigues, S.61
Sanchez, A.62
Whiting, M.63
Madan, A.64
Young, A.C.65
Shevchenko, Y.66
Bouffard, G.G.67
Blakesley, R.W.68
Touchman, J.W.69
Green, E.D.70
Dickson, M.C.71
Rodriguez, A.C.72
Grimwood, J.73
Schmutz, J.74
Myers, R.M.75
Butterfield, Y.S.76
Krzywinski, M.I.77
Skalska, U.78
Smailus, D.E.79
Schnerch, A.80
Schein, J.E.81
Jones, S.J.82
Marra, M.A.83
T.Mammalian Gene Collection Program84
more..
-
106
-
-
58149476939
-
Fragile X mental retardation protein FMRP binds mRNAs in the nucleus
-
Kim M., Bellini M., Ceman S. Fragile X mental retardation protein FMRP binds mRNAs in the nucleus. Mol. Cell. Biol. 2009, 29:214-228.
-
(2009)
Mol. Cell. Biol.
, vol.29
, pp. 214-228
-
-
Kim, M.1
Bellini, M.2
Ceman, S.3
-
107
-
-
77953249227
-
HnRNP C promotes APP translation by competing with FMRP for APP mRNA recruitment to P bodies
-
Lee E.K., Kim H.H., Kuwano Y., Abdelmohsen K., Srikantan S., Subaran S.S., Gleichmann M., Mughal M.R., Martindale J.L., Yang X., Worley P.F., Mattson M.P., Gorospe M. hnRNP C promotes APP translation by competing with FMRP for APP mRNA recruitment to P bodies. Nat. Struct. Mol. Biol. 2010, 17:732-739.
-
(2010)
Nat. Struct. Mol. Biol.
, vol.17
, pp. 732-739
-
-
Lee, E.K.1
Kim, H.H.2
Kuwano, Y.3
Abdelmohsen, K.4
Srikantan, S.5
Subaran, S.S.6
Gleichmann, M.7
Mughal, M.R.8
Martindale, J.L.9
Yang, X.10
Worley, P.F.11
Mattson, M.P.12
Gorospe, M.13
-
108
-
-
4043062382
-
UNR, a new partner of poly(A)-binding protein, plays a key role in translationally coupled mRNA turnover mediated by the c-fos major coding-region determinant
-
Chang T.C., Yamashita A., Chen C.Y., Yamashita Y., Zhu W., Durdan S., Kahvejian A., Sonenberg N., Shyu A.B. UNR, a new partner of poly(A)-binding protein, plays a key role in translationally coupled mRNA turnover mediated by the c-fos major coding-region determinant. Genes Dev. 2004, 18:2010-2023.
-
(2004)
Genes Dev.
, vol.18
, pp. 2010-2023
-
-
Chang, T.C.1
Yamashita, A.2
Chen, C.Y.3
Yamashita, Y.4
Zhu, W.5
Durdan, S.6
Kahvejian, A.7
Sonenberg, N.8
Shyu, A.B.9
-
109
-
-
0035813219
-
A coding region determinant of instability regulates levels of manganese superoxide dismutase mRNA
-
Davis C.A., Monnier J.M., Nick H.S. A coding region determinant of instability regulates levels of manganese superoxide dismutase mRNA. J. Biol. Chem. 2001, 276:37317-37326.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 37317-37326
-
-
Davis, C.A.1
Monnier, J.M.2
Nick, H.S.3
-
110
-
-
79952208881
-
Coding region: the neglected post-transcriptional code
-
Lee E.K., Gorospe M. Coding region: the neglected post-transcriptional code. RNA Biol. 2011, 8:44-48.
-
(2011)
RNA Biol.
, vol.8
, pp. 44-48
-
-
Lee, E.K.1
Gorospe, M.2
-
111
-
-
77955326776
-
The pioneer round of translation: features and functions
-
Maquat L.E., Tarn W.Y., Isken O. The pioneer round of translation: features and functions. Cell 2010, 142:368-374.
