메뉴 건너뛰기




Volumn 36, Issue 6, 2014, Pages 591-597

A new light on DNA replication from the inactive X chromosome

Author keywords

Cell cycle; Chromatin; DNA replication; Epigenetics; Inactive X chromosome

Indexed keywords

ALLELE; ARTICLE; CHROMATIN; DNA REPLICATION; DNA SEQUENCE; DNA SYNTHESIS; EPIGENETICS; GENOME; GENOMIC INSTABILITY; HUMAN; NONHUMAN; X CHROMOSOME; ANIMAL; DNA REPLICATION TIMING; GENETIC EPIGENESIS; GENETICS; X CHROMOSOME INACTIVATION;

EID: 84900028067     PISSN: 02659247     EISSN: 15211878     Source Type: Journal    
DOI: 10.1002/bies.201400021     Document Type: Article
Times cited : (4)

References (84)
  • 1
    • 80052424582 scopus 로고    scopus 로고
    • Space and time in the nucleus: developmental control of replication timing and chromosome architecture
    • Gilbert DM, Takebayashi SI, Ryba T, Lu J, et al. 2010. Space and time in the nucleus: developmental control of replication timing and chromosome architecture. Cold Spring Harb Symp Quant Biol 75: 143-53.
    • (2010) Cold Spring Harb Symp Quant Biol , vol.75 , pp. 143-153
    • Gilbert, D.M.1    Takebayashi, S.I.2    Ryba, T.3    Lu, J.4
  • 2
    • 80055086494 scopus 로고    scopus 로고
    • Replication timing: a fingerprint for cell identity and pluripotency
    • Ryba T, Hiratani I, Sasaki T, Battaglia D, et al. 2011. Replication timing: a fingerprint for cell identity and pluripotency. PLoS Comput Biol 7: e1002225.
    • (2011) PLoS Comput Biol , vol.7
    • Ryba, T.1    Hiratani, I.2    Sasaki, T.3    Battaglia, D.4
  • 3
    • 65449142884 scopus 로고    scopus 로고
    • Replication timing and transcriptional control: beyond cause and effect - part II
    • Hiratani I, Takebayashi S, Lu J, Gilbert DM. 2009. Replication timing and transcriptional control: beyond cause and effect - part II. Curr Opin Genet Dev 19: 142-9.
    • (2009) Curr Opin Genet Dev , vol.19 , pp. 142-149
    • Hiratani, I.1    Takebayashi, S.2    Lu, J.3    Gilbert, D.M.4
  • 4
    • 77957369058 scopus 로고    scopus 로고
    • Comparative analysis of DNA replication timing reveals conserved large-scale chromosomal architecture
    • Yaffe E, Farkash-Amar S, Polten A, Yakhini Z, et al. 2010. Comparative analysis of DNA replication timing reveals conserved large-scale chromosomal architecture. PLoS Genet 6: e1001011.
    • (2010) PLoS Genet , vol.6
    • Yaffe, E.1    Farkash-Amar, S.2    Polten, A.3    Yakhini, Z.4
  • 5
    • 0344490333 scopus 로고    scopus 로고
    • Epigenetic abnormalities associated with a chromosome 18(q21-q22) inversion and a Gilles de la Tourette syndrome phenotype
    • State MW, Greally JM, Cuker A, Bowers PN, et al. 2003. Epigenetic abnormalities associated with a chromosome 18(q21-q22) inversion and a Gilles de la Tourette syndrome phenotype. Proc Natl Acad Sci USA 100: 4684-9.
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 4684-4689
    • State, M.W.1    Greally, J.M.2    Cuker, A.3    Bowers, P.N.4
  • 6
    • 2942596084 scopus 로고    scopus 로고
    • Altered replication timing of the HIRA/Tuple1 locus in the DiGeorge and Velocardiofacial syndromes
    • D'Antoni S, Mattina T, Di Mare P, Federico C, et al. 2004. Altered replication timing of the HIRA/Tuple1 locus in the DiGeorge and Velocardiofacial syndromes. Gene 333: 111-9.
    • (2004) Gene , vol.333 , pp. 111-119
    • D'Antoni, S.1    Mattina, T.2    Di Mare, P.3    Federico, C.4
  • 7
    • 33947492484 scopus 로고    scopus 로고
    • Chromosomes with delayed replication timing lead to checkpoint activation, delayed recruitment of Aurora B and chromosome instability
    • Chang BH, Smith L, Huang J, Thayer M. 2007. Chromosomes with delayed replication timing lead to checkpoint activation, delayed recruitment of Aurora B and chromosome instability. Oncogene 26: 1852-61.
