메뉴 건너뛰기




Volumn 36, Issue 10, 2014, Pages 997-1004

DNA replication timing: Coordinating genome stability with genome regulation on the X chromosome and beyond

Author keywords

DNA replication timing; Epigenetic inheritance; Mutagenesis; X chromosome inactivation

Indexed keywords

DNA;

EID: 84908236506     PISSN: 02659247     EISSN: 15211878     Source Type: Journal    
DOI: 10.1002/bies.201400077     Document Type: Article
Times cited : (10)

References (65)
  • 2
    • 0036591890 scopus 로고    scopus 로고
    • Replication timing and transcriptional control: beyond cause and effect
    • Gilbert DM. 2002. Replication timing and transcriptional control: beyond cause and effect. Curr Opin Cell Biol 14: 377-83.
    • (2002) Curr Opin Cell Biol , vol.14 , pp. 377-383
    • Gilbert, D.M.1
  • 3
    • 81855212626 scopus 로고    scopus 로고
    • Gracefully ageing at 50, X-chromosome inactivation becomes a paradigm for RNA and chromatin control
    • Lee JT. 2011. Gracefully ageing at 50, X-chromosome inactivation becomes a paradigm for RNA and chromatin control. Nat Rev Mol Cell Biol 12: 815-26.
    • (2011) Nat Rev Mol Cell Biol , vol.12 , pp. 815-826
    • Lee, J.T.1
  • 4
    • 0001470477 scopus 로고
    • Asynchronous duplication of chromosomes in cultured cells of Chinese hamster
    • Taylor JH. 1960. Asynchronous duplication of chromosomes in cultured cells of Chinese hamster. J Biophys Biochem Cytol 7: 455-63.
    • (1960) J Biophys Biochem Cytol , vol.7 , pp. 455-463
    • Taylor, J.H.1
  • 5
    • 0000239613 scopus 로고
    • Time-sequence of human chromosome duplication
    • Gilbert CW, Muldal S, Lajtha LG, Rowley J. 1962. Time-sequence of human chromosome duplication. Nature 195: 869-73.
    • (1962) Nature , vol.195 , pp. 869-873
    • Gilbert, C.W.1    Muldal, S.2    Lajtha, L.G.3    Rowley, J.4
  • 6
    • 0000255857 scopus 로고
    • Asynchronous duplication of human chromosomes and the origin of sex chromatin
    • Morishima A, Grumbach MM, Taylor JH. 1962. Asynchronous duplication of human chromosomes and the origin of sex chromatin. Proc Natl Acad Sci USA 48: 756-63.
    • (1962) Proc Natl Acad Sci USA , vol.48 , pp. 756-763
    • Morishima, A.1    Grumbach, M.M.2    Taylor, J.H.3
  • 7
    • 0014147821 scopus 로고
    • Delayed onset of replication of human X chromosomes
    • Priest JH, Heady JE, Priest RE. 1967. Delayed onset of replication of human X chromosomes. J Cell Biol 35: 483-7.
    • (1967) J Cell Biol , vol.35 , pp. 483-487
    • Priest, J.H.1    Heady, J.E.2    Priest, R.E.3
  • 8
    • 0017126281 scopus 로고
    • Analysis of deoxyribonucleic acid replication in human X chromosomes by fluorescence microscopy
    • Willard HF, Latt SA. 1976. Analysis of deoxyribonucleic acid replication in human X chromosomes by fluorescence microscopy. Am J Hum Genet 28: 213-27.
    • (1976) Am J Hum Genet , vol.28 , pp. 213-227
    • Willard, H.F.1    Latt, S.A.2
  • 9
    • 0020519207 scopus 로고
    • Cytologic evidence for three human X-chromosomal segments escaping inactivation
    • Schempp W, Meer B. 1983. Cytologic evidence for three human X-chromosomal segments escaping inactivation. Hum Genet 63: 171-4.
    • (1983) Hum Genet , vol.63 , pp. 171-174
    • Schempp, W.1    Meer, B.2
  • 10
    • 84891696268 scopus 로고    scopus 로고
    • Random replication of the inactive X chromosome
    • Koren A, McCarroll SA. 2014. Random replication of the inactive X chromosome. Genome Res 24: 64-9.
