메뉴 건너뛰기




Volumn 10, Issue 4, 2009, Pages 269-276

Replication timing and epigenetic reprogramming of gene expression: A two-way relationship?

Author keywords

[No Author keywords available]

Indexed keywords

CHROMATIN; EPIGENETICS; GENE EXPRESSION; GENE REPLICATION; GENETIC ORGANIZATION; GENOME; PRIORITY JOURNAL; REVIEW;

EID: 62549158168     PISSN: 14710056     EISSN: 14710064     Source Type: Journal    
DOI: 10.1038/nrg2555     Document Type: Review
Times cited : (63)

References (72)
  • 1
    • 34447565003 scopus 로고    scopus 로고
    • Replication in context: Dynamic regulation of DNA replication patterns in metazoans
    • Aladjem, M. I. Replication in context: dynamic regulation of DNA replication patterns in metazoans. Nature Rev. Genet. 8, 588-600 (2007).
    • (2007) Nature Rev. Genet , vol.8 , pp. 588-600
    • Aladjem, M.I.1
  • 2
    • 0036899341 scopus 로고    scopus 로고
    • An ACF1-ISWI chromatin-remodeling complex is required for DNA replication through heterochromatin
    • Collins, N. et al. An ACF1-ISWI chromatin-remodeling complex is required for DNA replication through heterochromatin. Nature Genet. 32, 627-632 (2002).
    • (2002) Nature Genet , vol.32 , pp. 627-632
    • Collins, N.1
  • 3
    • 33847076248 scopus 로고    scopus 로고
    • Chromatin challenges during DNA replication and repair
    • Groth, A., Rocha, W., Verreault, A. & Almouzni, G. Chromatin challenges during DNA replication and repair. Cell 128, 721-733 (2007).
    • (2007) Cell , vol.128 , pp. 721-733
    • Groth, A.1    Rocha, W.2    Verreault, A.3    Almouzni, G.4
  • 4
    • 34548396264 scopus 로고    scopus 로고
    • Human gene organization driven by the coordination of replication and transcription
    • Huvet, M. et al. Human gene organization driven by the coordination of replication and transcription. Genome Res. 17, 1278-1285 (2007).
    • (2007) Genome Res , vol.17 , pp. 1278-1285
    • Huvet, M.1
  • 5
    • 0033860658 scopus 로고    scopus 로고
    • Why is there late replication?
    • Wintersberger, E. Why is there late replication? Chromosoma 109, 300-307 (2000).
    • (2000) Chromosoma , vol.109 , pp. 300-307
    • Wintersberger, E.1
  • 6
    • 53549118586 scopus 로고    scopus 로고
    • Global organization of replication time zones of the mouse genome
    • Farkash-Amar, S. et al. Global organization of replication time zones of the mouse genome. Genome Res. 18, 1562-1570 (2008).
    • (2008) Genome Res , vol.18 , pp. 1562-1570
    • Farkash-Amar, S.1
  • 7
    • 54949085778 scopus 로고    scopus 로고
    • Global reorganization of replication domains during embryonic stem cell differentiation
    • Hiratani, I. et al. Global reorganization of replication domains during embryonic stem cell differentiation. PLoS Biol. 6, e245 (2008).
    • (2008) PLoS Biol , vol.6
    • Hiratani, I.1
  • 8
    • 0038505671 scopus 로고    scopus 로고
    • Epigenomic replication: Linking epigenetics to DNA replication
    • McNairn, A. J. & Gilbert, D. M. Epigenomic replication: linking epigenetics to DNA replication. Bioessays 25, 647-656 (2003).
    • (2003) Bioessays , vol.25 , pp. 647-656
    • McNairn, A.J.1    Gilbert, D.M.2
  • 9
    • 45449089640 scopus 로고    scopus 로고
    • Choreography of Ig allelic exclusion
    • Cedar, H. & Bergman, Y. Choreography of Ig allelic exclusion. Curr. Opin. Immunol. 20, 308-317 (2008).
