-
1
-
-
80052424582
-
Space and time in the nucleus: developmental control of replication timing and chromosome architecture
-
Gilbert DM, Takebayashi SI, Ryba T, Lu J, et al. 2010. Space and time in the nucleus: developmental control of replication timing and chromosome architecture. Cold Spring Harb Symp Quant Biol 75: 143-53.
-
(2010)
Cold Spring Harb Symp Quant Biol
, vol.75
, pp. 143-153
-
-
Gilbert, D.M.1
Takebayashi, S.I.2
Ryba, T.3
Lu, J.4
-
2
-
-
80055086494
-
Replication timing: a fingerprint for cell identity and pluripotency
-
Ryba T, Hiratani I, Sasaki T, Battaglia D, et al. 2011. Replication timing: a fingerprint for cell identity and pluripotency. PLoS Comput Biol 7: e1002225.
-
(2011)
PLoS Comput Biol
, vol.7
-
-
Ryba, T.1
Hiratani, I.2
Sasaki, T.3
Battaglia, D.4
-
3
-
-
65449142884
-
Replication timing and transcriptional control: beyond cause and effect - part II
-
Hiratani I, Takebayashi S, Lu J, Gilbert DM. 2009. Replication timing and transcriptional control: beyond cause and effect - part II. Curr Opin Genet Dev 19: 142-9.
-
(2009)
Curr Opin Genet Dev
, vol.19
, pp. 142-149
-
-
Hiratani, I.1
Takebayashi, S.2
Lu, J.3
Gilbert, D.M.4
-
4
-
-
77957369058
-
Comparative analysis of DNA replication timing reveals conserved large-scale chromosomal architecture
-
Yaffe E, Farkash-Amar S, Polten A, Yakhini Z, et al. 2010. Comparative analysis of DNA replication timing reveals conserved large-scale chromosomal architecture. PLoS Genet 6: e1001011.
-
(2010)
PLoS Genet
, vol.6
-
-
Yaffe, E.1
Farkash-Amar, S.2
Polten, A.3
Yakhini, Z.4
-
5
-
-
0344490333
-
Epigenetic abnormalities associated with a chromosome 18(q21-q22) inversion and a Gilles de la Tourette syndrome phenotype
-
State MW, Greally JM, Cuker A, Bowers PN, et al. 2003. Epigenetic abnormalities associated with a chromosome 18(q21-q22) inversion and a Gilles de la Tourette syndrome phenotype. Proc Natl Acad Sci USA 100: 4684-9.
-
(2003)
Proc Natl Acad Sci USA
, vol.100
, pp. 4684-4689
-
-
State, M.W.1
Greally, J.M.2
Cuker, A.3
Bowers, P.N.4
-
6
-
-
2942596084
-
Altered replication timing of the HIRA/Tuple1 locus in the DiGeorge and Velocardiofacial syndromes
-
D'Antoni S, Mattina T, Di Mare P, Federico C, et al. 2004. Altered replication timing of the HIRA/Tuple1 locus in the DiGeorge and Velocardiofacial syndromes. Gene 333: 111-9.
-
(2004)
Gene
, vol.333
, pp. 111-119
-
-
D'Antoni, S.1
Mattina, T.2
Di Mare, P.3
Federico, C.4
-
7
-
-
33947492484
-
Chromosomes with delayed replication timing lead to checkpoint activation, delayed recruitment of Aurora B and chromosome instability
-
Chang BH, Smith L, Huang J, Thayer M. 2007. Chromosomes with delayed replication timing lead to checkpoint activation, delayed recruitment of Aurora B and chromosome instability. Oncogene 26: 1852-61.
-
(2007)
Oncogene
, vol.26
, pp. 1852-1861
-
-
Chang, B.H.1
Smith, L.2
Huang, J.3
Thayer, M.4
-
8
-
-
77956032001
-
Replication timing aberrations and aneuploidy in peripheral blood lymphocytes of breast cancer patients
-
Grinberg-Rashi H, Cytron S, Gelman-Kohan Z, Litmanovitch T, et al. 2010. Replication timing aberrations and aneuploidy in peripheral blood lymphocytes of breast cancer patients. Neoplasia 12: 668-74.
-
(2010)
Neoplasia
, vol.12
, pp. 668-674
-
-
Grinberg-Rashi, H.1
Cytron, S.2
Gelman-Kohan, Z.3
Litmanovitch, T.4
-
9
-
-
0031798761
-
Temporal differences in replication timing of homologous loci in malignant cells derived from CML and lymphoma patients
-
Amiel A, Litmanovitch T, Lishner M, Mor A, et al. 1998. Temporal differences in replication timing of homologous loci in malignant cells derived from CML and lymphoma patients. Genes Chromosomes Cancer 22: 225-31.