-
(2010)
Cell
, vol.142
, pp. 368-374
-
-
Maquat, L.E.1
Tarn, W.Y.2
Isken, O.3
-
112
-
-
77949904260
-
Nonsense-mediated mRNA decay in human cells: mechanistic insights, functions beyond quality control and the double-life of NMD factors
-
Nicholson P., Yepiskoposyan H., Metze S., Zamudio Orozco R., Kleinschmidt N., Muhlemann O. Nonsense-mediated mRNA decay in human cells: mechanistic insights, functions beyond quality control and the double-life of NMD factors. Cell. Mol. Life Sci. 2010, 67:677-700.
-
(2010)
Cell. Mol. Life Sci.
, vol.67
, pp. 677-700
-
-
Nicholson, P.1
Yepiskoposyan, H.2
Metze, S.3
Zamudio Orozco, R.4
Kleinschmidt, N.5
Muhlemann, O.6
-
113
-
-
78649910014
-
Comprehensive polyadenylation site maps in yeast and human reveal pervasive alternative polyadenylation
-
Ozsolak F., Kapranov P., Foissac S., Kim S.W., Fishilevich E., Monaghan A.P., John B., Milos P.M. Comprehensive polyadenylation site maps in yeast and human reveal pervasive alternative polyadenylation. Cell 2010, 143:1018-1029.
-
(2010)
Cell
, vol.143
, pp. 1018-1029
-
-
Ozsolak, F.1
Kapranov, P.2
Foissac, S.3
Kim, S.W.4
Fishilevich, E.5
Monaghan, A.P.6
John, B.7
Milos, P.M.8
-
114
-
-
13744254695
-
A large-scale analysis of mRNA polyadenylation of human and mouse genes
-
Tian B., Hu J., Zhang H., Lutz C.S. A large-scale analysis of mRNA polyadenylation of human and mouse genes. Nucleic Acids Res. 2005, 33:201-212.
-
(2005)
Nucleic Acids Res.
, vol.33
, pp. 201-212
-
-
Tian, B.1
Hu, J.2
Zhang, H.3
Lutz, C.S.4
-
115
-
-
79954991435
-
Tissue-specific mechanisms of alternative polyadenylation: testis, brain, and beyond
-
MacDonald C.C., McMahon K.W. Tissue-specific mechanisms of alternative polyadenylation: testis, brain, and beyond. Wiley Interdiscip. Rev. RNA 2010, 1:494-501.
-
(2010)
Wiley Interdiscip. Rev. RNA
, vol.1
, pp. 494-501
-
-
MacDonald, C.C.1
McMahon, K.W.2
-
116
-
-
80052979140
-
Mechanisms and consequences of alternative polyadenylation
-
Di Giammartino D.C., Nishida K., Manley J.L. Mechanisms and consequences of alternative polyadenylation. Mol. Cell 2011, 43:853-866.
-
(2011)
Mol. Cell
, vol.43
, pp. 853-866
-
-
Di Giammartino, D.C.1
Nishida, K.2
Manley, J.L.3
-
117
-
-
37249034083
-
Coupling and coordination in gene expression processes: a systems biology view
-
Komili S., Silver P.A. Coupling and coordination in gene expression processes: a systems biology view. Nat. Rev. Genet. 2008, 9:38-48.
-
(2008)
Nat. Rev. Genet.
, vol.9
, pp. 38-48
-
-
Komili, S.1
Silver, P.A.2
-
118
-
-
33751326744
-
Polo kinase controls cell-cycle-dependent transcription by targeting a coactivator protein
-
Darieva Z., Bulmer R., Pic-Taylor A., Doris K.S., Geymonat M., Sedgwick S.G., Morgan B.A., Sharrocks A.D. Polo kinase controls cell-cycle-dependent transcription by targeting a coactivator protein. Nature 2006, 444:494-498.
-
(2006)
Nature
, vol.444
, pp. 494-498
-
-
Darieva, Z.1
Bulmer, R.2
Pic-Taylor, A.3
Doris, K.S.4
Geymonat, M.5
Sedgwick, S.G.6
Morgan, B.A.7
Sharrocks, A.D.8
-
119
-
-
0030864777
-
DBF2, a cell cycle-regulated protein kinase, is physically and functionally associated with the CCR4 transcriptional regulatory complex
-
Liu H.Y., Toyn J.H., Chiang Y.C., Draper M.P., Johnston L.H., Denis C.L. DBF2, a cell cycle-regulated protein kinase, is physically and functionally associated with the CCR4 transcriptional regulatory complex. EMBO J. 1997, 16:5289-5298.
