-
2
-
-
84876958516
-
Mechanism for 12 hr rhythm generation by the circadian clock
-
Westermark PO, Herzel H. Mechanism for 12 hr rhythm generation by the circadian clock. Cell Rep 2013; 3:1228-38.
-
(2013)
Cell Rep
, vol.3
, pp. 1228-1238
-
-
Westermark, P.O.1
Herzel, H.2
-
3
-
-
0035888014
-
Oscillating on borrowed time: diffusible signals from immortalized suprachiasmatic nucleus cells regulate circadian rhythmicity in cultured fibroblasts
-
Allen G, Rappe J, Earnest DJ, Cassone VM. Oscillating on borrowed time: diffusible signals from immortalized suprachiasmatic nucleus cells regulate circadian rhythmicity in cultured fibroblasts. J Neurosci 2001; 21:7937-43.
-
(2001)
J Neurosci
, vol.21
, pp. 7937-7943
-
-
Allen, G.1
Rappe, J.2
Earnest, D.J.3
Cassone, V.M.4
-
4
-
-
0025021084
-
Transplanted suprachiasmatic nucleus determines circadian period
-
Ralph MR, Foster RG, Davis FC, Menaker M. Transplanted suprachiasmatic nucleus determines circadian period. Science 1990; 247:975-8.
-
(1990)
Science
, vol.247
, pp. 975-978
-
-
Ralph, M.R.1
Foster, R.G.2
Davis, F.C.3
Menaker, M.4
-
5
-
-
34247402098
-
Glucocorticoids play a key role in circadian cell cycle rhythms
-
Dickmeis T, Lahiri K, Nica G, Vallone D, Santoriello C, Neumann CJ, Hammerschmidt M, Foulkes NS. Glucocorticoids play a key role in circadian cell cycle rhythms. PLoS Biol 2007; 5:e78.
-
(2007)
PLoS Biol
, vol.5
, pp. e78
-
-
Dickmeis, T.1
Lahiri, K.2
Nica, G.3
Vallone, D.4
Santoriello, C.5
Neumann, C.J.6
Hammerschmidt, M.7
Foulkes, N.S.8
-
6
-
-
0028258994
-
Negative feedback defining a circadian clock: autoregulation of the clock gene frequency
-
Aronson BD, Johnson KA, Loros JJ, Dunlap JC. Negative feedback defining a circadian clock: autoregulation of the clock gene frequency. Science 1994; 263:1578-84.
-
(1994)
Science
, vol.263
, pp. 1578-1584
-
-
Aronson, B.D.1
Johnson, K.A.2
Loros, J.J.3
Dunlap, J.C.4
-
7
-
-
0034989269
-
Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock
-
Bae K, Jin X, Maywood ES, Hastings MH, Reppert SM, Weaver DR. Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock. Neuron 2001; 30:525-36.
-
(2001)
Neuron
, vol.30
, pp. 525-536
-
-
Bae, K.1
Jin, X.2
Maywood, E.S.3
Hastings, M.H.4
Reppert, S.M.5
Weaver, D.R.6
-
8
-
-
33745792227
-
Suprachiasmatic regulation of circadian rhythms of gene expression in hamster peripheral organs: effects of transplanting the pacemaker
-
Guo H, Brewer JM, Lehman MN, Bittman EL. Suprachiasmatic regulation of circadian rhythms of gene expression in hamster peripheral organs: effects of transplanting the pacemaker. J Neurosci 2006; 26:6406-12.
-
(2006)
J Neurosci
, vol.26
, pp. 6406-6412
-
-
Guo, H.1
Brewer, J.M.2
Lehman, M.N.3
Bittman, E.L.4
-
9
-
-
33846944676
-
System driven and oscillator- dependent circadian transcription in mice with a conditionally active liver clock
-
Kornmann B, Schaad O, Bujard H, Takahashi JS, Schibler U. System driven and oscillator- dependent circadian transcription in mice with a conditionally active liver clock. PLoS Biol 2007; 5:e34.
-
(2007)
PLoS Biol
, vol.5
, pp. e34
-
-
Kornmann, B.1
Schaad, O.2
Bujard, H.3
Takahashi, J.S.4
Schibler, U.5
-
10
-
-
11144353910
-
PERIOD2:LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues
-
Yoo SH, Yamazaki S, Lowrey PL et al. PERIOD2:LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci U S A 2004; 101:5339-46.
-
(2004)
Proc Natl Acad Sci U S A
, vol.101
, pp. 5339-5346
-
-
Yoo, S.H.1
Yamazaki, S.2
Lowrey, P.L.3
-
11
-
-
14044264801
-
BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis
-
Rudic RD, McNamara P, Curtis AM, Boston RC, Panda S, Hogenesch JB, Fitzgerald GA. BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol 2004; 2:e377.