-
(1998)
Genes Chromosomes Cancer
, vol.22
, pp. 225-231
-
-
Amiel, A.1
Litmanovitch, T.2
Lishner, M.3
Mor, A.4
-
10
-
-
0036959591
-
Allele-specific replication associated with aneuploidy in blood cells of patients with hematologic malignancies
-
Korenstein-Ilan A, Amiel A, Lalezari S, Lishner M, et al. 2002. Allele-specific replication associated with aneuploidy in blood cells of patients with hematologic malignancies. Cancer Genet Cytogenet 139: 97-103.
-
(2002)
Cancer Genet Cytogenet
, vol.139
, pp. 97-103
-
-
Korenstein-Ilan, A.1
Amiel, A.2
Lalezari, S.3
Lishner, M.4
-
11
-
-
38749087897
-
Asynchronous DNA replication detected by fluorescence in situ hybridisation as a possible indicator of genetic damage in human lymphocytes
-
Bras A, Cotrim CZ, Vasconcelos I, Mexia J, et al. 2008. Asynchronous DNA replication detected by fluorescence in situ hybridisation as a possible indicator of genetic damage in human lymphocytes. Oncol Rep 19: 369-75.
-
(2008)
Oncol Rep
, vol.19
, pp. 369-375
-
-
Bras, A.1
Cotrim, C.Z.2
Vasconcelos, I.3
Mexia, J.4
-
12
-
-
34447565003
-
Replication in context: dynamic regulation of DNA replication patterns in metazoans
-
Aladjem MI. 2007. Replication in context: dynamic regulation of DNA replication patterns in metazoans. Nat Rev Genet 8: 588-600.
-
(2007)
Nat Rev Genet
, vol.8
, pp. 588-600
-
-
Aladjem, M.I.1
-
13
-
-
77957168933
-
Eukaryotic DNA replication origins: many choices for appropriate answers
-
Mechali M. 2010. Eukaryotic DNA replication origins: many choices for appropriate answers. Nat Rev Mol Cell Biol 11: 728-38.
-
(2010)
Nat Rev Mol Cell Biol
, vol.11
, pp. 728-738
-
-
Mechali, M.1
-
14
-
-
33847076248
-
Chromatin challenges during DNA replication and repair
-
Groth A, Rocha W, Verreault A, Almouzni G. 2007. Chromatin challenges during DNA replication and repair. Cell 128: 721-33.
-
(2007)
Cell
, vol.128
, pp. 721-733
-
-
Groth, A.1
Rocha, W.2
Verreault, A.3
Almouzni, G.4
-
15
-
-
79551585897
-
Developmental control of the DNA replication and transcription programs
-
Nordman J, Li S, Eng T, Macalpine D, et al. 2011. Developmental control of the DNA replication and transcription programs. Genome Res 21: 175-81.
-
(2011)
Genome Res
, vol.21
, pp. 175-181
-
-
Nordman, J.1
Li, S.2
Eng, T.3
Macalpine, D.4
-
16
-
-
27944452746
-
Progressive activation of DNA replication initiation in large domains of the immunoglobulin heavy chain locus during B cell development
-
Norio P, Kosiyatrakul S, Yang Q, Guan Z, et al. 2005. Progressive activation of DNA replication initiation in large domains of the immunoglobulin heavy chain locus during B cell development. Mol Cell 20: 575-87.
-
(2005)
Mol Cell
, vol.20
, pp. 575-587
-
-
Norio, P.1
Kosiyatrakul, S.2
Yang, Q.3
Guan, Z.4
-
17
-
-
79551581102
-
Chromatin signatures of the Drosophila replication program
-
Eaton ML, Prinz JA, MacAlpine HK, Tretyakov G, et al. 2011. Chromatin signatures of the Drosophila replication program. Genome Res 21: 164-74.
-
(2011)
Genome Res
, vol.21
, pp. 164-174
-
-
Eaton, M.L.1
Prinz, J.A.2
MacAlpine, H.K.3
Tretyakov, G.4
-
18
-
-
0028829358
-
Transition in specification of embryonic metazoan DNA replication origins
-
Hyrien O, Maric C, Mechali M. 1995. Transition in specification of embryonic metazoan DNA replication origins. Science 270: 994-7.
-
(1995)
Science
, vol.270
, pp. 994-997
-
-
Hyrien, O.1
Maric, C.2
Mechali, M.3
-
19
-
-
20944443528
-
Temporal profile of replication of human chromosomes
-
Jeon Y, Bekiranov S, Karnani N, Kapranov P, et al. 2005. Temporal profile of replication of human chromosomes. Proc Natl Acad Sci USA 102: 6419-24.
-
(2005)
Proc Natl Acad Sci USA
, vol.102
, pp. 6419-6424
-
-
Jeon, Y.1
Bekiranov, S.2
Karnani, N.3
Kapranov, P.4
-
20
-
-
0033613361
-
Asynchronous replication of imprinted genes is established in the gametes and maintained during development
-
Simon I, Tenzen T, Reubinoff BE, Hillman D, et al. 1999. Asynchronous replication of imprinted genes is established in the gametes and maintained during development. Nature 401: 929-32.