-
(1997)
EMBO J.
, vol.16
, pp. 5289-5298
-
-
Liu, H.Y.1
Toyn, J.H.2
Chiang, Y.C.3
Draper, M.P.4
Johnston, L.H.5
Denis, C.L.6
-
120
-
-
66449128185
-
Specific and global regulation of mRNA stability during osmotic stress in Saccharomyces cerevisiae
-
Romero-Santacreu L., Moreno J., Perez-Ortin J.E., Alepuz P. Specific and global regulation of mRNA stability during osmotic stress in Saccharomyces cerevisiae. RNA 2009, 15:1110-1120.
-
(2009)
RNA
, vol.15
, pp. 1110-1120
-
-
Romero-Santacreu, L.1
Moreno, J.2
Perez-Ortin, J.E.3
Alepuz, P.4
-
121
-
-
84855168518
-
Transcriptional priming of cytoplasmic post-transcriptional regulation
-
Tirosh I. Transcriptional priming of cytoplasmic post-transcriptional regulation. Transcription 2011, 2:258-262.
-
(2011)
Transcription
, vol.2
, pp. 258-262
-
-
Tirosh, I.1
-
122
-
-
62549149882
-
MRNA stability changes precede changes in steady-state mRNA amounts during hyperosmotic stress
-
Molin C., Jauhiainen A., Warringer J., Nerman O., Sunnerhagen P. mRNA stability changes precede changes in steady-state mRNA amounts during hyperosmotic stress. RNA 2009, 15:600-614.
-
(2009)
RNA
, vol.15
, pp. 600-614
-
-
Molin, C.1
Jauhiainen, A.2
Warringer, J.3
Nerman, O.4
Sunnerhagen, P.5
-
123
-
-
77951083459
-
Major role for mRNA stability in shaping the kinetics of gene induction
-
Elkon R., Zlotorynski E., Zeller K.I., Agami R. Major role for mRNA stability in shaping the kinetics of gene induction. BMC Genomics 2010, 11:259.
-
(2010)
BMC Genomics
, vol.11
, pp. 259
-
-
Elkon, R.1
Zlotorynski, E.2
Zeller, K.I.3
Agami, R.4
-
124
-
-
79960633906
-
Regulatory mechanisms and networks couple the different phases of gene expression
-
Dahan O., Gingold H., Pilpel Y. Regulatory mechanisms and networks couple the different phases of gene expression. Trends Genet. 2011, 27:316-322.
-
(2011)
Trends Genet.
, vol.27
, pp. 316-322
-
-
Dahan, O.1
Gingold, H.2
Pilpel, Y.3
-
125
-
-
0019503177
-
Cell-cycle regulation of yeast histone mRNA
-
Hereford L.M., Osley M.A., Ludwig T.R., McLaughlin C.S. Cell-cycle regulation of yeast histone mRNA. Cell 1981, 24:367-375.
-
(1981)
Cell
, vol.24
, pp. 367-375
-
-
Hereford, L.M.1
Osley, M.A.2
Ludwig, T.R.3
McLaughlin, C.S.4
-
126
-
-
0027932770
-
SPT10 and SPT21 are required for transcription of particular histone genes in Saccharomyces cerevisiae
-
Dollard C., Ricupero-Hovasse S.L., Natsoulis G., Boeke J.D., Winston F. SPT10 and SPT21 are required for transcription of particular histone genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 1994, 14:5223-5228.
-
(1994)
Mol. Cell. Biol.
, vol.14
, pp. 5223-5228
-
-
Dollard, C.1
Ricupero-Hovasse, S.L.2
Natsoulis, G.3
Boeke, J.D.4
Winston, F.5
-
127
-
-
0023432015
-
The two gene pairs encoding H2A and H2B play different roles in the Saccharomyces cerevisiae life cycle
-
Norris D., Osley M.A. The two gene pairs encoding H2A and H2B play different roles in the Saccharomyces cerevisiae life cycle. Mol. Cell. Biol. 1987, 7:3473-3481.