    • (2014) Genome Res , vol.24 , pp. 64-69
    • Koren, A.1    McCarroll, S.A.2
  • 11
    • 73249147619 scopus 로고    scopus 로고
    • Predictable dynamic program of timing of DNA replication in human cells
    • Desprat R, Thierry-Mieg D, Lailler N, Lajugie J, et al. 2009. Predictable dynamic program of timing of DNA replication in human cells. Genome Res 19: 2288-99.
    • (2009) Genome Res , vol.19 , pp. 2288-2299
    • Desprat, R.1    Thierry-Mieg, D.2    Lailler, N.3    Lajugie, J.4
  • 12
    • 77953011587 scopus 로고    scopus 로고
    • MRC1-dependent scaling of the budding yeast DNA replication timing program
    • Koren A, Soifer I, Barkai N. 2010. MRC1-dependent scaling of the budding yeast DNA replication timing program. Genome Res 20: 781-90.
    • (2010) Genome Res , vol.20 , pp. 781-790
    • Koren, A.1    Soifer, I.2    Barkai, N.3
  • 13
    • 77957369058 scopus 로고    scopus 로고
    • Comparative analysis of DNA replication timing reveals conserved large-scale chromosomal architecture
    • Yaffe E, Farkash-Amar S, Polten A, Yakhini Z, et al. 2010. Comparative analysis of DNA replication timing reveals conserved large-scale chromosomal architecture. PLoS Genet 6: e1001011.
    • (2010) PLoS Genet , vol.6 , pp. e1001011
    • Yaffe, E.1    Farkash-Amar, S.2    Polten, A.3    Yakhini, Z.4
  • 14
    • 84870955253 scopus 로고    scopus 로고
    • Differential relationship of DNA replication timing to different forms of human mutation and variation
    • Koren A, Polak P, Nemesh J, Michaelson JJ, et al. 2012. Differential relationship of DNA replication timing to different forms of human mutation and variation. Am J Hum Genet 91: 1033-40.
    • (2012) Am J Hum Genet , vol.91 , pp. 1033-1040
    • Koren, A.1    Polak, P.2    Nemesh, J.3    Michaelson, J.J.4
  • 15
    • 84867182048 scopus 로고    scopus 로고
    • Conservation of replication timing reveals global and local regulation of replication origin activity
    • Muller CA, Nieduszynski CA. 2012. Conservation of replication timing reveals global and local regulation of replication origin activity. Genome Res 22: 1953-62.
    • (2012) Genome Res , vol.22 , pp. 1953-1962
    • Muller, C.A.1    Nieduszynski, C.A.2
  • 16
    • 54949085778 scopus 로고    scopus 로고
    • Global reorganization of replication domains during embryonic stem cell differentiation
    • Hiratani I, Ryba T, Itoh M, Yokochi T, et al. 2008. Global reorganization of replication domains during embryonic stem cell differentiation. PLoS Biol 6: e245.
    • (2008) PLoS Biol , vol.6 , pp. e245
    • Hiratani, I.1    Ryba, T.2    Itoh, M.3    Yokochi, T.4
  • 17
    • 76349123622 scopus 로고    scopus 로고
    • Sequencing newly replicated DNA reveals widespread plasticity in human replication timing
    • Hansen RS, Thomas S, Sandstrom R, Canfield TK, et al. 2010. Sequencing newly replicated DNA reveals widespread plasticity in human replication timing. Proc Natl Acad Sci USA 107: 139-44.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 139-144
    • Hansen, R.S.1    Thomas, S.2    Sandstrom, R.3    Canfield, T.K.4
  • 18
    • 77952994784 scopus 로고    scopus 로고
    • Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types
    • Ryba T, Hiratani I, Lu J, Itoh M, et al. 2010. Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types. Genome Res 20: 761-70.
    • (2010) Genome Res , vol.20 , pp. 761-770
    • Ryba, T.1    Hiratani, I.2    Lu, J.3    Itoh, M.4
  • 19
    • 35348983887 scopus 로고    scopus 로고
    • A second generation human haplotype map of over 3.1 million SNPs
    • The International HapMap Consortium. 2007. A second generation human haplotype map of over 3.1 million SNPs. Nature 449: 851-61.