-
(1999)
Nature
, vol.401
, pp. 929-932
-
-
Simon, I.1
Tenzen, T.2
Reubinoff, B.E.3
Hillman, D.4
-
21
-
-
0037444227
-
Asynchronous replication timing of imprinted loci is independent of DNA methylation, but consistent with differential subnuclear localization
-
Gribnau J, Hochedlinger K, Hata K, Li E, et al. 2003. Asynchronous replication timing of imprinted loci is independent of DNA methylation, but consistent with differential subnuclear localization. Genes Dev 17: 759-73.
-
(2003)
Genes Dev
, vol.17
, pp. 759-773
-
-
Gribnau, J.1
Hochedlinger, K.2
Hata, K.3
Li, E.4
-
22
-
-
0028937174
-
Domain organization of allele-specific replication within the GABRB3 gene cluster requires a biparental 15q11-13 contribution
-
LaSalle JM, Lalande M. 1995. Domain organization of allele-specific replication within the GABRB3 gene cluster requires a biparental 15q11-13 contribution. Nat Genet 9: 386-94.
-
(1995)
Nat Genet
, vol.9
, pp. 386-394
-
-
LaSalle, J.M.1
Lalande, M.2
-
23
-
-
7144223296
-
Gene action in the X-chromosome of the mouse (Mus musculus L.)
-
Lyon MF. 1961. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190: 372-3.
-
(1961)
Nature
, vol.190
, pp. 372-373
-
-
Lyon, M.F.1
-
24
-
-
79960484375
-
Gene silencing in X-chromosome inactivation: advances in understanding facultative heterochromatin formation
-
Wutz A. 2011. Gene silencing in X-chromosome inactivation: advances in understanding facultative heterochromatin formation. Nat Rev Genet 12: 542-53.
-
(2011)
Nat Rev Genet
, vol.12
, pp. 542-553
-
-
Wutz, A.1
-
25
-
-
84884331196
-
X chromosome inactivation and epigenetic responses to cellular reprogramming
-
Lessing D, Anguera MC, Lee JT. 2013. X chromosome inactivation and epigenetic responses to cellular reprogramming. Annu Rev Genomics Hum Genet 14: 85-110.
-
(2013)
Annu Rev Genomics Hum Genet
, vol.14
, pp. 85-110
-
-
Lessing, D.1
Anguera, M.C.2
Lee, J.T.3
-
26
-
-
0014147821
-
Delayed onset of replication of human X chromosomes
-
Priest JH, Heady JE, Priest RE. 1967. Delayed onset of replication of human X chromosomes. J Cell Biol 35: 483-7.
-
(1967)
J Cell Biol
, vol.35
, pp. 483-487
-
-
Priest, J.H.1
Heady, J.E.2
Priest, R.E.3
-
27
-
-
84877818467
-
Role and control of X chromosome dosage in mammalian development
-
Schulz EG, Heard E. 2013. Role and control of X chromosome dosage in mammalian development. Curr Opin Genet Dev 23: 109-15.
-
(2013)
Curr Opin Genet Dev
, vol.23
, pp. 109-115
-
-
Schulz, E.G.1
Heard, E.2
-
28
-
-
0019957375
-
Patterns of DNA replication of human chromosomes. II. Replication map and replication model
-
Camargo M, Cervenka J. 1982. Patterns of DNA replication of human chromosomes. II. Replication map and replication model. Am J Hum Genet 34: 757-80.
-
(1982)
Am J Hum Genet
, vol.34
, pp. 757-780
-
-
Camargo, M.1
Cervenka, J.2
-
29
-
-
76349123622
-
Sequencing newly replicated DNA reveals widespread plasticity in human replication timing
-
Hansen RS, Thomas S, Sandstrom R, Canfield TK, et al. 2010. Sequencing newly replicated DNA reveals widespread plasticity in human replication timing. Proc Natl Acad Sci USA 107: 139-44.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 139-144
-
-
Hansen, R.S.1
Thomas, S.2
Sandstrom, R.3
Canfield, T.K.4
-
31
-
-
77953632048
-
Eukaryotic chromosome DNA replication: where, when, and how
-
Masai H, Matsumoto S, You Z, Yoshizawa-Sugata N, et al. 2010. Eukaryotic chromosome DNA replication: where, when, and how? Annu Rev Biochem 79: 89-130.
-
(2010)
Annu Rev Biochem
, vol.79
, pp. 89-130
-
-
Masai, H.1
Matsumoto, S.2
You, Z.3
Yoshizawa-Sugata, N.4
-
32
-
-
0029670538
-
A distinct G1 step required to specify the Chinese hamster DHFR replication origin
-
Wu JR, Gilbert DM. 1996. A distinct G1 step required to specify the Chinese hamster DHFR replication origin. Science 271: 1270-2.