    • (2007) Oncogene , vol.26 , pp. 1852-1861
    • Chang, B.H.1    Smith, L.2    Huang, J.3    Thayer, M.4
  • 8
    • 77956032001 scopus 로고    scopus 로고
    • Replication timing aberrations and aneuploidy in peripheral blood lymphocytes of breast cancer patients
    • Grinberg-Rashi H, Cytron S, Gelman-Kohan Z, Litmanovitch T, et al. 2010. Replication timing aberrations and aneuploidy in peripheral blood lymphocytes of breast cancer patients. Neoplasia 12: 668-74.
    • (2010) Neoplasia , vol.12 , pp. 668-674
    • Grinberg-Rashi, H.1    Cytron, S.2    Gelman-Kohan, Z.3    Litmanovitch, T.4
  • 9
    • 0031798761 scopus 로고    scopus 로고
    • Temporal differences in replication timing of homologous loci in malignant cells derived from CML and lymphoma patients
    • Amiel A, Litmanovitch T, Lishner M, Mor A, et al. 1998. Temporal differences in replication timing of homologous loci in malignant cells derived from CML and lymphoma patients. Genes Chromosomes Cancer 22: 225-31.
    • (1998) Genes Chromosomes Cancer , vol.22 , pp. 225-231
    • Amiel, A.1    Litmanovitch, T.2    Lishner, M.3    Mor, A.4
  • 10
    • 0036959591 scopus 로고    scopus 로고
    • Allele-specific replication associated with aneuploidy in blood cells of patients with hematologic malignancies
    • Korenstein-Ilan A, Amiel A, Lalezari S, Lishner M, et al. 2002. Allele-specific replication associated with aneuploidy in blood cells of patients with hematologic malignancies. Cancer Genet Cytogenet 139: 97-103.
    • (2002) Cancer Genet Cytogenet , vol.139 , pp. 97-103
    • Korenstein-Ilan, A.1    Amiel, A.2    Lalezari, S.3    Lishner, M.4
  • 11
    • 38749087897 scopus 로고    scopus 로고
    • Asynchronous DNA replication detected by fluorescence in situ hybridisation as a possible indicator of genetic damage in human lymphocytes
    • Bras A, Cotrim CZ, Vasconcelos I, Mexia J, et al. 2008. Asynchronous DNA replication detected by fluorescence in situ hybridisation as a possible indicator of genetic damage in human lymphocytes. Oncol Rep 19: 369-75.
    • (2008) Oncol Rep , vol.19 , pp. 369-375
    • Bras, A.1    Cotrim, C.Z.2    Vasconcelos, I.3    Mexia, J.4
  • 12
    • 34447565003 scopus 로고    scopus 로고
    • Replication in context: dynamic regulation of DNA replication patterns in metazoans
    • Aladjem MI. 2007. Replication in context: dynamic regulation of DNA replication patterns in metazoans. Nat Rev Genet 8: 588-600.
    • (2007) Nat Rev Genet , vol.8 , pp. 588-600
    • Aladjem, M.I.1
  • 13
    • 77957168933 scopus 로고    scopus 로고
    • Eukaryotic DNA replication origins: many choices for appropriate answers
    • Mechali M. 2010. Eukaryotic DNA replication origins: many choices for appropriate answers. Nat Rev Mol Cell Biol 11: 728-38.
    • (2010) Nat Rev Mol Cell Biol , vol.11 , pp. 728-738
    • Mechali, M.1
  • 14
    • 33847076248 scopus 로고    scopus 로고
    • Chromatin challenges during DNA replication and repair
    • Groth A, Rocha W, Verreault A, Almouzni G. 2007. Chromatin challenges during DNA replication and repair. Cell 128: 721-33.
    • (2007) Cell , vol.128 , pp. 721-733
    • Groth, A.1    Rocha, W.2    Verreault, A.3    Almouzni, G.4
  • 15
    • 79551585897 scopus 로고    scopus 로고
    • Developmental control of the DNA replication and transcription programs
    • Nordman J, Li S, Eng T, Macalpine D, et al. 2011. Developmental control of the DNA replication and transcription programs. Genome Res 21: 175-81.