    • (2008) Curr. Opin. Immunol , vol.20 , pp. 308-317
    • Cedar, H.1    Bergman, Y.2
  • 11
    • 0037338544 scopus 로고    scopus 로고
    • The nucleotides responsible for the direct physical contact between the chromatin insulator protein CTCF and the H19 imprinting control region manifest parent of origin-specific long-distance insulation and methylation-free domains
    • Pant, V. et al. The nucleotides responsible for the direct physical contact between the chromatin insulator protein CTCF and the H19 imprinting control region manifest parent of origin-specific long-distance insulation and methylation-free domains. Genes Dev. 17, 586-590 (2003).
    • (2003) Genes Dev , vol.17 , pp. 586-590
    • Pant, V.1
  • 12
    • 33847791924 scopus 로고    scopus 로고
    • CTCF regulates asynchronous replication of the imprinted H19/Igf2 domain
    • Bergstrom, R., Whitehead, J., Kurukuti, S. & Ohlsson, R. CTCF regulates asynchronous replication of the imprinted H19/Igf2 domain. Cell Cycle 6, 450-454 (2007).
    • (2007) Cell Cycle , vol.6 , pp. 450-454
    • Bergstrom, R.1    Whitehead, J.2    Kurukuti, S.3    Ohlsson, R.4
  • 13
    • 0030802395 scopus 로고    scopus 로고
    • A 5′ 2-kilobase-pair region of the imprinted mouse H19 gene exhibits exclusive paternal methylation throughout development
    • Tremblay, K. D., Duran, K. L. & Bartolomei, M. S. A 5′ 2-kilobase-pair region of the imprinted mouse H19 gene exhibits exclusive paternal methylation throughout development. Mol. Cell Biol. 17, 4322-4329 (1997).
    • (1997) Mol. Cell Biol , vol.17 , pp. 4322-4329
    • Tremblay, K.D.1    Duran, K.L.2    Bartolomei, M.S.3
  • 14
    • 0034644120 scopus 로고    scopus 로고
    • Functional association of CTCF with the insulator upstream of the H19 gene is parent of origin-specific and methylation-sensitive
    • Kanduri, C. et al. Functional association of CTCF with the insulator upstream of the H19 gene is parent of origin-specific and methylation-sensitive. Curr. Biol. 10, 853-856 (2000).
    • (2000) Curr. Biol , vol.10 , pp. 853-856
    • Kanduri, C.1
  • 15
    • 0033369515 scopus 로고    scopus 로고
    • The spatial position and replication timing of chromosomal domains are both established in early G1 phase
    • Dimitrova, D. S. & Gilbert, D. M. The spatial position and replication timing of chromosomal domains are both established in early G1 phase. Mol. Cell 4, 983-993 (1999).
    • (1999) Mol. Cell , vol.4 , pp. 983-993
    • Dimitrova, D.S.1    Gilbert, D.M.2
  • 16
    • 0036863542 scopus 로고    scopus 로고
    • Histone acetylation regulates the time of replication origin firing
    • Vogelauer, M., Rubbi, L., Lucas, I., Brewer, B. J. & Grunstein, M. Histone acetylation regulates the time of replication origin firing. Mol. Cell 10, 1223-1233 (2002).
    • (2002) Mol. Cell , vol.10 , pp. 1223-1233
    • Vogelauer, M.1    Rubbi, L.2    Lucas, I.3    Brewer, B.J.4    Grunstein, M.5
  • 17
    • 0027744166 scopus 로고
    • Yeast origin recognition complex functions in transcription silencing and DNA replication
    • Bell, S. P., Kobayashi, R. & Stillman, B. Yeast origin recognition complex functions in transcription silencing and DNA replication. Science 262, 1844-1849 (1993).
    • (1993) Science , vol.262 , pp. 1844-1849
    • Bell, S.P.1    Kobayashi, R.2    Stillman, B.3
  • 18
    • 33646501007 scopus 로고    scopus 로고
    • Regulating the licensing of DNA replication origins in metazoa
    • DePamphilis, M. L. et al. Regulating the licensing of DNA replication origins in metazoa. Curr. Opin. Cell Biol. 18, 231-239 (2006).