-
(1996)
Science
, vol.271
, pp. 1270-1272
-
-
Wu, J.R.1
Gilbert, D.M.2
-
33
-
-
33646576502
-
Mapping of DNA replication origins to noncoding genes of the X-inactivation center
-
Rowntree RK, Lee JT. 2006. Mapping of DNA replication origins to noncoding genes of the X-inactivation center. Mol Cell Biol 26: 3707-17.
-
(2006)
Mol Cell Biol
, vol.26
, pp. 3707-3717
-
-
Rowntree, R.K.1
Lee, J.T.2
-
34
-
-
79952351768
-
Histone acetylation controls the inactive X chromosome replication dynamics
-
Casas-Delucchi CS, Brero A, Rahn HP, Solovei I, et al. 2011. Histone acetylation controls the inactive X chromosome replication dynamics. Nat Commun 2: 222.
-
(2011)
Nat Commun
, vol.2
, pp. 222
-
-
Casas-Delucchi, C.S.1
Brero, A.2
Rahn, H.P.3
Solovei, I.4
-
35
-
-
84891696268
-
Random replication of the inactive X chromosome
-
Koren A, McCarroll SA. 2014. Random replication of the inactive X chromosome. Genome Res 24: 64-9.
-
(2014)
Genome Res
, vol.24
, pp. 64-69
-
-
Koren, A.1
McCarroll, S.A.2
-
36
-
-
0027183088
-
The inactive X chromosome in female mammals is distinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression
-
Jeppesen P, Turner BM. 1993. The inactive X chromosome in female mammals is distinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression. Cell 74: 281-9.
-
(1993)
Cell
, vol.74
, pp. 281-289
-
-
Jeppesen, P.1
Turner, B.M.2
-
37
-
-
70549085855
-
Eukaryotic DNA replication control: lock and load, then fire
-
Remus D, Diffley JF. 2009. Eukaryotic DNA replication control: lock and load, then fire. Curr Opin Cell Biol 21: 771-7.
-
(2009)
Curr Opin Cell Biol
, vol.21
, pp. 771-777
-
-
Remus, D.1
Diffley, J.F.2
-
38
-
-
81055138204
-
Quality control in the initiation of eukaryotic DNA replication
-
Diffley JF. 2011. Quality control in the initiation of eukaryotic DNA replication. Philos Trans R Soc Lond B Biol Sci 366: 3545-53.
-
(2011)
Philos Trans R Soc Lond B Biol Sci
, vol.366
, pp. 3545-3553
-
-
Diffley, J.F.1
-
39
-
-
0344198460
-
Perpetuating the double helix: molecular machines at eukaryotic DNA replication origins
-
Mendez J, Stillman B. 2003. Perpetuating the double helix: molecular machines at eukaryotic DNA replication origins. BioEssays 25: 1158-67.
-
(2003)
BioEssays
, vol.25
, pp. 1158-1167
-
-
Mendez, J.1
Stillman, B.2
-
40
-
-
77649235074
-
Programming DNA replication origins and chromosome organization
-
Cayrou C, Coulombe P, Mechali M. 2010. Programming DNA replication origins and chromosome organization. Chromosome Res 18: 137-45.
-
(2010)
Chromosome Res
, vol.18
, pp. 137-145
-
-
Cayrou, C.1
Coulombe, P.2
Mechali, M.3
-
41
-
-
84856981150
-
Replication timing: the early bird catches the worm
-
Douglas ME, Diffley JF. 2012. Replication timing: the early bird catches the worm. Curr Biol 22: R81-2.
-
(2012)
Curr Biol
, vol.22
-
-
Douglas, M.E.1
Diffley, J.F.2
-
42
-
-
0036500535
-
The chromosome replication cycle
-
Diffley JF, Labib K. 2002. The chromosome replication cycle. J Cell Sci 115: 869-72.
-
(2002)
J Cell Sci
, vol.115
, pp. 869-872
-
-
Diffley, J.F.1
Labib, K.2
-
43
-
-
34249710254
-
A key role for the GINS complex at DNA replication forks
-
Labib K, Gambus A. 2007. A key role for the GINS complex at DNA replication forks. Trends Cell Biol 17: 271-8.
-
(2007)
Trends Cell Biol
, vol.17
, pp. 271-278
-
-
Labib, K.1
Gambus, A.2
-
44
-
-
77953006795
-
The initiation step of eukaryotic DNA replication
-
Pospiech H, Grosse F, Pisani FM. 2010. The initiation step of eukaryotic DNA replication. Subcell Biochem 50: 79-104.