    • (2011) Genome Res , vol.21 , pp. 175-181
    • Nordman, J.1    Li, S.2    Eng, T.3    Macalpine, D.4
  • 16
    • 27944452746 scopus 로고    scopus 로고
    • Progressive activation of DNA replication initiation in large domains of the immunoglobulin heavy chain locus during B cell development
    • Norio P, Kosiyatrakul S, Yang Q, Guan Z, et al. 2005. Progressive activation of DNA replication initiation in large domains of the immunoglobulin heavy chain locus during B cell development. Mol Cell 20: 575-87.
    • (2005) Mol Cell , vol.20 , pp. 575-587
    • Norio, P.1    Kosiyatrakul, S.2    Yang, Q.3    Guan, Z.4
  • 17
    • 79551581102 scopus 로고    scopus 로고
    • Chromatin signatures of the Drosophila replication program
    • Eaton ML, Prinz JA, MacAlpine HK, Tretyakov G, et al. 2011. Chromatin signatures of the Drosophila replication program. Genome Res 21: 164-74.
    • (2011) Genome Res , vol.21 , pp. 164-174
    • Eaton, M.L.1    Prinz, J.A.2    MacAlpine, H.K.3    Tretyakov, G.4
  • 18
    • 0028829358 scopus 로고
    • Transition in specification of embryonic metazoan DNA replication origins
    • Hyrien O, Maric C, Mechali M. 1995. Transition in specification of embryonic metazoan DNA replication origins. Science 270: 994-7.
    • (1995) Science , vol.270 , pp. 994-997
    • Hyrien, O.1    Maric, C.2    Mechali, M.3
  • 20
    • 0033613361 scopus 로고    scopus 로고
    • Asynchronous replication of imprinted genes is established in the gametes and maintained during development
    • Simon I, Tenzen T, Reubinoff BE, Hillman D, et al. 1999. Asynchronous replication of imprinted genes is established in the gametes and maintained during development. Nature 401: 929-32.
    • (1999) Nature , vol.401 , pp. 929-932
    • Simon, I.1    Tenzen, T.2    Reubinoff, B.E.3    Hillman, D.4
  • 21
    • 0037444227 scopus 로고    scopus 로고
    • Asynchronous replication timing of imprinted loci is independent of DNA methylation, but consistent with differential subnuclear localization
    • Gribnau J, Hochedlinger K, Hata K, Li E, et al. 2003. Asynchronous replication timing of imprinted loci is independent of DNA methylation, but consistent with differential subnuclear localization. Genes Dev 17: 759-73.
    • (2003) Genes Dev , vol.17 , pp. 759-773
    • Gribnau, J.1    Hochedlinger, K.2    Hata, K.3    Li, E.4
  • 22
    • 0028937174 scopus 로고
    • Domain organization of allele-specific replication within the GABRB3 gene cluster requires a biparental 15q11-13 contribution
    • LaSalle JM, Lalande M. 1995. Domain organization of allele-specific replication within the GABRB3 gene cluster requires a biparental 15q11-13 contribution. Nat Genet 9: 386-94.
    • (1995) Nat Genet , vol.9 , pp. 386-394
    • LaSalle, J.M.1    Lalande, M.2
  • 23
    • 7144223296 scopus 로고
    • Gene action in the X-chromosome of the mouse (Mus musculus L.)
    • Lyon MF. 1961. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190: 372-3.
    • (1961) Nature , vol.190 , pp. 372-373
    • Lyon, M.F.1
  • 24
    • 79960484375 scopus 로고    scopus 로고
    • Gene silencing in X-chromosome inactivation: advances in understanding facultative heterochromatin formation
    • Wutz A. 2011. Gene silencing in X-chromosome inactivation: advances in understanding facultative heterochromatin formation. Nat Rev Genet 12: 542-53.
    • (2011) Nat Rev Genet , vol.12 , pp. 542-553
    • Wutz, A.1
  • 25
    • 84884331196 scopus 로고    scopus 로고
    • X chromosome inactivation and epigenetic responses to cellular reprogramming
    • Lessing D, Anguera MC, Lee JT. 2013. X chromosome inactivation and epigenetic responses to cellular reprogramming. Annu Rev Genomics Hum Genet 14: 85-110.
    • (2013) Annu Rev Genomics Hum Genet , vol.14 , pp. 85-110
    • Lessing, D.1    Anguera, M.C.2    Lee, J.T.3
  • 26
    • 0014147821 scopus 로고
    • Delayed onset of replication of human X chromosomes
    • Priest JH, Heady JE, Priest RE. 1967. Delayed onset of replication of human X chromosomes. J Cell Biol 35: 483-7.