    • (2007) Nature , vol.449 , pp. 851-861
  • 20
    • 84975742565 scopus 로고    scopus 로고
    • A map of human genome variation from population-scale sequencing
    • 1000 Genomes Project Consortium. 2010. A map of human genome variation from population-scale sequencing. Nature 467: 1061-73.
    • (2010) Nature , vol.467 , pp. 1061-1073
  • 21
    • 0020460737 scopus 로고
    • A major developmental transition in early Xenopus embryos: II. Control of the onset of transcription
    • Newport J, Kirschner M. 1982. A major developmental transition in early Xenopus embryos: II. Control of the onset of transcription. Cell 30: 687-96.
    • (1982) Cell , vol.30 , pp. 687-696
    • Newport, J.1    Kirschner, M.2
  • 22
    • 0020407569 scopus 로고
    • A major developmental transition in early Xenopus embryos: I. Characterization and timing of cellular changes at the midblastula stage
    • Newport J, Kirschner M. 1982. A major developmental transition in early Xenopus embryos: I. Characterization and timing of cellular changes at the midblastula stage. Cell 30: 675-86.
    • (1982) Cell , vol.30 , pp. 675-686
    • Newport, J.1    Kirschner, M.2
  • 23
    • 0027370672 scopus 로고
    • Chromosomal replication initiates and terminates at random sequences but at regular intervals in the ribosomal DNA of Xenopus early embryos
    • Hyrien O, Mechali M. 1993. Chromosomal replication initiates and terminates at random sequences but at regular intervals in the ribosomal DNA of Xenopus early embryos. EMBO J 12: 4511-20.
    • (1993) EMBO J , vol.12 , pp. 4511-4520
    • Hyrien, O.1    Mechali, M.2
  • 24
    • 0028829358 scopus 로고
    • Transition in specification of embryonic metazoan DNA replication origins
    • Hyrien O, Maric C, Mechali M. 1995. Transition in specification of embryonic metazoan DNA replication origins. Science 270: 994-7.
    • (1995) Science , vol.270 , pp. 994-997
    • Hyrien, O.1    Maric, C.2    Mechali, M.3
  • 25
    • 0032906460 scopus 로고    scopus 로고
    • Specification of regions of DNA replication initiation during embryogenesis in the 65-kilobase DNApolalpha-dE2F locus of Drosophila melanogaster
    • Sasaki T, Sawado T, Yamaguchi M, Shinomiya T. 1999. Specification of regions of DNA replication initiation during embryogenesis in the 65-kilobase DNApolalpha-dE2F locus of Drosophila melanogaster. Mol Cell Biol 19: 547-55.
    • (1999) Mol Cell Biol , vol.19 , pp. 547-555
    • Sasaki, T.1    Sawado, T.2    Yamaguchi, M.3    Shinomiya, T.4
  • 26
    • 84863872155 scopus 로고    scopus 로고
    • Replication timing and its emergence from stochastic processes
    • Bechhoefer J, Rhind N. 2012. Replication timing and its emergence from stochastic processes. Trends Genet 28: 374-81.
    • (2012) Trends Genet , vol.28 , pp. 374-381
    • Bechhoefer, J.1    Rhind, N.2
  • 27
    • 77956253770 scopus 로고    scopus 로고
    • Modeling genome-wide replication kinetics reveals a mechanism for regulation of replication timing
    • Yang SC, Rhind N, Bechhoefer J. 2010. Modeling genome-wide replication kinetics reveals a mechanism for regulation of replication timing. Mol Syst Biol 6: 404.
    • (2010) Mol Syst Biol , vol.6 , pp. 404
    • Yang, S.C.1    Rhind, N.2    Bechhoefer, J.3
  • 28
    • 84888432841 scopus 로고    scopus 로고
    • High-resolution replication profiles define the stochastic nature of genome replication initiation and termination
    • Hawkins M, Retkute R, Muller CA, Saner N, et al. 2013. High-resolution replication profiles define the stochastic nature of genome replication initiation and termination. Cell Rep 5: 1132-41.
    • (2013) Cell Rep , vol.5 , pp. 1132-1141
    • Hawkins, M.1    Retkute, R.2    Muller, C.A.3    Saner, N.4
  • 29
    • 84897139457 scopus 로고    scopus 로고
    • Every cell is special: genome-wide studies add a new dimension to single-cell biology
    • Junker JP, van Oudenaarden A. 2014. Every cell is special: genome-wide studies add a new dimension to single-cell biology. Cell 157: 8-11.