-
(2010)
Subcell Biochem
, vol.50
, pp. 79-104
-
-
Pospiech, H.1
Grosse, F.2
Pisani, F.M.3
-
45
-
-
0035430416
-
DNA replication origins: from sequence specificity to epigenetics
-
Mechali M. 2001. DNA replication origins: from sequence specificity to epigenetics. Nat Rev Genet 2: 640-5.
-
(2001)
Nat Rev Genet
, vol.2
, pp. 640-645
-
-
Mechali, M.1
-
46
-
-
84155171119
-
Origin association of Sld3, Sld7, and Cdc45 proteins is a key step for determination of origin-firing timing
-
Tanaka S, Nakato R, Katou Y, Shirahige K, et al. 2011. Origin association of Sld3, Sld7, and Cdc45 proteins is a key step for determination of origin-firing timing. Curr Biol 21: 2055-63.
-
(2011)
Curr Biol
, vol.21
, pp. 2055-2063
-
-
Tanaka, S.1
Nakato, R.2
Katou, Y.3
Shirahige, K.4
-
47
-
-
82455164158
-
Limiting replication initiation factors execute the temporal programme of origin firing in budding yeast
-
Mantiero D, Mackenzie A, Donaldson A, Zegerman P. 2011. Limiting replication initiation factors execute the temporal programme of origin firing in budding yeast. EMBO J 30: 4805-14.
-
(2011)
EMBO J
, vol.30
, pp. 4805-4814
-
-
Mantiero, D.1
Mackenzie, A.2
Donaldson, A.3
Zegerman, P.4
-
48
-
-
84882919775
-
Titration of four replication factors is essential for the Xenopus laevis midblastula transition
-
Collart C, Allen GE, Bradshaw CR, Smith JC, et al. 2013. Titration of four replication factors is essential for the Xenopus laevis midblastula transition. Science 341: 893-6.
-
(2013)
Science
, vol.341
, pp. 893-896
-
-
Collart, C.1
Allen, G.E.2
Bradshaw, C.R.3
Smith, J.C.4
-
49
-
-
79952303535
-
Cdc45 limits replicon usage from a low density of preRCs in mammalian cells
-
Wong PG, Winter SL, Zaika E, Cao TV, et al. 2011. Cdc45 limits replicon usage from a low density of preRCs in mammalian cells. PLoS One 6: e17533.
-
(2011)
PLoS One
, vol.6
-
-
Wong, P.G.1
Winter, S.L.2
Zaika, E.3
Cao, T.V.4
-
50
-
-
84866412836
-
Mouse Rif1 is a key regulator of the replication-timing programme in mammalian cells
-
Cornacchia D, Dileep V, Quivy JP, Foti R, et al. 2012. Mouse Rif1 is a key regulator of the replication-timing programme in mammalian cells. EMBO J 31: 3678-90.
-
(2012)
EMBO J
, vol.31
, pp. 3678-3690
-
-
Cornacchia, D.1
Dileep, V.2
Quivy, J.P.3
Foti, R.4
-
51
-
-
84880928633
-
Replication timing regulation of eukaryotic replicons: Rif1 as a global regulator of replication timing
-
Yamazaki S, Hayano M, Masai H. 2013. Replication timing regulation of eukaryotic replicons: Rif1 as a global regulator of replication timing. Trends Genet 29: 449-60.
-
(2013)
Trends Genet
, vol.29
, pp. 449-460
-
-
Yamazaki, S.1
Hayano, M.2
Masai, H.3
-
52
-
-
84866427034
-
Rif1 regulates the replication timing domains on the human genome
-
Yamazaki S, Ishii A, Kanoh Y, Oda M, et al. 2012. Rif1 regulates the replication timing domains on the human genome. EMBO J 31: 3667-77.
-
(2012)
EMBO J
, vol.31
, pp. 3667-3677
-
-
Yamazaki, S.1
Ishii, A.2
Kanoh, Y.3
Oda, M.4
-
53
-
-
84887401265
-
From simple bacterial and archaeal replicons to replication N/U-domains
-
Hyrien O, Rappailles A, Guilbaud G, Baker A, et al. 2013. From simple bacterial and archaeal replicons to replication N/U-domains. J Mol Biol 425: 4673-89.
-
(2013)
J Mol Biol
, vol.425
, pp. 4673-4689
-
-
Hyrien, O.1
Rappailles, A.2
Guilbaud, G.3
Baker, A.4
-
54
-
-
80555157584
-
Genome-wide depletion of replication initiation events in highly transcribed regions
-
Martin MM, Ryan M, Kim R, Zakas AL, et al. 2011. Genome-wide depletion of replication initiation events in highly transcribed regions. Genome Res 21: 1822-32.
-
(2011)
Genome Res
, vol.21
, pp. 1822-1832
-
-
Martin, M.M.1
Ryan, M.2
Kim, R.3
Zakas, A.L.4
-
55
-
-
0029781449
-
Multiple determinants controlling activation of yeast replication origins late in S phase
-
Friedman KL, Diller JD, Ferguson BM, Nyland SV, et al. 1996. Multiple determinants controlling activation of yeast replication origins late in S phase. Genes Dev 10: 1595-607.