-
(1987)
Mol. Cell. Biol.
, vol.7
, pp. 3473-3481
-
-
Norris, D.1
Osley, M.A.2
-
128
-
-
84860573339
-
Regulation of histone gene expression in budding yeast
-
Eriksson P.R., Ganguli D., Nagarajavel V., Clark D.J. Regulation of histone gene expression in budding yeast. Genetics 2012, 191:7-20.
-
(2012)
Genetics
, vol.191
, pp. 7-20
-
-
Eriksson, P.R.1
Ganguli, D.2
Nagarajavel, V.3
Clark, D.J.4
-
129
-
-
79956061166
-
Lsm1 promotes genomic stability by controlling histone mRNA decay
-
Herrero A.B., Moreno S. Lsm1 promotes genomic stability by controlling histone mRNA decay. EMBO J. 2011, 30:2008-2018.
-
(2011)
EMBO J.
, vol.30
, pp. 2008-2018
-
-
Herrero, A.B.1
Moreno, S.2
-
130
-
-
0031742022
-
Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization
-
Spellman P.T., Sherlock G., Zhang M.Q., Iyer V.R., Anders K., Eisen M.B., Brown P.O., Botstein D., Futcher B. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 1998, 9:3273-3297.
-
(1998)
Mol. Biol. Cell
, vol.9
, pp. 3273-3297
-
-
Spellman, P.T.1
Sherlock, G.2
Zhang, M.Q.3
Iyer, V.R.4
Anders, K.5
Eisen, M.B.6
Brown, P.O.7
Botstein, D.8
Futcher, B.9
-
131
-
-
18344386042
-
Cell cycle-dependent transcription in yeast: promoters, transcription factors, and transcriptomes
-
Wittenberg C., Reed S.I. Cell cycle-dependent transcription in yeast: promoters, transcription factors, and transcriptomes. Oncogene 2005, 24:2746-2755.
-
(2005)
Oncogene
, vol.24
, pp. 2746-2755
-
-
Wittenberg, C.1
Reed, S.I.2
-
132
-
-
0034000976
-
Cell-cycle checkpoints that ensure coordination between nuclear and cytoplasmic events in Saccharomyces cerevisiae
-
Lew D.J. Cell-cycle checkpoints that ensure coordination between nuclear and cytoplasmic events in Saccharomyces cerevisiae. Curr. Opin. Genet. Dev. 2000, 10:47-53.
-
(2000)
Curr. Opin. Genet. Dev.
, vol.10
, pp. 47-53
-
-
Lew, D.J.1
-
133
-
-
48249134039
-
Mechanisms of cell cycle control revealed by a systematic and quantitative overexpression screen in S. cerevisiae
-
Niu W., Li Z., Zhan W., Iyer V.R., Marcotte E.M. Mechanisms of cell cycle control revealed by a systematic and quantitative overexpression screen in S. cerevisiae. PLoS Genet. 2008, 4:e1000120.
-
(2008)
PLoS Genet.
, vol.4
-
-
Niu, W.1
Li, Z.2
Zhan, W.3
Iyer, V.R.4
Marcotte, E.M.5
-
134
-
-
31544482407
-
Mapping pathways and phenotypes by systematic gene overexpression
-
Sopko R., Huang D., Preston N., Chua G., Papp B., Kafadar K., Snyder M., Oliver S.G., Cyert M., Hughes T.R., Boone C., Andrews B. Mapping pathways and phenotypes by systematic gene overexpression. Mol. Cell 2006, 21:319-330.
-
(2006)
Mol. Cell
, vol.21
, pp. 319-330
-
-
Sopko, R.1
Huang, D.2
Preston, N.3
Chua, G.4
Papp, B.5
Kafadar, K.6
Snyder, M.7
Oliver, S.G.8
Cyert, M.9
Hughes, T.R.10
Boone, C.11
Andrews, B.12
-
135
-
-
0035823036
-
Evidence for a pioneer round of mRNA translation: mRNAs subject to nonsense-mediated decay in mammalian cells are bound by CBP80 and CBP20
-
Ishigaki Y., Li X., Serin G., Maquat L.E. Evidence for a pioneer round of mRNA translation: mRNAs subject to nonsense-mediated decay in mammalian cells are bound by CBP80 and CBP20. Cell 2001, 106:607-617.