    • (2014) Cell , vol.157 , pp. 8-11
    • Junker, J.P.1    van Oudenaarden, A.2
  • 30
    • 84896739948 scopus 로고    scopus 로고
    • Single cell genomics: advances and future perspectives
    • Macaulay IC, Voet T. 2014. Single cell genomics: advances and future perspectives. PLoS Genet 10: e1004126.
    • (2014) PLoS Genet , vol.10 , pp. e1004126
    • Macaulay, I.C.1    Voet, T.2
  • 31
    • 84876056588 scopus 로고    scopus 로고
    • Genome-wide copy number profiling of single cells in S-phase reveals DNA-replication domains
    • Van der Aa N, Cheng J, Mateiu L, Esteki MZ, et al. 2013. Genome-wide copy number profiling of single cells in S-phase reveals DNA-replication domains. Nucleic Acids Res 41: e66.
    • (2013) Nucleic Acids Res , vol.41 , pp. e66
    • Van der Aa, N.1    Cheng, J.2    Mateiu, L.3    Esteki, M.Z.4
  • 32
    • 0034725550 scopus 로고    scopus 로고
    • Replication fork density increases during DNA synthesis in X. laevis egg extracts
    • Herrick J, Stanislawski P, Hyrien O, Bensimon A. 2000. Replication fork density increases during DNA synthesis in X. laevis egg extracts. J Mol Biol 300: 1133-42.
    • (2000) J Mol Biol , vol.300 , pp. 1133-1142
    • Herrick, J.1    Stanislawski, P.2    Hyrien, O.3    Bensimon, A.4
  • 33
    • 30044438457 scopus 로고    scopus 로고
    • DNA replication origins fire stochastically in fission yeast
    • Patel PK, Arcangioli B, Baker SP, Bensimon A, et al. 2006. DNA replication origins fire stochastically in fission yeast. Mol Biol Cell 17: 308-16.
    • (2006) Mol Biol Cell , vol.17 , pp. 308-316
    • Patel, P.K.1    Arcangioli, B.2    Baker, S.P.3    Bensimon, A.4
  • 34
    • 84855272663 scopus 로고    scopus 로고
    • Evidence for sequential and increasing activation of replication origins along replication timing gradients in the human genome
    • Guilbaud G, Rappailles A, Baker A, Chen CL, et al. 2011. Evidence for sequential and increasing activation of replication origins along replication timing gradients in the human genome. PLoS Comput Biol 7: e1002322.
    • (2011) PLoS Comput Biol , vol.7 , pp. e1002322
    • Guilbaud, G.1    Rappailles, A.2    Baker, A.3    Chen, C.L.4
  • 35
    • 33751520767 scopus 로고    scopus 로고
    • DNA replication timing: random thoughts about origin firing
    • Rhind N. 2006. DNA replication timing: random thoughts about origin firing. Nat Cell Biol 8: 1313-6.
    • (2006) Nat Cell Biol , vol.8 , pp. 1313-1316
    • Rhind, N.1
  • 36
    • 67651241789 scopus 로고    scopus 로고
    • Universal temporal profile of replication origin activation in eukaryotes
    • Goldar A, Marsolier-Kergoat MC, Hyrien O. 2009. Universal temporal profile of replication origin activation in eukaryotes. PLoS One 4: e5899.
    • (2009) PLoS One , vol.4 , pp. e5899
    • Goldar, A.1    Marsolier-Kergoat, M.C.2    Hyrien, O.3
  • 37
    • 51449101224 scopus 로고    scopus 로고
    • A dynamic stochastic model for DNA replication initiation in early embryos
    • Goldar A, Labit H, Marheineke K, Hyrien O. 2008. A dynamic stochastic model for DNA replication initiation in early embryos. PLoS One 3: e2919.
    • (2008) PLoS One , vol.3 , pp. e2919
    • Goldar, A.1    Labit, H.2    Marheineke, K.3    Hyrien, O.4
  • 38
    • 65549146426 scopus 로고    scopus 로고
    • Control of DNA replication by anomalous reaction-diffusion kinetics
    • Gauthier MG, Bechhoefer J. 2009. Control of DNA replication by anomalous reaction-diffusion kinetics. Phys Rev Lett 102: 158104.