-
(1996)
Genes Dev
, vol.10
, pp. 1595-1607
-
-
Friedman, K.L.1
Diller, J.D.2
Ferguson, B.M.3
Nyland, S.V.4
-
56
-
-
0025107556
-
A deletion of the human beta-globin locus activation region causes a major alteration in chromatin structure and replication across the entire beta-globin locus
-
Forrester WC, Epner E, Driscoll MC, Enver T, et al. 1990. A deletion of the human beta-globin locus activation region causes a major alteration in chromatin structure and replication across the entire beta-globin locus. Genes Dev 4: 1637-49.
-
(1990)
Genes Dev
, vol.4
, pp. 1637-1649
-
-
Forrester, W.C.1
Epner, E.2
Driscoll, M.C.3
Enver, T.4
-
57
-
-
20944445545
-
The human beta-globin locus control region can silence as well as activate gene expression
-
Feng YQ, Warin R, Li T, Olivier E, et al. 2005. The human beta-globin locus control region can silence as well as activate gene expression. Mol Cell Biol 25: 3864-74.
-
(2005)
Mol Cell Biol
, vol.25
, pp. 3864-3874
-
-
Feng, Y.Q.1
Warin, R.2
Li, T.3
Olivier, E.4
-
58
-
-
0037599235
-
Dynamic alterations of replication timing in mammalian cells
-
Lin CM, Fu H, Martinovsky M, Bouhassira E, et al. 2003. Dynamic alterations of replication timing in mammalian cells. Curr Biol 13: 1019-28.
-
(2003)
Curr Biol
, vol.13
, pp. 1019-1028
-
-
Lin, C.M.1
Fu, H.2
Martinovsky, M.3
Bouhassira, E.4
-
59
-
-
33646546043
-
Preventing gene silencing with human replicators
-
Fu H, Wang L, Lin CM, Singhania S, et al. 2006. Preventing gene silencing with human replicators. Nat Biotechnol 24: 572-6.
-
(2006)
Nat Biotechnol
, vol.24
, pp. 572-576
-
-
Fu, H.1
Wang, L.2
Lin, C.M.3
Singhania, S.4
-
60
-
-
39449139672
-
Conversion of a replication origin to a silencer through a pathway shared by a Forkhead transcription factor and an S phase cyclin
-
Casey L, Patterson EE, Muller U, Fox CA. 2008. Conversion of a replication origin to a silencer through a pathway shared by a Forkhead transcription factor and an S phase cyclin. Mol Biol Cell 19: 608-22.
-
(2008)
Mol Biol Cell
, vol.19
, pp. 608-622
-
-
Casey, L.1
Patterson, E.E.2
Muller, U.3
Fox, C.A.4
-
61
-
-
84884698163
-
A link between ORC-origin binding mechanisms and origin activation time revealed in budding yeast
-
Hoggard T, Shor E, Muller CA, Nieduszynski CA, et al. 2013. A link between ORC-origin binding mechanisms and origin activation time revealed in budding yeast. PLoS Genet 9: e1003798.
-
(2013)
PLoS Genet
, vol.9
-
-
Hoggard, T.1
Shor, E.2
Muller, C.A.3
Nieduszynski, C.A.4
-
62
-
-
75649109712
-
Drosophila ORC localizes to open chromatin and marks sites of cohesin complex loading
-
MacAlpine HK, Gordan R, Powell SK, Hartemink AJ, et al. 2010. Drosophila ORC localizes to open chromatin and marks sites of cohesin complex loading. Genome Res 20: 201-11.
-
(2010)
Genome Res
, vol.20
, pp. 201-211
-
-
MacAlpine, H.K.1
Gordan, R.2
Powell, S.K.3
Hartemink, A.J.4
-
63
-
-
3142768347
-
Chromatin regulates origin activity in Drosophila follicle cells
-
Aggarwal BD, Calvi BR. 2004. Chromatin regulates origin activity in Drosophila follicle cells. Nature 430: 372-6.
-
(2004)
Nature
, vol.430
, pp. 372-376
-
-
Aggarwal, B.D.1
Calvi, B.R.2
-
64
-
-
0347457073
-
Role for a Drosophila Myb-containing protein complex in site-specific DNA replication
-
Beall EL, Manak JR, Zhou S, Bell M, et al. 2002. Role for a Drosophila Myb-containing protein complex in site-specific DNA replication. Nature 420: 833-7.
-
(2002)
Nature
, vol.420
, pp. 833-837
-
-
Beall, E.L.1
Manak, J.R.2
Zhou, S.3
Bell, M.4
-
65
-
-
36248935601
-
Genomic profiling and expression studies reveal both positive and negative activities for the Drosophila Myb MuvB/dREAM complex in proliferating cells
-
Georlette D, Ahn S, MacAlpine DM, Cheung E, et al. 2007. Genomic profiling and expression studies reveal both positive and negative activities for the Drosophila Myb MuvB/dREAM complex in proliferating cells. Genes Dev 21: 2880-96.