    • (2006) Curr. Opin. Cell Biol , vol.18 , pp. 231-239
    • DePamphilis, M.L.1
  • 19
    • 34250209471 scopus 로고    scopus 로고
    • The many faces of the origin recognition complex
    • Sasaki, T. & Gilbert, D. M. The many faces of the origin recognition complex. Curr. Opin. Cell Biol. 19, 337-343 (2007).
    • (2007) Curr. Opin. Cell Biol , vol.19 , pp. 337-343
    • Sasaki, T.1    Gilbert, D.M.2
  • 20
    • 0038512143 scopus 로고    scopus 로고
    • The 'ORC cycle': A novel pathway for regulating eukaryotic DNA replication
    • DePamphilis, M. L. The 'ORC cycle': a novel pathway for regulating eukaryotic DNA replication. Gene 310, 1-15 (2003).
    • (2003) Gene , vol.310 , pp. 1-15
    • DePamphilis, M.L.1
  • 21
    • 57349149434 scopus 로고    scopus 로고
    • Genome-wide studies highlight indirect links between human replication origins and gene regulation
    • Cadoret, J. C. et al. Genome-wide studies highlight indirect links between human replication origins and gene regulation. Proc. Natl Acad. Sci. USA 105, 15837-15842 (2008).
    • (2008) Proc. Natl Acad. Sci. USA , vol.105 , pp. 15837-15842
    • Cadoret, J.C.1
  • 22
    • 36749061857 scopus 로고    scopus 로고
    • Site-specific interaction of the murine pre-replicative complex with origin DNA: Assembly and disassembly during cell cycle transit and differentiation
    • Zellner, E., Herrmann, T., Schulz, C. & Grummt, F. Site-specific interaction of the murine pre-replicative complex with origin DNA: assembly and disassembly during cell cycle transit and differentiation. Nucleic Acids Res. 35, 6701-6713 (2007).
    • (2007) Nucleic Acids Res , vol.35 , pp. 6701-6713
    • Zellner, E.1    Herrmann, T.2    Schulz, C.3    Grummt, F.4
  • 23
    • 33751054292 scopus 로고    scopus 로고
    • Eukaryotic DNA replication in a chromatin context
    • Tabancay, A. P. Jr & Forsburg, S. L. Eukaryotic DNA replication in a chromatin context. Curr. Top. Dev. Biol. 76, 129-184 (2006).
    • (2006) Curr. Top. Dev. Biol , vol.76 , pp. 129-184
    • Tabancay Jr, A.P.1    Forsburg, S.L.2
  • 24
    • 4143082817 scopus 로고    scopus 로고
    • Specification of a DNA replication origin by a transcription complex
    • Danis, E. et al. Specification of a DNA replication origin by a transcription complex. Nature Cell Biol. 6, 721-730 (2004).
    • (2004) Nature Cell Biol , vol.6 , pp. 721-730
    • Danis, E.1
  • 25
    • 57749121605 scopus 로고    scopus 로고
    • Kan, J. et al. ORC mediates histone 3 lysine 4 methylation through cooperation with SPP1 in Saccharomyces cerevisiae. J. Biol. Chem. 9 Oct 2008 (doi:10.1074/jbc.C800182200).
    • Kan, J. et al. ORC mediates histone 3 lysine 4 methylation through cooperation with SPP1 in Saccharomyces cerevisiae. J. Biol. Chem. 9 Oct 2008 (doi:10.1074/jbc.C800182200).
  • 26
    • 53549122748 scopus 로고    scopus 로고
    • HBO1 histone acetylase is a coactivator of the replication licensing factor Cdt1
    • Miotto, B. & Struhl, K. HBO1 histone acetylase is a coactivator of the replication licensing factor Cdt1. Genes Dev. 22, 2633-2638 (2008).
    • (2008) Genes Dev , vol.22 , pp. 2633-2638
    • Miotto, B.1    Struhl, K.2
  • 27
    • 44149084708 scopus 로고    scopus 로고
    • DNA replication timing of the human β-globin domain is controlled by histone modification at the origin
    • Goren, A., Tabib, A., Hecht, M. & Cedar, H. DNA replication timing of the human β-globin domain is controlled by histone modification at the origin. Genes Dev. 22, 1319-1324 (2008).