-
(2001)
Cell
, vol.106
, pp. 607-617
-
-
Ishigaki, Y.1
Li, X.2
Serin, G.3
Maquat, L.E.4
-
136
-
-
41949113083
-
Upf1 phosphorylation triggers translational repression during nonsense-mediated mRNA decay
-
Isken O., Kim Y.K., Hosoda N., Mayeur G.L., Hershey J.W., Maquat L.E. Upf1 phosphorylation triggers translational repression during nonsense-mediated mRNA decay. Cell 2008, 133:314-327.
-
(2008)
Cell
, vol.133
, pp. 314-327
-
-
Isken, O.1
Kim, Y.K.2
Hosoda, N.3
Mayeur, G.L.4
Hershey, J.W.5
Maquat, L.E.6
-
137
-
-
32044435368
-
Binding of a novel SMG-1-Upf1-eRF1-eRF3 complex (SURF) to the exon junction complex triggers Upf1 phosphorylation and nonsense-mediated mRNA decay
-
Kashima I., Yamashita A., Izumi N., Kataoka N., Morishita R., Hoshino S., Ohno M., Dreyfuss G., Ohno S. Binding of a novel SMG-1-Upf1-eRF1-eRF3 complex (SURF) to the exon junction complex triggers Upf1 phosphorylation and nonsense-mediated mRNA decay. Genes Dev. 2006, 20:355-367.
-
(2006)
Genes Dev.
, vol.20
, pp. 355-367
-
-
Kashima, I.1
Yamashita, A.2
Izumi, N.3
Kataoka, N.4
Morishita, R.5
Hoshino, S.6
Ohno, M.7
Dreyfuss, G.8
Ohno, S.9
-
138
-
-
81755161588
-
Cotranscriptional effect of a premature termination codon revealed by live-cell imaging
-
de Turris V., Nicholson P., Orozco R.Z., Singer R.H., Muhlemann O. Cotranscriptional effect of a premature termination codon revealed by live-cell imaging. RNA 2011, 17:2094-2107.
-
(2011)
RNA
, vol.17
, pp. 2094-2107
-
-
de Turris, V.1
Nicholson, P.2
Orozco, R.Z.3
Singer, R.H.4
Muhlemann, O.5
-
139
-
-
0034886974
-
Precursor RNAs harboring nonsense codons accumulate near the site of transcription
-
Muhlemann O., Mock-Casagrande C.S., Wang J., Li S., Custodio N., Carmo-Fonseca M., Wilkinson M.F., Moore M.J. Precursor RNAs harboring nonsense codons accumulate near the site of transcription. Mol. Cell 2001, 8:33-43.
-
(2001)
Mol. Cell
, vol.8
, pp. 33-43
-
-
Muhlemann, O.1
Mock-Casagrande, C.S.2
Wang, J.3
Li, S.4
Custodio, N.5
Carmo-Fonseca, M.6
Wilkinson, M.F.7
Moore, M.J.8
-
140
-
-
20844434177
-
Transcriptional silencing of nonsense codon-containing immunoglobulin minigenes
-
Buhler M., Mohn F., Stalder L., Muhlemann O. Transcriptional silencing of nonsense codon-containing immunoglobulin minigenes. Mol. Cell 2005, 18:307-317.
-
(2005)
Mol. Cell
, vol.18
, pp. 307-317
-
-
Buhler, M.1
Mohn, F.2
Stalder, L.3
Muhlemann, O.4
-
141
-
-
84861969926
-
Insights into RNA biology from an atlas of mammalian mRNA-binding proteins
-
Castello A., Fischer B., Eichelbaum K., Horos R., Beckmann B.M., Strein C., Davey N.E., Humphreys D.T., Preiss T., Steinmetz L.M., Krijgsveld J., Hentze M.W. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 2012, 149:1393-1406.