-
(2007)
Genes Dev
, vol.21
, pp. 2880-2896
-
-
Georlette, D.1
Ahn, S.2
MacAlpine, D.M.3
Cheung, E.4
-
66
-
-
4143082817
-
Specification of a DNA replication origin by a transcription complex
-
Danis E, Brodolin K, Menut S, Maiorano D, et al. 2004. Specification of a DNA replication origin by a transcription complex. Nat Cell Biol 6: 721-30.
-
(2004)
Nat Cell Biol
, vol.6
, pp. 721-730
-
-
Danis, E.1
Brodolin, K.2
Menut, S.3
Maiorano, D.4
-
67
-
-
84864453016
-
Regulation of DNA replication within the immunoglobulin heavy-chain locus during B cell commitment
-
Demczuk A, Gauthier MG, Veras I, Kosiyatrakul S, et al. 2012. Regulation of DNA replication within the immunoglobulin heavy-chain locus during B cell commitment. PLoS Biol 10: e1001360.
-
(2012)
PLoS Biol
, vol.10
-
-
Demczuk, A.1
Gauthier, M.G.2
Veras, I.3
Kosiyatrakul, S.4
-
68
-
-
8644245871
-
Transcription factor binding and induced transcription alter chromosomal c-myc replicator activity
-
Ghosh M, Liu G, Randall G, Bevington J, et al. 2004. Transcription factor binding and induced transcription alter chromosomal c-myc replicator activity. Mol Cell Biol 24: 10193-207.
-
(2004)
Mol Cell Biol
, vol.24
, pp. 10193-10207
-
-
Ghosh, M.1
Liu, G.2
Randall, G.3
Bevington, J.4
-
69
-
-
53549122748
-
HBO1 histone acetylase is a coactivator of the replication licensing factor Cdt1
-
Miotto B, Struhl K. 2008. HBO1 histone acetylase is a coactivator of the replication licensing factor Cdt1. Genes Dev 22: 2633-8.
-
(2008)
Genes Dev
, vol.22
, pp. 2633-2638
-
-
Miotto, B.1
Struhl, K.2
-
70
-
-
73649089696
-
HBO1 histone acetylase activity is essential for DNA replication licensing and inhibited by Geminin
-
Miotto B, Struhl K. 2010. HBO1 histone acetylase activity is essential for DNA replication licensing and inhibited by Geminin. Mol Cell 37: 57-66.
-
(2010)
Mol Cell
, vol.37
, pp. 57-66
-
-
Miotto, B.1
Struhl, K.2
-
71
-
-
80053130580
-
JNK1 phosphorylation of Cdt1 inhibits recruitment of HBO1 histone acetylase and blocks replication licensing in response to stress
-
Miotto B, Struhl K. 2011. JNK1 phosphorylation of Cdt1 inhibits recruitment of HBO1 histone acetylase and blocks replication licensing in response to stress. Mol Cell 44: 62-71.
-
(2011)
Mol Cell
, vol.44
, pp. 62-71
-
-
Miotto, B.1
Struhl, K.2
-
72
-
-
59449090734
-
The homeotic protein HOXC13 is a member of human DNA replication complexes
-
Comelli L, Marchetti L, Arosio D, Riva S, et al. 2009. The homeotic protein HOXC13 is a member of human DNA replication complexes. Cell Cycle 8: 454-9.
-
(2009)
Cell Cycle
, vol.8
, pp. 454-459
-
-
Comelli, L.1
Marchetti, L.2
Arosio, D.3
Riva, S.4
-
73
-
-
0242353369
-
In vitro protein-DNA interactions at the human lamin B2 replication origin
-
Stefanovic D, Stanojcic S, Vindigni A, Ochem A, et al. 2003. In vitro protein-DNA interactions at the human lamin B2 replication origin. J Biol Chem 278: 42737-43.
-
(2003)
J Biol Chem
, vol.278
, pp. 42737-42743
-
-
Stefanovic, D.1
Stanojcic, S.2
Vindigni, A.3
Ochem, A.4
-
74
-
-
33751310350
-
A deletion at the mouse Xist gene exposes trans-effects that alter the heterochromatin of the inactive X chromosome and the replication time and DNA stability of both X chromosomes
-
Diaz-Perez SV, Ferguson DO, Wang C, Csankovszki G, et al. 2006. A deletion at the mouse Xist gene exposes trans-effects that alter the heterochromatin of the inactive X chromosome and the replication time and DNA stability of both X chromosomes. Genetics 174: 1115-33.