    • (2008) Genes Dev , vol.22 , pp. 1319-1324
    • Goren, A.1    Tabib, A.2    Hecht, M.3    Cedar, H.4
  • 28
    • 17844371104 scopus 로고    scopus 로고
    • Cell cycle regulation of chromatin at an origin of DNA replication
    • Zhou, J. et al. Cell cycle regulation of chromatin at an origin of DNA replication. EMBO J. 24, 1406-1417 (2005).
    • (2005) EMBO J , vol.24 , pp. 1406-1417
    • Zhou, J.1
  • 30
    • 20244389575 scopus 로고    scopus 로고
    • A dynamic switch in the replication timing of key regulator genes in embryonic stem cells upon neural induction
    • Perry, P. et al. A dynamic switch in the replication timing of key regulator genes in embryonic stem cells upon neural induction. Cell Cycle 3, 1645-1650 (2004).
    • (2004) Cell Cycle , vol.3 , pp. 1645-1650
    • Perry, P.1
  • 31
    • 0037078986 scopus 로고    scopus 로고
    • Establishment of transcriptional competence in early and late S phase
    • Zhang, J., Xu, F., Hashimshony, T., Keshet, I. & Cedar, H. Establishment of transcriptional competence in early and late S phase. Nature 420, 198-202 (2002).
    • (2002) Nature , vol.420 , pp. 198-202
    • Zhang, J.1    Xu, F.2    Hashimshony, T.3    Keshet, I.4    Cedar, H.5
  • 32
    • 0034626734 scopus 로고    scopus 로고
    • PCNA connects DNA replication to epigenetic inheritance in yeast
    • Zhang, Z., Shibahara, K. & Stillman, B. PCNA connects DNA replication to epigenetic inheritance in yeast. Nature 408, 221-225 (2000).
    • (2000) Nature , vol.408 , pp. 221-225
    • Zhang, Z.1    Shibahara, K.2    Stillman, B.3
  • 33
    • 34249066085 scopus 로고    scopus 로고
    • PCNA, the maestro of the replication fork
    • Moldovan, G. L., Pfander, B. & Jentsch, S. PCNA, the maestro of the replication fork. Cell 129, 665-679 (2007).
    • (2007) Cell , vol.129 , pp. 665-679
    • Moldovan, G.L.1    Pfander, B.2    Jentsch, S.3
  • 34
    • 0033945861 scopus 로고    scopus 로고
    • DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci
    • Rountree, M. R., Bachman, K. E. & Baylin, S. B. DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nature Genet. 25, 269-277 (2000).
    • (2000) Nature Genet , vol.25 , pp. 269-277
    • Rountree, M.R.1    Bachman, K.E.2    Baylin, S.B.3
  • 35
    • 33751209468 scopus 로고    scopus 로고
    • Direct interaction between DNMT1 and G9a coordinates DNA and histone methylation during replication
    • Esteve, P. O. et al. Direct interaction between DNMT1 and G9a coordinates DNA and histone methylation during replication. Genes Dev. 20, 3089-3103 (2006).
    • (2006) Genes Dev , vol.20 , pp. 3089-3103
    • Esteve, P.O.1
  • 36
    • 19644381697 scopus 로고    scopus 로고
    • Differential subnuclear localization and replication timing of histone H3 lysine 9 methylation states
    • Wu, R., Terry, A. V., Singh, P. B. & Gilbert, D. M. Differential subnuclear localization and replication timing of histone H3 lysine 9 methylation states. Mol. Biol. Cell 16, 2872-2881 (2005).
    • (2005) Mol. Biol. Cell , vol.16 , pp. 2872-2881
    • Wu, R.1    Terry, A.V.2    Singh, P.B.3    Gilbert, D.M.4
  • 37
    • 39749176602 scopus 로고    scopus 로고
    • The impact of chromatin modifiers on the timing of locus replication in mouse embryonic stem cells
    • Jorgensen, H. F. et al. The impact of chromatin modifiers on the timing of locus replication in mouse embryonic stem cells. Genome Biol. 8, R169 (2007).