    • (1967) J Cell Biol , vol.35 , pp. 483-487
    • Priest, J.H.1    Heady, J.E.2    Priest, R.E.3
  • 27
    • 84877818467 scopus 로고    scopus 로고
    • Role and control of X chromosome dosage in mammalian development
    • Schulz EG, Heard E. 2013. Role and control of X chromosome dosage in mammalian development. Curr Opin Genet Dev 23: 109-15.
    • (2013) Curr Opin Genet Dev , vol.23 , pp. 109-115
    • Schulz, E.G.1    Heard, E.2
  • 28
    • 0019957375 scopus 로고
    • Patterns of DNA replication of human chromosomes. II. Replication map and replication model
    • Camargo M, Cervenka J. 1982. Patterns of DNA replication of human chromosomes. II. Replication map and replication model. Am J Hum Genet 34: 757-80.
    • (1982) Am J Hum Genet , vol.34 , pp. 757-780
    • Camargo, M.1    Cervenka, J.2
  • 29
    • 76349123622 scopus 로고    scopus 로고
    • Sequencing newly replicated DNA reveals widespread plasticity in human replication timing
    • Hansen RS, Thomas S, Sandstrom R, Canfield TK, et al. 2010. Sequencing newly replicated DNA reveals widespread plasticity in human replication timing. Proc Natl Acad Sci USA 107: 139-44.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 139-144
    • Hansen, R.S.1    Thomas, S.2    Sandstrom, R.3    Canfield, T.K.4
  • 32
    • 0029670538 scopus 로고    scopus 로고
    • A distinct G1 step required to specify the Chinese hamster DHFR replication origin
    • Wu JR, Gilbert DM. 1996. A distinct G1 step required to specify the Chinese hamster DHFR replication origin. Science 271: 1270-2.
    • (1996) Science , vol.271 , pp. 1270-1272
    • Wu, J.R.1    Gilbert, D.M.2
  • 33
    • 33646576502 scopus 로고    scopus 로고
    • Mapping of DNA replication origins to noncoding genes of the X-inactivation center
    • Rowntree RK, Lee JT. 2006. Mapping of DNA replication origins to noncoding genes of the X-inactivation center. Mol Cell Biol 26: 3707-17.
    • (2006) Mol Cell Biol , vol.26 , pp. 3707-3717
    • Rowntree, R.K.1    Lee, J.T.2
  • 34
    • 79952351768 scopus 로고    scopus 로고
    • Histone acetylation controls the inactive X chromosome replication dynamics
    • Casas-Delucchi CS, Brero A, Rahn HP, Solovei I, et al. 2011. Histone acetylation controls the inactive X chromosome replication dynamics. Nat Commun 2: 222.
    • (2011) Nat Commun , vol.2 , pp. 222
    • Casas-Delucchi, C.S.1    Brero, A.2    Rahn, H.P.3    Solovei, I.4
  • 35
    • 84891696268 scopus 로고    scopus 로고
    • Random replication of the inactive X chromosome
    • Koren A, McCarroll SA. 2014. Random replication of the inactive X chromosome. Genome Res 24: 64-9.
    • (2014) Genome Res , vol.24 , pp. 64-69
    • Koren, A.1    McCarroll, S.A.2
  • 36
    • 0027183088 scopus 로고
    • The inactive X chromosome in female mammals is distinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression
    • Jeppesen P, Turner BM. 1993. The inactive X chromosome in female mammals is distinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression. Cell 74: 281-9.
    • (1993) Cell , vol.74 , pp. 281-289
    • Jeppesen, P.1    Turner, B.M.2
  • 37
    • 70549085855 scopus 로고    scopus 로고
    • Eukaryotic DNA replication control: lock and load, then fire
    • Remus D, Diffley JF. 2009. Eukaryotic DNA replication control: lock and load, then fire. Curr Opin Cell Biol 21: 771-7.
    • (2009) Curr Opin Cell Biol , vol.21 , pp. 771-777
    • Remus, D.1    Diffley, J.F.2
  • 38
    • 81055138204 scopus 로고    scopus 로고
    • Quality control in the initiation of eukaryotic DNA replication
    • Diffley JF. 2011. Quality control in the initiation of eukaryotic DNA replication. Philos Trans R Soc Lond B Biol Sci 366: 3545-53.