-
(2006)
Genetics
, vol.174
, pp. 1115-1133
-
-
Diaz-Perez, S.V.1
Ferguson, D.O.2
Wang, C.3
Csankovszki, G.4
-
75
-
-
26444557705
-
Engineering translocations with delayed replication: evidence for cis control of chromosome replication timing
-
Breger KS, Smith L, Thayer MJ. 2005. Engineering translocations with delayed replication: evidence for cis control of chromosome replication timing. Hum Mol Genet 14: 2813-27.
-
(2005)
Hum Mol Genet
, vol.14
, pp. 2813-2827
-
-
Breger, K.S.1
Smith, L.2
Thayer, M.J.3
-
76
-
-
84876818673
-
Asynchronous replication, mono-allelic expression, and long range Cis-effects of ASAR6
-
Donley N, Stoffregen EP, Smith L, Montagna C, et al. 2013. Asynchronous replication, mono-allelic expression, and long range Cis-effects of ASAR6. PLoS Genet 9: e1003423.
-
(2013)
PLoS Genet
, vol.9
-
-
Donley, N.1
Stoffregen, E.P.2
Smith, L.3
Montagna, C.4
-
77
-
-
84865175192
-
Mammalian chromosomes contain cis-acting elements that control replication timing, mitotic condensation, and stability of entire chromosomes
-
Thayer MJ. 2012. Mammalian chromosomes contain cis-acting elements that control replication timing, mitotic condensation, and stability of entire chromosomes. BioEssays 34: 760-70.
-
(2012)
BioEssays
, vol.34
, pp. 760-770
-
-
Thayer, M.J.1
-
78
-
-
33747796664
-
Broadening of DNA replication origin usage during metazoan cell differentiation
-
Dazy S, Gandrillon O, Hyrien O, Prioleau MN. 2006. Broadening of DNA replication origin usage during metazoan cell differentiation. EMBO Rep 7: 806-11.
-
(2006)
EMBO Rep
, vol.7
, pp. 806-811
-
-
Dazy, S.1
Gandrillon, O.2
Hyrien, O.3
Prioleau, M.N.4
-
79
-
-
0036863542
-
Histone acetylation regulates the time of replication origin firing
-
Vogelauer M, Rubbi L, Lucas I, Brewer BJ, et al. 2002. Histone acetylation regulates the time of replication origin firing. Mol Cell 10: 1223-33.
-
(2002)
Mol Cell
, vol.10
, pp. 1223-1233
-
-
Vogelauer, M.1
Rubbi, L.2
Lucas, I.3
Brewer, B.J.4
-
80
-
-
84888869068
-
Chromothripsis and beyond: rapid genome evolution from complex chromosomal rearrangements
-
Zhang CZ, Leibowitz ML, Pellman D. 2013. Chromothripsis and beyond: rapid genome evolution from complex chromosomal rearrangements. Genes Dev 27: 2513-30.
-
(2013)
Genes Dev
, vol.27
, pp. 2513-2530
-
-
Zhang, C.Z.1
Leibowitz, M.L.2
Pellman, D.3
-
81
-
-
52949092763
-
Replication fork movement sets chromatin loop size and origin choice in mammalian cells
-
Courbet S, Gay S, Arnoult N, Wronka G, et al. 2008. Replication fork movement sets chromatin loop size and origin choice in mammalian cells. Nature 455: 557-60.
-
(2008)
Nature
, vol.455
, pp. 557-560
-
-
Courbet, S.1
Gay, S.2
Arnoult, N.3
Wronka, G.4
-
82
-
-
37249025795
-
Dormant origins licensed by excess Mcm2-7 are required for human cells to survive replicative stress
-
Ge XQ, Jackson DA, Blow JJ. 2007. Dormant origins licensed by excess Mcm2-7 are required for human cells to survive replicative stress. Genes Dev 21: 3331-41.
-
(2007)
Genes Dev
, vol.21
, pp. 3331-3341
-
-
Ge, X.Q.1
Jackson, D.A.2
Blow, J.J.3
-
83
-
-
84886784734
-
Hypermutation of the inactive X chromosome is a frequent event in cancer
-
Jager N, Schlesner M, Jones DT, Raffel S, et al. 2013. Hypermutation of the inactive X chromosome is a frequent event in cancer. Cell 155: 567-81.
-
(2013)
Cell
, vol.155
, pp. 567-581
-
-
Jager, N.1
Schlesner, M.2
Jones, D.T.3
Raffel, S.4
-
84
-
-
84874585488
-
DNA replication timing and higher-order nuclear organization determine single-nucleotide substitution patterns in cancer genomes
-
Liu L, De S, Michor F. 2013. DNA replication timing and higher-order nuclear organization determine single-nucleotide substitution patterns in cancer genomes. Nat Commun 4: 1502.
-
(2013)
Nat Commun
, vol.4
, pp. 1502
-
-
Liu, L.1
De, S.2
Michor, F.3
|