    • (2007) Genome Biol , vol.8
    • Jorgensen, H.F.1
  • 38
    • 34248218111 scopus 로고    scopus 로고
    • Radial chromatin positioning is shaped by local gene density, not by gene expression
    • Kupper, K. et al. Radial chromatin positioning is shaped by local gene density, not by gene expression. Chromosoma 116, 285-306 (2007).
    • (2007) Chromosoma , vol.116 , pp. 285-306
    • Kupper, K.1
  • 39
    • 35548975211 scopus 로고    scopus 로고
    • Functional organisation of the genome during interphase
    • Pombo, A. & Branco, M. R. Functional organisation of the genome during interphase. Curr. Opin. Genet. Dev. 17, 451-455 (2007).
    • (2007) Curr. Opin. Genet. Dev , vol.17 , pp. 451-455
    • Pombo, A.1    Branco, M.R.2
  • 40
    • 0034750744 scopus 로고    scopus 로고
    • Non-random radial higher-order chromatin arrangements in nuclei of diploid human cells
    • Cremer, M. et al. Non-random radial higher-order chromatin arrangements in nuclei of diploid human cells. Chromosome Res. 9, 541-567 (2001).
    • (2001) Chromosome Res , vol.9 , pp. 541-567
    • Cremer, M.1
  • 41
    • 34547814092 scopus 로고    scopus 로고
    • Replication fork velocities at adjacent replication origins are coordinately modified during DNA replication in human cells
    • Conti, C. et al. Replication fork velocities at adjacent replication origins are coordinately modified during DNA replication in human cells. Mol. Biol. Cell 18, 3059-3067 (2007).
    • (2007) Mol. Biol. Cell , vol.18 , pp. 3059-3067
    • Conti, C.1
  • 42
    • 3543041237 scopus 로고    scopus 로고
    • Localization of human Mcm10 is spatially and temporally regulated during the S phase
    • Izumi, M., Yatagai, F. & Hanaoka, F. Localization of human Mcm10 is spatially and temporally regulated during the S phase. J. Biol. Chem. 279, 32569-32577 (2004).
    • (2004) J. Biol. Chem , vol.279 , pp. 32569-32577
    • Izumi, M.1    Yatagai, F.2    Hanaoka, F.3
  • 43
    • 10944252995 scopus 로고    scopus 로고
    • The function of nuclear architecture: A genetic approach
    • Taddei, A., Hediger, F., Neumann, F. R. & Gasser, S. M. The function of nuclear architecture: a genetic approach. Annu. Rev. Genet. 38, 305-345 (2004).
    • (2004) Annu. Rev. Genet , vol.38 , pp. 305-345
    • Taddei, A.1    Hediger, F.2    Neumann, F.R.3    Gasser, S.M.4
  • 44
    • 0033930577 scopus 로고    scopus 로고
    • A new look at the nuclear matrix
    • Hancock, R. A new look at the nuclear matrix. Chromosoma 109, 219-225 (2000).
    • (2000) Chromosoma , vol.109 , pp. 219-225
    • Hancock, R.1
  • 45
    • 52949092763 scopus 로고    scopus 로고
    • Replication fork movement sets chromatin loop size and origin choice in mammalian cells
    • Courbet, S. et al. Replication fork movement sets chromatin loop size and origin choice in mammalian cells. Nature 455, 557-560 (2008).
    • (2008) Nature , vol.455 , pp. 557-560
    • Courbet, S.1
  • 46
    • 28344440877 scopus 로고    scopus 로고
    • Mitotic remodeling of the replicon and chromosome structure
    • Lemaitre, J. M., Danis, E., Pasero, P., Vassetzky, Y. & Mechali, M. Mitotic remodeling of the replicon and chromosome structure. Cell 123, 787-801 (2005).
    • (2005) Cell , vol.123 , pp. 787-801
    • Lemaitre, J.M.1    Danis, E.2    Pasero, P.3    Vassetzky, Y.4    Mechali, M.5
  • 47
    • 0019998194 scopus 로고
    • A relationship between replicon size and supercoiled loop domains in the eukaryotic genome
    • Buongiorno-Nardelli, M., Micheli, G., Carri, M. T. & Marilley, M. A relationship between replicon size and supercoiled loop domains in the eukaryotic genome. Nature 298, 100-102 (1982).