-
(2004)
PLoS Biol
, vol.2
, pp. e377
-
-
Rudic, R.D.1
McNamara, P.2
Curtis, A.M.3
Boston, R.C.4
Panda, S.5
Hogenesch, J.B.6
Fitzgerald, G.A.7
-
12
-
-
14544296165
-
The role of the orphan nuclear receptor Rev-Erb a in adipocyte differentiation and function
-
Laitinen S, Fontaine C, Fruchart JC, Staels B. The role of the orphan nuclear receptor Rev-Erb a in adipocyte differentiation and function. Biochimie 2005; 87:21-5.
-
(2005)
Biochimie
, vol.87
, pp. 21-25
-
-
Laitinen, S.1
Fontaine, C.2
Fruchart, J.C.3
Staels, B.4
-
13
-
-
34548815191
-
The orphan Rev-erb nuclear receptors: a link between metabolism, circadian rhythm and inflammation?
-
Ramakrishnan SN, Muscat GE. The orphan Rev-erb nuclear receptors: a link between metabolism, circadian rhythm and inflammation? Nucl Recept Signal 2006; 4:e009.
-
(2006)
Nucl Recept Signal
, vol.4
, pp. e009
-
-
Ramakrishnan, S.N.1
Muscat, G.E.2
-
14
-
-
84873474854
-
The role of circadian clocks in metabolic disease
-
Li M-D, Li C-M, Wang Z. The role of circadian clocks in metabolic disease. Yale J Biol Med 2012; 85:387-401.
-
(2012)
Yale J Biol Med
, vol.85
, pp. 387-401
-
-
Li, M.-D.1
Li, C.-M.2
Wang, Z.3
-
15
-
-
79952028561
-
Shift work and chronic disease:the epidemiological evidence
-
Wang XS, Armstrong ME, Cairns BJ, Key TJ, Travis RC. Shift work and chronic disease:the epidemiological evidence. Occup Med (Lond) 2011; 61:78-89.
-
(2011)
Occup Med (Lond)
, vol.61
, pp. 78-89
-
-
Wang, X.S.1
Armstrong, M.E.2
Cairns, B.J.3
Key, T.J.4
Travis, R.C.5
-
16
-
-
33746625139
-
The circadian clock Period 2 gene regulates γ interferon production of NK cells in host response to lipopolysaccharide-induced endotoxic shock
-
Liu J, Malkani G, Shi X, Meyer M, Cunningham-Runddles S, Ma X, Sun ZS. The circadian clock Period 2 gene regulates γ interferon production of NK cells in host response to lipopolysaccharide-induced endotoxic shock. Infect Immun 2006; 74:4750-6.
-
(2006)
Infect Immun
, vol.74
, pp. 4750-4756
-
-
Liu, J.1
Malkani, G.2
Shi, X.3
Meyer, M.4
Cunningham-Runddles, S.5
Ma, X.6
Sun, Z.S.7
-
17
-
-
34147153482
-
Characterization of the molecular clock in mouse peritoneal macrophages
-
Hayashi M, Shimba S, Tezuka M. Characterization of the molecular clock in mouse peritoneal macrophages. Biol Pharm Bull 2007; 30:621-6.
-
(2007)
Biol Pharm Bull
, vol.30
, pp. 621-626
-
-
Hayashi, M.1
Shimba, S.2
Tezuka, M.3
-
18
-
-
75849128795
-
A circadian clock in macrophages controls inflammatory immune responses
-
Keller M, Mazuch J, Abraham U, Eom GD, Herzog ED, Volk HD, Kramer A, Maier B. A circadian clock in macrophages controls inflammatory immune responses. Proc Natl Acad Sci U S A 2009; 106:21407-12.
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 21407-21412
-
-
Keller, M.1
Mazuch, J.2
Abraham, U.3
Eom, G.D.4
Herzog, E.D.5
Volk, H.D.6
Kramer, A.7
Maier, B.8
-
19
-
-
20444391742
-
Circadian oscillations of clock genes, cytolytic factors, and cytokines in rat NK cells
-
Arjona A, Sarkar DK. Circadian oscillations of clock genes, cytolytic factors, and cytokines in rat NK cells. J Immunol 2005; 174:7618-24.