    • (2011) Philos Trans R Soc Lond B Biol Sci , vol.366 , pp. 3545-3553
    • Diffley, J.F.1
  • 39
    • 0344198460 scopus 로고    scopus 로고
    • Perpetuating the double helix: molecular machines at eukaryotic DNA replication origins
    • Mendez J, Stillman B. 2003. Perpetuating the double helix: molecular machines at eukaryotic DNA replication origins. BioEssays 25: 1158-67.
    • (2003) BioEssays , vol.25 , pp. 1158-1167
    • Mendez, J.1    Stillman, B.2
  • 40
    • 77649235074 scopus 로고    scopus 로고
    • Programming DNA replication origins and chromosome organization
    • Cayrou C, Coulombe P, Mechali M. 2010. Programming DNA replication origins and chromosome organization. Chromosome Res 18: 137-45.
    • (2010) Chromosome Res , vol.18 , pp. 137-145
    • Cayrou, C.1    Coulombe, P.2    Mechali, M.3
  • 41
    • 84856981150 scopus 로고    scopus 로고
    • Replication timing: the early bird catches the worm
    • Douglas ME, Diffley JF. 2012. Replication timing: the early bird catches the worm. Curr Biol 22: R81-2.
    • (2012) Curr Biol , vol.22
    • Douglas, M.E.1    Diffley, J.F.2
  • 42
    • 0036500535 scopus 로고    scopus 로고
    • The chromosome replication cycle
    • Diffley JF, Labib K. 2002. The chromosome replication cycle. J Cell Sci 115: 869-72.
    • (2002) J Cell Sci , vol.115 , pp. 869-872
    • Diffley, J.F.1    Labib, K.2
  • 43
    • 34249710254 scopus 로고    scopus 로고
    • A key role for the GINS complex at DNA replication forks
    • Labib K, Gambus A. 2007. A key role for the GINS complex at DNA replication forks. Trends Cell Biol 17: 271-8.
    • (2007) Trends Cell Biol , vol.17 , pp. 271-278
    • Labib, K.1    Gambus, A.2
  • 44
    • 77953006795 scopus 로고    scopus 로고
    • The initiation step of eukaryotic DNA replication
    • Pospiech H, Grosse F, Pisani FM. 2010. The initiation step of eukaryotic DNA replication. Subcell Biochem 50: 79-104.
    • (2010) Subcell Biochem , vol.50 , pp. 79-104
    • Pospiech, H.1    Grosse, F.2    Pisani, F.M.3
  • 45
    • 0035430416 scopus 로고    scopus 로고
    • DNA replication origins: from sequence specificity to epigenetics
    • Mechali M. 2001. DNA replication origins: from sequence specificity to epigenetics. Nat Rev Genet 2: 640-5.
    • (2001) Nat Rev Genet , vol.2 , pp. 640-645
    • Mechali, M.1
  • 46
    • 84155171119 scopus 로고    scopus 로고
    • Origin association of Sld3, Sld7, and Cdc45 proteins is a key step for determination of origin-firing timing
    • Tanaka S, Nakato R, Katou Y, Shirahige K, et al. 2011. Origin association of Sld3, Sld7, and Cdc45 proteins is a key step for determination of origin-firing timing. Curr Biol 21: 2055-63.
    • (2011) Curr Biol , vol.21 , pp. 2055-2063
    • Tanaka, S.1    Nakato, R.2    Katou, Y.3    Shirahige, K.4
  • 47
    • 82455164158 scopus 로고    scopus 로고
    • Limiting replication initiation factors execute the temporal programme of origin firing in budding yeast
    • Mantiero D, Mackenzie A, Donaldson A, Zegerman P. 2011. Limiting replication initiation factors execute the temporal programme of origin firing in budding yeast. EMBO J 30: 4805-14.
    • (2011) EMBO J , vol.30 , pp. 4805-4814
    • Mantiero, D.1    Mackenzie, A.2    Donaldson, A.3    Zegerman, P.4
  • 48
    • 84882919775 scopus 로고    scopus 로고
    • Titration of four replication factors is essential for the Xenopus laevis midblastula transition
    • Collart C, Allen GE, Bradshaw CR, Smith JC, et al. 2013. Titration of four replication factors is essential for the Xenopus laevis midblastula transition. Science 341: 893-6.
    • (2013) Science , vol.341 , pp. 893-896
    • Collart, C.1    Allen, G.E.2    Bradshaw, C.R.3    Smith, J.C.4
  • 49
    • 79952303535 scopus 로고    scopus 로고
    • Cdc45 limits replicon usage from a low density of preRCs in mammalian cells
    • Wong PG, Winter SL, Zaika E, Cao TV, et al. 2011. Cdc45 limits replicon usage from a low density of preRCs in mammalian cells. PLoS One 6: e17533.