    • (1982) Nature , vol.298 , pp. 100-102
    • Buongiorno-Nardelli, M.1    Micheli, G.2    Carri, M.T.3    Marilley, M.4
  • 48
    • 0041312647 scopus 로고    scopus 로고
    • Vertebrate HoxB gene expression requires DNA replication
    • Fisher, D. & Mechali, M. Vertebrate HoxB gene expression requires DNA replication. EMBO J. 22, 3737-3748 (2003).
    • (2003) EMBO J , vol.22 , pp. 3737-3748
    • Fisher, D.1    Mechali, M.2
  • 49
    • 25844496592 scopus 로고    scopus 로고
    • The role of chromatin structure in regulating the expression of clustered genes
    • Sproul, D., Gilbert, N. & Bickmore, W. A. The role of chromatin structure in regulating the expression of clustered genes. Nature Rev. Genet. 6, 775-781 (2005).
    • (2005) Nature Rev. Genet , vol.6 , pp. 775-781
    • Sproul, D.1    Gilbert, N.2    Bickmore, W.A.3
  • 50
    • 38349107050 scopus 로고    scopus 로고
    • FAD24 acts in concert with histone acetyltransferase HBO1 to promote adipogenesis by controlling DNA replication
    • Johmura, Y., Osada, S., Nishizuka, M. & Imagawa, M. FAD24 acts in concert with histone acetyltransferase HBO1 to promote adipogenesis by controlling DNA replication. J. Biol. Chem. 283, 2265-2274 (2008).
    • (2008) J. Biol. Chem , vol.283 , pp. 2265-2274
    • Johmura, Y.1    Osada, S.2    Nishizuka, M.3    Imagawa, M.4
  • 51
    • 13244277994 scopus 로고    scopus 로고
    • The chromatin remodeling complex NoRC controls replication timing of rRNA genes
    • Li, J., Santoro, R., Koberna, K. & Grummt, I. The chromatin remodeling complex NoRC controls replication timing of rRNA genes. EMBO J. 24, 120-127 (2005).
    • (2005) EMBO J , vol.24 , pp. 120-127
    • Li, J.1    Santoro, R.2    Koberna, K.3    Grummt, I.4
  • 52
    • 0036791653 scopus 로고    scopus 로고
    • Single-molecule analysis reveals clustering and epigenetic regulation of replication origins at the yeast rDNA locus
    • Pasero, P., Bensimon, A. & Schwob, E. Single-molecule analysis reveals clustering and epigenetic regulation of replication origins at the yeast rDNA locus. Genes Dev. 16, 2479-2484 (2002).
    • (2002) Genes Dev , vol.16 , pp. 2479-2484
    • Pasero, P.1    Bensimon, A.2    Schwob, E.3
  • 53
    • 33645825609 scopus 로고    scopus 로고
    • Chk1 requirement for high global rates of replication fork progression during normal vertebrate S phase
    • Petermann, E. et al. Chk1 requirement for high global rates of replication fork progression during normal vertebrate S phase. Mol. Cell Biol. 26, 3319-3326 (2006).
    • (2006) Mol. Cell Biol , vol.26 , pp. 3319-3326
    • Petermann, E.1
  • 54
    • 3242670803 scopus 로고    scopus 로고
    • ATR and ATM regulate the timing of DNA replication origin firing
    • Shechter, D., Costanzo, V. & Gautier, J. ATR and ATM regulate the timing of DNA replication origin firing. Nature Cell Biol. 6, 648-655 (2004).
    • (2004) Nature Cell Biol , vol.6 , pp. 648-655
    • Shechter, D.1    Costanzo, V.2    Gautier, J.3
  • 55
    • 36148977594 scopus 로고    scopus 로고
    • ATP-dependent assembly of the human origin recognition complex
    • Siddiqui, K. & Stillman, B. ATP-dependent assembly of the human origin recognition complex. J. Biol. Chem. 282, 32370-32383 (2007).