-
(2005)
J Immunol
, vol.174
, pp. 7618-7624
-
-
Arjona, A.1
Sarkar, D.K.2
-
20
-
-
84856019342
-
The nuclear receptor REV-ERBa mediates circadian regulation of innate immunity through selective regulation of inflammatory cytokines
-
Gibbs JE, Blaikley J, Beesley S et al. The nuclear receptor REV-ERBa mediates circadian regulation of innate immunity through selective regulation of inflammatory cytokines. Proc Natl Acad Sci U S A 2012; 109:582-7.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. 582-587
-
-
Gibbs, J.E.1
Blaikley, J.2
Beesley, S.3
-
21
-
-
84864524230
-
Circadian clock protein cryptochrome regulates the expression of proinflammatory cytokines
-
Narasimamurthy R, Hatori M, Nayak SK, Liu F, Panda S, Verma IM. Circadian clock protein cryptochrome regulates the expression of proinflammatory cytokines. Proc Natl Acad Sci U S A 2012; 109:12662-7.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. 12662-12667
-
-
Narasimamurthy, R.1
Hatori, M.2
Nayak, S.K.3
Liu, F.4
Panda, S.5
Verma, I.M.6
-
22
-
-
84863331725
-
Model-driven multi-omic data analysys elucidates metabolic immunomodulators of macrophage activation
-
Bordbar A, Mo ML, Nakayasu ES et al. Model-driven multi-omic data analysys elucidates metabolic immunomodulators of macrophage activation. Mol Syst Biol 2012; 8:558.
-
(2012)
Mol Syst Biol
, vol.8
, pp. 558
-
-
Bordbar, A.1
Mo, M.L.2
Nakayasu, E.S.3
-
23
-
-
84872576236
-
Metabolism of inflammation limited by AMPK and pseudostarvation
-
O'Neill LA, Hardie DG. Metabolism of inflammation limited by AMPK and pseudostarvation. Nature 2013; 493:346-55.
-
(2013)
Nature
, vol.493
, pp. 346-355
-
-
O'Neill, L.A.1
Hardie, D.G.2
-
24
-
-
84876758617
-
Metabolic pathways in immune cell activation and quiescence
-
Pearce EL, Pearce EJ. Metabolic pathways in immune cell activation and quiescence. Immunity 2013; 38:633-43.
-
(2013)
Immunity
, vol.38
, pp. 633-643
-
-
Pearce, E.L.1
Pearce, E.J.2
-
25
-
-
84884877043
-
Mitochondrial dynamics controlled by mitofusins regulate Agrp neuronal activity and diet-induced obesity
-
Dietrich MO, Liu Z-W, Horvath TL. Mitochondrial dynamics controlled by mitofusins regulate Agrp neuronal activity and diet-induced obesity. Cell 2013; 1555:188-99.
-
(2013)
Cell
, vol.1555
, pp. 188-199
-
-
Dietrich, M.O.1
Liu, Z.-W.2
Horvath, T.L.3
-
26
-
-
34848913375
-
T cell activation requires mitochondrial translocation to the immunological synapse
-
Quintana A, Schwindling C, Wenning AS, Becherer U, Rettig J, Schwarz EC, Hoth M. T cell activation requires mitochondrial translocation to the immunological synapse. Proc Natl Acad Sci U S A 2007; 104:14418-23.
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, pp. 14418-14423
-
-
Quintana, A.1
Schwindling, C.2
Wenning, A.S.3
Becherer, U.4
Rettig, J.5
Schwarz, E.C.6
Hoth, M.7
-
27
-
-
59849117077
-
Reorganization of mitochondria at the NK cell immune synapse
-
Abarca-Rojano E, Muñiz-Hernández S, Moreno-Altamirano MM, Mondragó n-Flores R, Enriquez-Rincón F, Sánchez-García FJ. Reorganization of mitochondria at the NK cell immune synapse. Immunol Lett 2009; 122:18-25.
-
(2009)
Immunol Lett
, vol.122
, pp. 18-25
-
-
Abarca-Rojano, E.1
Muñiz-Hernández, S.2
Moreno-Altamirano, M.M.3
Mondragó n-Flores, R.4
Enriquez-Rincón, F.5
Sánchez-García, F.J.6
-
28
-
-
0141593562
-
Mycobacterium tuberculosis virulence correlates with mitochondrial cytochrome c release in infected macrophages
-
Abarca-Rojano E, Rosas-Medina P, Zamudio-Cortez P, Mondragó n-Flores R, Sánchez-García FJ. Mycobacterium tuberculosis virulence correlates with mitochondrial cytochrome c release in infected macrophages. Scand J Immunol 2003; 58:419-27.