    • (2009) Phys Rev Lett , vol.102 , pp. 158104
    • Gauthier, M.G.1    Bechhoefer, J.2
  • 39
    • 80054948832 scopus 로고    scopus 로고
    • Genetic variation and DNA replication timing, or why is there late replicating DNA
    • Herrick J. 2011. Genetic variation and DNA replication timing, or why is there late replicating DNA? Evolution 65: 3031-47.
    • (2011) Evolution , vol.65 , pp. 3031-3047
    • Herrick, J.1
  • 40
    • 31544481848 scopus 로고    scopus 로고
    • The element(s) at the nontranscribed Xist locus of the active X chromosome controls chromosomal replication timing in the mouse
    • Diaz-Perez S, Ouyang Y, Perez V, Cisneros R, et al. 2005. The element(s) at the nontranscribed Xist locus of the active X chromosome controls chromosomal replication timing in the mouse. Genetics 171: 663-72.
    • (2005) Genetics , vol.171 , pp. 663-672
    • Diaz-Perez, S.1    Ouyang, Y.2    Perez, V.3    Cisneros, R.4
  • 41
    • 33751310350 scopus 로고    scopus 로고
    • A deletion at the mouse Xist gene exposes trans-effects that alter the heterochromatin of the inactive X chromosome and the replication time and DNA stability of both X chromosomes
    • Diaz-Perez SV, Ferguson DO, Wang C, Csankovszki G, et al. 2006. A deletion at the mouse Xist gene exposes trans-effects that alter the heterochromatin of the inactive X chromosome and the replication time and DNA stability of both X chromosomes. Genetics 174: 1115-33.
    • (2006) Genetics , vol.174 , pp. 1115-1133
    • Diaz-Perez, S.V.1    Ferguson, D.O.2    Wang, C.3    Csankovszki, G.4
  • 42
    • 79957509696 scopus 로고    scopus 로고
    • An autosomal locus that controls chromosome-wide replication timing and mono-allelic expression
    • Stoffregen EP, Donley N, Stauffer D, Smith L, et al. 2011. An autosomal locus that controls chromosome-wide replication timing and mono-allelic expression. Hum Mol Genet 20: 2366-78.
    • (2011) Hum Mol Genet , vol.20 , pp. 2366-2378
    • Stoffregen, E.P.1    Donley, N.2    Stauffer, D.3    Smith, L.4
  • 43
    • 84876818673 scopus 로고    scopus 로고
    • Asynchronous replication, mono-allelic expression, and long range cis effects of ASAR6
    • Donley N, Stoffregen EP, Smith L, Montagna C, et al. 2013. Asynchronous replication, mono-allelic expression, and long range cis effects of ASAR6. PLoS Genet 9: e100342.
    • (2013) PLoS Genet , vol.9 , pp. e100342
    • Donley, N.1    Stoffregen, E.P.2    Smith, L.3    Montagna, C.4
  • 44
    • 84882919775 scopus 로고    scopus 로고
    • Titration of four replication factors is essential for the Xenopus laevis midblastula transition
    • Collart C, Allen GE, Bradshaw CR, Smith JC, et al. 2013. Titration of four replication factors is essential for the Xenopus laevis midblastula transition. Science 341: 893-6.
    • (2013) Science , vol.341 , pp. 893-896
    • Collart, C.1    Allen, G.E.2    Bradshaw, C.R.3    Smith, J.C.4
  • 45
    • 82455164158 scopus 로고    scopus 로고
    • Limiting replication initiation factors execute the temporal programme of origin firing in budding yeast
    • Mantiero D, Mackenzie A, Donaldson A, Zegerman P. 2011. Limiting replication initiation factors execute the temporal programme of origin firing in budding yeast. EMBO J 30: 4805-14.
    • (2011) EMBO J , vol.30 , pp. 4805-4814
    • Mantiero, D.1    Mackenzie, A.2    Donaldson, A.3    Zegerman, P.4
  • 46
    • 84155171119 scopus 로고    scopus 로고
    • Origin association of Sld3, Sld7, and Cdc45 proteins is a key step for determination of origin-firing timing
    • Tanaka S, Nakato R, Katou Y, Shirahige K, et al. 2011. Origin association of Sld3, Sld7, and Cdc45 proteins is a key step for determination of origin-firing timing. Curr Biol 21: 2055-63.