    • (2007) J. Biol. Chem , vol.282 , pp. 32370-32383
    • Siddiqui, K.1    Stillman, B.2
  • 56
    • 41649088278 scopus 로고    scopus 로고
    • A topoisomerase II-dependent mechanism for resetting replicons at the S-M-phase transition
    • Cuvier, O., Stanojcic, S., Lemaitre, J. M. & Mechali, M. A topoisomerase II-dependent mechanism for resetting replicons at the S-M-phase transition. Genes Dev. 22, 860-865 (2008).
    • (2008) Genes Dev , vol.22 , pp. 860-865
    • Cuvier, O.1    Stanojcic, S.2    Lemaitre, J.M.3    Mechali, M.4
  • 57
    • 55249092105 scopus 로고    scopus 로고
    • DNA replication timing is deterministic at the level of chromosomal domains but stochastic at the level of replicons in Xenopus egg extracts
    • Labit, H., Perewoska, I., Germe, T., Hyrien, O. & Marheineke, K. DNA replication timing is deterministic at the level of chromosomal domains but stochastic at the level of replicons in Xenopus egg extracts. Nucleic Acids Res. 36, 5623-5634 (2008).
    • (2008) Nucleic Acids Res , vol.36 , pp. 5623-5634
    • Labit, H.1    Perewoska, I.2    Germe, T.3    Hyrien, O.4    Marheineke, K.5
  • 58
    • 34249890186 scopus 로고    scopus 로고
    • Developmental reprogramming after chromosome transfer into mitotic mouse zygotes
    • Egli, D., Rosains, J., Birkhoff, G. & Eggan, K. Developmental reprogramming after chromosome transfer into mitotic mouse zygotes. Nature 447, 679-685 (2007).
    • (2007) Nature , vol.447 , pp. 679-685
    • Egli, D.1    Rosains, J.2    Birkhoff, G.3    Eggan, K.4
  • 59
    • 41449089409 scopus 로고    scopus 로고
    • RNA interference guides histone modification during the S phase of chromosomal replication
    • Kloc, A., Zaratiegui, M., Nora, E. & Martienssen, R. RNA interference guides histone modification during the S phase of chromosomal replication. Curr. Biol. 18, 490-495 (2008).
    • (2008) Curr. Biol , vol.18 , pp. 490-495
    • Kloc, A.1    Zaratiegui, M.2    Nora, E.3    Martienssen, R.4
  • 60
    • 38949208022 scopus 로고    scopus 로고
    • Cell cycle control of centromeric repeat transcription and heterochromatin assembly
    • Chen, E. S. et al. Cell cycle control of centromeric repeat transcription and heterochromatin assembly. Nature 451, 734-737 (2008).
    • (2008) Nature , vol.451 , pp. 734-737
    • Chen, E.S.1
  • 61
    • 34250327950 scopus 로고    scopus 로고
    • Pan-S replication patterns and chromosomal domains defined by genome-tiling arrays of ENCODE genomic areas
    • Karnani, N., Taylor, C., Malhotra, A. & Dutta, A. Pan-S replication patterns and chromosomal domains defined by genome-tiling arrays of ENCODE genomic areas. Genome Res. 17, 865-876 (2007).
    • (2007) Genome Res , vol.17 , pp. 865-876
    • Karnani, N.1    Taylor, C.2    Malhotra, A.3    Dutta, A.4
  • 62
    • 36249017308 scopus 로고    scopus 로고
    • Widespread monoallelic expression on human autosomes
    • Gimelbrant, A., Hutchinson, J. N., Thompson, B. R. & Chess, A. Widespread monoallelic expression on human autosomes. Science 318, 1136-1140 (2007).
    • (2007) Science , vol.318 , pp. 1136-1140
    • Gimelbrant, A.1    Hutchinson, J.N.2    Thompson, B.R.3    Chess, A.4
  • 63
    • 0034665338 scopus 로고    scopus 로고
    • Coordinate regulation of the IL-4, IL-13, and IL-5 cytokine cluster in Th2 clones revealed by allelic expression patterns
    • Kelly, B. L. & Locksley, R. M. Coordinate regulation of the IL-4, IL-13, and IL-5 cytokine cluster in Th2 clones revealed by allelic expression patterns. J. Immunol. 165, 2982-2986 (2000).