-
(2003)
Scand J Immunol
, vol.58
, pp. 419-427
-
-
Abarca-Rojano, E.1
Rosas-Medina, P.2
Zamudio-Cortez, P.3
Mondragó n-Flores, R.4
Sánchez-García, F.J.5
-
29
-
-
79952749507
-
Listeria monocytogenes transiently alters mitochondrial dynamics during infection
-
Stavru F, Bouillaud F, Sartori A, Ricquier D, Cossart P. Listeria monocytogenes transiently alters mitochondrial dynamics during infection. Proc Natl Acad Sci U S A 2011; 108:3612-7.
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 3612-3617
-
-
Stavru, F.1
Bouillaud, F.2
Sartori, A.3
Ricquier, D.4
Cossart, P.5
-
30
-
-
84885049026
-
Atypical mitochondrial fission upon bacterial infection
-
Stavru F, Palmer AE, Wang C, Youle RJ, Cossart P. Atypical mitochondrial fission upon bacterial infection. Proc Natl Acad Sci U S A 2013; 110:16003-8.
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, pp. 16003-16008
-
-
Stavru, F.1
Palmer, A.E.2
Wang, C.3
Youle, R.J.4
Cossart, P.5
-
31
-
-
84876567161
-
Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome
-
Misawa T, Takahama M, Kozaki T, Lee H, Zou J, Saitoh T, Akira S. Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome. Nat Immunol 2013; 14:454-60.
-
(2013)
Nat Immunol
, vol.14
, pp. 454-460
-
-
Misawa, T.1
Takahama, M.2
Kozaki, T.3
Lee, H.4
Zou, J.5
Saitoh, T.6
Akira, S.7
-
32
-
-
84884248040
-
Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice
-
Peek CB, Affinati AH, Ramsey KM et al. Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice. Science 2013; 342:591.
-
(2013)
Science
, vol.342
, pp. 591
-
-
Peek, C.B.1
Affinati, A.H.2
Ramsey, K.M.3
-
33
-
-
0032511229
-
A serum shock induces circadian gene expression in mammalian tissue culture cells
-
Balsalobre A, Damiola F, Schibler U. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 1998; 93:929-37.
-
(1998)
Cell
, vol.93
, pp. 929-937
-
-
Balsalobre, A.1
Damiola, F.2
Schibler, U.3
-
34
-
-
33847639221
-
Expression of GM1, a marker of lipid rafts, defines two subsets of human monocytes with differential endocytic capacity and LPS responsiveness
-
Moreno-Altamirano MMB, Aguilar-Carmona L, Sánchez-García FJ. Expression of GM1, a marker of lipid rafts, defines two subsets of human monocytes with differential endocytic capacity and LPS responsiveness. Immunology 2007; 120:536-43.
-
(2007)
Immunology
, vol.120
, pp. 536-543
-
-
Moreno-Altamirano, M.M.B.1
Aguilar-Carmona, L.2
Sánchez-García, F.J.3
-
35
-
-
84958442612
-
The estimation of the bactericidal power of the blood
-
Miles AA, Misra SS. The estimation of the bactericidal power of the blood. J Hygiene 1938; 38: 732-49.
-
(1938)
J Hygiene
, vol.38
, pp. 732-749
-
-
Miles, A.A.1
Misra, S.S.2
-
36
-
-
0742289564
-
Facilitative glucose transporter gene expression in human lymphocytes, monocytes, and macrophages: a role for glut isoforms 1,2, and 5 in the immune response and foam cell formation
-
Fu Y, Maianu L, Melbert BR, Garvey WT. Facilitative glucose transporter gene expression in human lymphocytes, monocytes, and macrophages: a role for glut isoforms 1,2, and 5 in the immune response and foam cell formation. Blood Cells Mol Dis 2004; 32:182-90.
-
(2004)
Blood Cells Mol Dis
, vol.32
, pp. 182-190
-
-
Fu, Y.1
Maianu, L.2
Melbert, B.R.3
Garvey, W.T.4
-
37
-
-
77953809886
-
Aldose reductase inhibition prevents lipopolysaccharide- induced glucose uptake and glucose transporter 3 expression in RAW 264.7 macrophages
-
Reddy ABM, Srivastava SK, Ramana KV. Aldose reductase inhibition prevents lipopolysaccharide- induced glucose uptake and glucose transporter 3 expression in RAW 264.7 macrophages. Int J Biochem Cell Biol 2010; 42:1039-45.