-
(2012)
Cell
, vol.149
, pp. 1393-1406
-
-
Castello, A.1
Fischer, B.2
Eichelbaum, K.3
Horos, R.4
Beckmann, B.M.5
Strein, C.6
Davey, N.E.7
Humphreys, D.T.8
Preiss, T.9
Steinmetz, L.M.10
Krijgsveld, J.11
Hentze, M.W.12
-
142
-
-
84861997955
-
The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts
-
Baltz A.G., Munschauer M., Schwanhausser B., Vasile A., Murakawa Y., Schueler M., Youngs N., Penfold-Brown D., Drew K., Milek M., Wyler E., Bonneau R., Selbach M., Dieterich C., Landthaler M. The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Mol. Cell 2012, 46:674-690.
-
(2012)
Mol. Cell
, vol.46
, pp. 674-690
-
-
Baltz, A.G.1
Munschauer, M.2
Schwanhausser, B.3
Vasile, A.4
Murakawa, Y.5
Schueler, M.6
Youngs, N.7
Penfold-Brown, D.8
Drew, K.9
Milek, M.10
Wyler, E.11
Bonneau, R.12
Selbach, M.13
Dieterich, C.14
Landthaler, M.15
-
143
-
-
79955768436
-
Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells
-
Rabani M., Levin J.Z., Fan L., Adiconis X., Raychowdhury R., Garber M., Gnirke A., Nusbaum C., Hacohen N., Friedman N., Amit I., Regev A. Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells. Nat. Biotechnol. 2011, 29:436-442.
-
(2011)
Nat. Biotechnol.
, vol.29
, pp. 436-442
-
-
Rabani, M.1
Levin, J.Z.2
Fan, L.3
Adiconis, X.4
Raychowdhury, R.5
Garber, M.6
Gnirke, A.7
Nusbaum, C.8
Hacohen, N.9
Friedman, N.10
Amit, I.11
Regev, A.12
-
144
-
-
34249063835
-
Dynamic usage of transcription start sites within core promoters
-
Kawaji H., Frith M.C., Katayama S., Sandelin A., Kai C., Kawai J., Carninci P., Hayashizaki Y. Dynamic usage of transcription start sites within core promoters. Genome Biol. 2006, 7:R118.
-
(2006)
Genome Biol.
, vol.7
-
-
Kawaji, H.1
Frith, M.C.2
Katayama, S.3
Sandelin, A.4
Kai, C.5
Kawai, J.6
Carninci, P.7
Hayashizaki, Y.8
-
145
-
-
40249089993
-
Saccharomyces cerevisiae HMO1 interacts with TFIID and participates in start site selection by RNA polymerase II
-
Kasahara K., Ki S., Aoyama K., Takahashi H., Kokubo T. Saccharomyces cerevisiae HMO1 interacts with TFIID and participates in start site selection by RNA polymerase II. Nucleic Acids Res. 2008, 36:1343-1357.
-
(2008)
Nucleic Acids Res.
, vol.36
, pp. 1343-1357
-
-
Kasahara, K.1
Ki, S.2
Aoyama, K.3
Takahashi, H.4
Kokubo, T.5
-
146
-
-
33749128065
-
Transcriptional and structural impact of TATA-initiation site spacing in mammalian core promoters
-
Ponjavic J., Lenhard B., Kai C., Kawai J., Carninci P., Hayashizaki Y., Sandelin A. Transcriptional and structural impact of TATA-initiation site spacing in mammalian core promoters. Genome Biol. 2006, 7:R78.
-
(2006)
Genome Biol.
, vol.7
-
-
Ponjavic, J.1
Lenhard, B.2
Kai, C.3
Kawai, J.4
Carninci, P.5
Hayashizaki, Y.6
Sandelin, A.7
-
147
-
-
80053413109
-
Transcriptional activity regulates alternative cleavage and polyadenylation
-
Ji Z., Luo W., Li W., Hoque M., Pan Z., Zhao Y., Tian B. Transcriptional activity regulates alternative cleavage and polyadenylation. Mol. Syst. Biol. 2011, 7:534.