    • (2000) J. Immunol , vol.165 , pp. 2982-2986
    • Kelly, B.L.1    Locksley, R.M.2
  • 64
    • 0344490333 scopus 로고    scopus 로고
    • Epigenetic abnormalities associated with a chromosome 18(q21-q22) inversion and a Gilles de la Tourette syndrome phenotype
    • State, M. W. et al. Epigenetic abnormalities associated with a chromosome 18(q21-q22) inversion and a Gilles de la Tourette syndrome phenotype. Proc. Natl Acad. Sci. USA 100, 4684-4689 (2003).
    • (2003) Proc. Natl Acad. Sci. USA , vol.100 , pp. 4684-4689
    • State, M.W.1
  • 65
    • 2942596084 scopus 로고    scopus 로고
    • Altered replication timing of the HIRA/Tuple1 locus in the DiGeorge and Velocardiofacial syndromes
    • D'Antoni, S. et al. Altered replication timing of the HIRA/Tuple1 locus in the DiGeorge and Velocardiofacial syndromes. Gene 333, 111-119 (2004).
    • (2004) Gene , vol.333 , pp. 111-119
    • D'Antoni, S.1
  • 67
    • 33645751058 scopus 로고    scopus 로고
    • Silenced tumor suppressor genes reactivated by DNA demethylation do not return to a fully euchromatic chromatin state
    • McGarvey, K. M. et al. Silenced tumor suppressor genes reactivated by DNA demethylation do not return to a fully euchromatic chromatin state. Cancer Res. 66, 3541-3549 (2006).
    • (2006) Cancer Res , vol.66 , pp. 3541-3549
    • McGarvey, K.M.1
  • 68
    • 0036156599 scopus 로고    scopus 로고
    • Chromosome-wide assessment of replication timing for human chromosomes 11q and 21q: Disease-related genes in timing-switch regions
    • Watanabe, Y. et al. Chromosome-wide assessment of replication timing for human chromosomes 11q and 21q: disease-related genes in timing-switch regions. Hum. Mol. Genet. 11, 13-21 (2002).
    • (2002) Hum. Mol. Genet , vol.11 , pp. 13-21
    • Watanabe, Y.1
  • 69
    • 4744349912 scopus 로고    scopus 로고
    • Amplicons on human chromosome 11q are located in the early/late-switch regions of replication timing
    • Watanabe, Y., Ikemura, T. & Sugimura, H. Amplicons on human chromosome 11q are located in the early/late-switch regions of replication timing. Genomics 84, 796-805 (2004).
    • (2004) Genomics , vol.84 , pp. 796-805
    • Watanabe, Y.1    Ikemura, T.2    Sugimura, H.3
  • 70
    • 40549108563 scopus 로고    scopus 로고
    • Cell cycle regulation of DNA replication
    • Sclafani, R. A. & Holzen, T. M. Cell cycle regulation of DNA replication. Annu. Rev. Genet. 41, 237-280 (2007).
    • (2007) Annu. Rev. Genet , vol.41 , pp. 237-280
    • Sclafani, R.A.1    Holzen, T.M.2
  • 71
    • 0035869074 scopus 로고    scopus 로고
    • Transcription coactivator p300 binds PCNA and may have a role in DNA repair synthesis
    • Hasan, S., Hassa, P. O., Imhof, R. & Hottiger, M. O. Transcription coactivator p300 binds PCNA and may have a role in DNA repair synthesis. Nature 410, 387-391 (2001).
    • (2001) Nature , vol.410 , pp. 387-391
    • Hasan, S.1    Hassa, P.O.2    Imhof, R.3    Hottiger, M.O.4
  • 72
    • 38049075810 scopus 로고    scopus 로고
    • The histone methyltransferase SET8 is required for S-phase progression
    • Jorgensen, S. et al. The histone methyltransferase SET8 is required for S-phase progression. J. Cell Biol. 179, 1337-1345 (2007).
    • (2007) J. Cell Biol , vol.179 , pp. 1337-1345
    • Jorgensen, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.