    • (2011) Curr Biol , vol.21 , pp. 2055-2063
    • Tanaka, S.1    Nakato, R.2    Katou, Y.3    Shirahige, K.4
  • 47
    • 84900028067 scopus 로고    scopus 로고
    • A new light on DNA replication from the inactive X chromosome
    • Aladjem MI, Fu H. 2014. A new light on DNA replication from the inactive X chromosome. BioEssays 36: 591-7.
    • (2014) BioEssays , vol.36 , pp. 591-597
    • Aladjem, M.I.1    Fu, H.2
  • 48
    • 61849177618 scopus 로고    scopus 로고
    • Chromatin state marks cell-type- and gender-specific replication of the Drosophila genome
    • Schwaiger M, Stadler MB, Bell O, Kohler H, et al. 2009. Chromatin state marks cell-type- and gender-specific replication of the Drosophila genome. Genes Dev 23: 589-601.
    • (2009) Genes Dev , vol.23 , pp. 589-601
    • Schwaiger, M.1    Stadler, M.B.2    Bell, O.3    Kohler, H.4
  • 49
    • 65449142884 scopus 로고    scopus 로고
    • Replication timing and transcriptional control: beyond cause and effect-part II
    • Hiratani I, Takebayashi S, Lu J, Gilbert DM. 2009. Replication timing and transcriptional control: beyond cause and effect-part II. Curr Opin Genet Dev 19: 142-9.
    • (2009) Curr Opin Genet Dev , vol.19 , pp. 142-149
    • Hiratani, I.1    Takebayashi, S.2    Lu, J.3    Gilbert, D.M.4
  • 50
    • 0038505671 scopus 로고    scopus 로고
    • Epigenomic replication: linking epigenetics to DNA replication
    • McNairn AJ, Gilbert DM. 2003. Epigenomic replication: linking epigenetics to DNA replication. BioEssays 25: 647-56.
    • (2003) BioEssays , vol.25 , pp. 647-656
    • McNairn, A.J.1    Gilbert, D.M.2
  • 51
    • 22944489197 scopus 로고    scopus 로고
    • Silence of the genes-mechanisms of long-term repression
    • Lande-Diner L, Cedar H. 2005. Silence of the genes-mechanisms of long-term repression. Nat Rev Genet 6: 648-54.
    • (2005) Nat Rev Genet , vol.6 , pp. 648-654
    • Lande-Diner, L.1    Cedar, H.2
  • 52
    • 65449178609 scopus 로고    scopus 로고
    • Replication timing as an epigenetic mark
    • Hiratani I, Gilbert DM. 2009. Replication timing as an epigenetic mark. Epigenetics 4: 93-7.
    • (2009) Epigenetics , vol.4 , pp. 93-97
    • Hiratani, I.1    Gilbert, D.M.2
  • 53
    • 62549158168 scopus 로고    scopus 로고
    • Replication timing and epigenetic reprogramming of gene expression: a two-way relationship
    • Gondor A, Ohlsson R. 2009. Replication timing and epigenetic reprogramming of gene expression: a two-way relationship? Nat Rev Genet 10: 269-76.
    • (2009) Nat Rev Genet , vol.10 , pp. 269-276
    • Gondor, A.1    Ohlsson, R.2
  • 54
    • 77954817543 scopus 로고    scopus 로고
    • Chromatin as a potential carrier of heritable information
    • Kaufman PD, Rando OJ. 2010. Chromatin as a potential carrier of heritable information. Curr Opin Cell Biol 22: 284-90.
    • (2010) Curr Opin Cell Biol , vol.22 , pp. 284-290
    • Kaufman, P.D.1    Rando, O.J.2
  • 55
    • 84877809420 scopus 로고    scopus 로고
    • Chromatin dynamics at the replication fork: there's more to life than histones
    • Whitehouse I, Smith DJ. 2013. Chromatin dynamics at the replication fork: there's more to life than histones. Curr Opin Genet Dev 23: 140-6.
    • (2013) Curr Opin Genet Dev , vol.23 , pp. 140-146
    • Whitehouse, I.1    Smith, D.J.2
  • 56
    • 0037078986 scopus 로고    scopus 로고
    • Establishment of transcriptional competence in early and late S phase
    • Zhang J, Xu F, Hashimshony T, Keshet I, et al. 2002. Establishment of transcriptional competence in early and late S phase. Nature 420: 198-202.