-
(2011)
Mol. Syst. Biol.
, vol.7
, pp. 534
-
-
Ji, Z.1
Luo, W.2
Li, W.3
Hoque, M.4
Pan, Z.5
Zhao, Y.6
Tian, B.7
-
148
-
-
84871744570
-
Processing body and stress granule assembly occur by independent and differentially regulated pathways in Saccharomyces cerevisiae
-
Shah K.H., Zhang B., Ramachandran V., Herman P.K. Processing body and stress granule assembly occur by independent and differentially regulated pathways in Saccharomyces cerevisiae. Genetics 2013, 193:109-123.
-
(2013)
Genetics
, vol.193
, pp. 109-123
-
-
Shah, K.H.1
Zhang, B.2
Ramachandran, V.3
Herman, P.K.4
-
149
-
-
80053006472
-
The cAMP-dependent protein kinase signaling pathway is a key regulator of P body foci formation
-
Ramachandran V., Shah K.H., Herman P.K. The cAMP-dependent protein kinase signaling pathway is a key regulator of P body foci formation. Mol. Cell 2011, 43:973-981.
-
(2011)
Mol. Cell
, vol.43
, pp. 973-981
-
-
Ramachandran, V.1
Shah, K.H.2
Herman, P.K.3
-
150
-
-
77149120760
-
Differential localization to cytoplasm, nucleus or P-bodies of yeast PKA subunits under different growth conditions
-
Tudisca V., Recouvreux V., Moreno S., Boy-Marcotte E., Jacquet M., Portela P. Differential localization to cytoplasm, nucleus or P-bodies of yeast PKA subunits under different growth conditions. Eur. J. Cell Biol. 2010, 89:339-348.
-
(2010)
Eur. J. Cell Biol.
, vol.89
, pp. 339-348
-
-
Tudisca, V.1
Recouvreux, V.2
Moreno, S.3
Boy-Marcotte, E.4
Jacquet, M.5
Portela, P.6
-
151
-
-
75649146292
-
A novel c-Jun N-terminal kinase (JNK)-binding protein WDR62 is recruited to stress granules and mediates a nonclassical JNK activation
-
Wasserman T., Katsenelson K., Daniliuc S., Hasin T., Choder M., Aronheim A. A novel c-Jun N-terminal kinase (JNK)-binding protein WDR62 is recruited to stress granules and mediates a nonclassical JNK activation. Mol. Biol. Cell 2010, 21:117-130.
-
(2010)
Mol. Biol. Cell
, vol.21
, pp. 117-130
-
-
Wasserman, T.1
Katsenelson, K.2
Daniliuc, S.3
Hasin, T.4
Choder, M.5
Aronheim, A.6
-
152
-
-
80052626104
-
C-Jun N-terminal kinase phosphorylates DCP1a to control formation of P bodies
-
Rzeczkowski K., Beuerlein K., Muller H., Dittrich-Breiholz O., Schneider H., Kettner-Buhrow D., Holtmann H., Kracht M. c-Jun N-terminal kinase phosphorylates DCP1a to control formation of P bodies. J. Cell Biol. 2011, 194:581-596.
-
(2011)
J. Cell Biol.
, vol.194
, pp. 581-596
-
-
Rzeczkowski, K.1
Beuerlein, K.2
Muller, H.3
Dittrich-Breiholz, O.4
Schneider, H.5
Kettner-Buhrow, D.6
Holtmann, H.7
Kracht, M.8
-
153
-
-
77950664407
-
Global phosphoproteomics identifies a major role for AKT and 14-3-3 in regulating EDC3
-
Larance M., Rowland A.F., Hoehn K.L., Humphreys D.T., Preiss T., Guilhaus M., James D.E. Global phosphoproteomics identifies a major role for AKT and 14-3-3 in regulating EDC3. Mol. Cell. Proteomics 2010, 9:682-694.
-
(2010)
Mol. Cell. Proteomics
, vol.9
, pp. 682-694
-
-
Larance, M.1
Rowland, A.F.2
Hoehn, K.L.3
Humphreys, D.T.4
Preiss, T.5
Guilhaus, M.6
James, D.E.7
|