-
(2010)
Int J Biochem Cell Biol
, vol.42
, pp. 1039-1045
-
-
Reddy, A.B.M.1
Srivastava, S.K.2
Ramana, K.V.3
-
38
-
-
44649181632
-
Diurnal rhythmicity in glucose uptake is mediated by temporal periodicity in the expression of the sodium-glucose co-transporter (SGLT1)
-
Balakrishnan A, Stearns AT, Rounds J, Irani J, Giuffrida M, Rhoads DB, Ashley MD, Tavakkolizadeh A. Diurnal rhythmicity in glucose uptake is mediated by temporal periodicity in the expression of the sodium-glucose co-transporter (SGLT1). Surgery 2008; 143:813-8.
-
(2008)
Surgery
, vol.143
, pp. 813-818
-
-
Balakrishnan, A.1
Stearns, A.T.2
Rounds, J.3
Irani, J.4
Giuffrida, M.5
Rhoads, D.B.6
Ashley, M.D.7
Tavakkolizadeh, A.8
-
39
-
-
0029035980
-
Regulation of GLUT5 gene expression in rat intestinal mucosa: regional distribution, circadian rhythm, perinatal development and effect of diabetes
-
Castello A, Guma A, Sevilla L, Furriols M, Testar X, Palacin M, Zorzano A. Regulation of GLUT5 gene expression in rat intestinal mucosa: regional distribution, circadian rhythm, perinatal development and effect of diabetes. Biochem J 1995; 309:271-7.
-
(1995)
Biochem J
, vol.309
, pp. 271-277
-
-
Castello, A.1
Guma, A.2
Sevilla, L.3
Furriols, M.4
Testar, X.5
Palacin, M.6
Zorzano, A.7
-
40
-
-
84879502562
-
Disrupted circadian rhythmicity of the intestinal glucose transporter SGLT1 in Zucker diabetic fatty rats
-
Bhutta HY, Deelman TE, SW A, Rhodes DB, Tavakkoli A. Disrupted circadian rhythmicity of the intestinal glucose transporter SGLT1 in Zucker diabetic fatty rats. Dig Dis Sci 2013; 58:1537-45.
-
(2013)
Dig Dis Sci
, vol.58
, pp. 1537-1545
-
-
Bhutta, H.Y.1
Deelman, T.E.2
Sw, A.3
Rhodes, D.B.4
Tavakkoli, A.5
-
41
-
-
84864669289
-
Bioenergetic role of mitochondrial fusion and fission
-
Westermann B. Bioenergetic role of mitochondrial fusion and fission. Biochim Biophys Acta 2012; 1817:1833-8.
-
(2012)
Biochim Biophys Acta
, vol.1817
, pp. 1833-1838
-
-
Westermann, B.1
-
42
-
-
0016853664
-
A model for conformational coupling of membrane potential and proton translocation to ATP synthesis and to active transport
-
Boyer PD. A model for conformational coupling of membrane potential and proton translocation to ATP synthesis and to active transport. FEBS Lett 1975; 58:1-6.
-
(1975)
FEBS Lett
, vol.58
, pp. 1-6
-
-
Boyer, P.D.1
-
43
-
-
0034687662
-
The effect of nitric oxide on cell respiration: a key to understanding its role in cell survival or death
-
Beltran B, Mathur A, Duchen MR, Erusalimsky JD, Moncada S. The effect of nitric oxide on cell respiration: a key to understanding its role in cell survival or death. Proc Natl Acad Sci U S A 2000; 97:14602-7.
-
(2000)
Proc Natl Acad Sci U S A
, vol.97
, pp. 14602-14607
-
-
Beltran, B.1
Mathur, A.2
Duchen, M.R.3
Erusalimsky, J.D.4
Moncada, S.5
-
44
-
-
0036906665
-
Mitochondrial fusion in human cells is efficient, requires the inner membrane potential, and is mediated by mitofusins
-
Legros F, Lombes A, Frachon P, Rojo M. Mitochondrial fusion in human cells is efficient, requires the inner membrane potential, and is mediated by mitofusins. Mol Biol Cell 2002; 13:4343-54.
-
(2002)
Mol Biol Cell
, vol.13
, pp. 4343-4354
-
-
Legros, F.1
Lombes, A.2
Frachon, P.3
Rojo, M.4
-
45
-
-
0037459089
-
Regulation of mitocondrial morphology by membrane potential, and DRP1-dependent division and FZO1-dependent fusion reaction in mammalian cells
-
Ishihara N, Jofuku A, Eura Y, Mihara K. Regulation of mitocondrial morphology by membrane potential, and DRP1-dependent division and FZO1-dependent fusion reaction in mammalian cells. Biochem Biophys Res Commun 2003; 301:891-8.
-
(2003)
Biochem Biophys Res Commun
, vol.301
, pp. 891-898
-
-
Ishihara, N.1
Jofuku, A.2
Eura, Y.3
Mihara, K.4
|