    • (2002) Nature , vol.420 , pp. 198-202
    • Zhang, J.1    Xu, F.2    Hashimshony, T.3    Keshet, I.4
  • 57
    • 0033945861 scopus 로고    scopus 로고
    • DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci
    • Rountree MR, Bachman KE, Baylin SB. 2000. DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nat Genet 25: 269-77.
    • (2000) Nat Genet , vol.25 , pp. 269-277
    • Rountree, M.R.1    Bachman, K.E.2    Baylin, S.B.3
  • 59
    • 84880507665 scopus 로고    scopus 로고
    • Mutational heterogeneity in cancer and the search for new cancer-associated genes
    • Lawrence MS, Stojanov P, Polak P, Kryukov GV, et al. 2013. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499: 214-8.
    • (2013) Nature , vol.499 , pp. 214-218
    • Lawrence, M.S.1    Stojanov, P.2    Polak, P.3    Kryukov, G.V.4
  • 60
    • 77951539351 scopus 로고    scopus 로고
    • Timing of replication is a determinant of neutral substitution rates but does not explain slow Y chromosome evolution in rodents
    • Pink CJ, Hurst LD. 2010. Timing of replication is a determinant of neutral substitution rates but does not explain slow Y chromosome evolution in rodents. Mol Biol Evol 27: 1077-86.
    • (2010) Mol Biol Evol , vol.27 , pp. 1077-1086
    • Pink, C.J.1    Hurst, L.D.2
  • 61
    • 79960899810 scopus 로고    scopus 로고
    • Analyses of X-linked and autosomal genetic variation in population-scale whole genome sequencing
    • Gottipati S, Arbiza L, Siepel A, Clark AG, et al. 2011. Analyses of X-linked and autosomal genetic variation in population-scale whole genome sequencing. Nat Genet 43: 741-3.
    • (2011) Nat Genet , vol.43 , pp. 741-743
    • Gottipati, S.1    Arbiza, L.2    Siepel, A.3    Clark, A.G.4
  • 62
    • 84886784734 scopus 로고    scopus 로고
    • Hypermutation of the inactive X chromosome is a frequent event in cancer
    • Jager N, Schlesner M, Jones DT, Raffel S, et al. 2013. Hypermutation of the inactive X chromosome is a frequent event in cancer. Cell 155: 567-81.
    • (2013) Cell , vol.155 , pp. 567-581
    • Jager, N.1    Schlesner, M.2    Jones, D.T.3    Raffel, S.4
  • 63
    • 0037423223 scopus 로고    scopus 로고
    • Survival of DNA damage in yeast directly depends on increased dNTP levels allowed by relaxed feedback inhibition of ribonucleotide reductase
    • Chabes A, Georgieva B, Domkin V, Zhao X, et al. 2003. Survival of DNA damage in yeast directly depends on increased dNTP levels allowed by relaxed feedback inhibition of ribonucleotide reductase. Cell 112: 391-401.
    • (2003) Cell , vol.112 , pp. 391-401
    • Chabes, A.1    Georgieva, B.2    Domkin, V.3    Zhao, X.4
  • 64
    • 84857047373 scopus 로고    scopus 로고
    • Endogenous DNA replication stress results in expansion of dNTP pools and a mutator phenotype
    • Davidson MB, Katou Y, Keszthelyi A, Sing TL, et al. 2012. Endogenous DNA replication stress results in expansion of dNTP pools and a mutator phenotype. EMBO J 31: 895-907.
    • (2012) EMBO J , vol.31 , pp. 895-907
    • Davidson, M.B.1    Katou, Y.2    Keszthelyi, A.3    Sing, T.L.4
  • 65
    • 79959725029 scopus 로고    scopus 로고
    • Variation in genome-wide mutation rates within and between human families
    • Conrad DF, Keebler JE, DePristo MA, Lindsay SJ, et al. 2011. Variation in genome-wide mutation rates within and between human families. Nat Genet 43: 712-4.
    • (2011) Nat Genet , vol.43 , pp. 712-714
    • Conrad, D.F.1    Keebler, J.E.2    DePristo, M.A.3    Lindsay, S.J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.