    • (2011) PLoS One , vol.6
    • Wong, P.G.1    Winter, S.L.2    Zaika, E.3    Cao, T.V.4
  • 50
    • 84866412836 scopus 로고    scopus 로고
    • Mouse Rif1 is a key regulator of the replication-timing programme in mammalian cells
    • Cornacchia D, Dileep V, Quivy JP, Foti R, et al. 2012. Mouse Rif1 is a key regulator of the replication-timing programme in mammalian cells. EMBO J 31: 3678-90.
    • (2012) EMBO J , vol.31 , pp. 3678-3690
    • Cornacchia, D.1    Dileep, V.2    Quivy, J.P.3    Foti, R.4
  • 51
    • 84880928633 scopus 로고    scopus 로고
    • Replication timing regulation of eukaryotic replicons: Rif1 as a global regulator of replication timing
    • Yamazaki S, Hayano M, Masai H. 2013. Replication timing regulation of eukaryotic replicons: Rif1 as a global regulator of replication timing. Trends Genet 29: 449-60.
    • (2013) Trends Genet , vol.29 , pp. 449-460
    • Yamazaki, S.1    Hayano, M.2    Masai, H.3
  • 52
    • 84866427034 scopus 로고    scopus 로고
    • Rif1 regulates the replication timing domains on the human genome
    • Yamazaki S, Ishii A, Kanoh Y, Oda M, et al. 2012. Rif1 regulates the replication timing domains on the human genome. EMBO J 31: 3667-77.
    • (2012) EMBO J , vol.31 , pp. 3667-3677
    • Yamazaki, S.1    Ishii, A.2    Kanoh, Y.3    Oda, M.4
  • 53
    • 84887401265 scopus 로고    scopus 로고
    • From simple bacterial and archaeal replicons to replication N/U-domains
    • Hyrien O, Rappailles A, Guilbaud G, Baker A, et al. 2013. From simple bacterial and archaeal replicons to replication N/U-domains. J Mol Biol 425: 4673-89.
    • (2013) J Mol Biol , vol.425 , pp. 4673-4689
    • Hyrien, O.1    Rappailles, A.2    Guilbaud, G.3    Baker, A.4
  • 54
    • 80555157584 scopus 로고    scopus 로고
    • Genome-wide depletion of replication initiation events in highly transcribed regions
    • Martin MM, Ryan M, Kim R, Zakas AL, et al. 2011. Genome-wide depletion of replication initiation events in highly transcribed regions. Genome Res 21: 1822-32.
    • (2011) Genome Res , vol.21 , pp. 1822-1832
    • Martin, M.M.1    Ryan, M.2    Kim, R.3    Zakas, A.L.4
  • 55
    • 0029781449 scopus 로고    scopus 로고
    • Multiple determinants controlling activation of yeast replication origins late in S phase
    • Friedman KL, Diller JD, Ferguson BM, Nyland SV, et al. 1996. Multiple determinants controlling activation of yeast replication origins late in S phase. Genes Dev 10: 1595-607.
    • (1996) Genes Dev , vol.10 , pp. 1595-1607
    • Friedman, K.L.1    Diller, J.D.2    Ferguson, B.M.3    Nyland, S.V.4
  • 56
    • 0025107556 scopus 로고
    • A deletion of the human beta-globin locus activation region causes a major alteration in chromatin structure and replication across the entire beta-globin locus
    • Forrester WC, Epner E, Driscoll MC, Enver T, et al. 1990. A deletion of the human beta-globin locus activation region causes a major alteration in chromatin structure and replication across the entire beta-globin locus. Genes Dev 4: 1637-49.
    • (1990) Genes Dev , vol.4 , pp. 1637-1649
    • Forrester, W.C.1    Epner, E.2    Driscoll, M.C.3    Enver, T.4
  • 57
    • 20944445545 scopus 로고    scopus 로고
    • The human beta-globin locus control region can silence as well as activate gene expression
    • Feng YQ, Warin R, Li T, Olivier E, et al. 2005. The human beta-globin locus control region can silence as well as activate gene expression. Mol Cell Biol 25: 3864-74.
    • (2005) Mol Cell Biol , vol.25 , pp. 3864-3874
    • Feng, Y.Q.1    Warin, R.2    Li, T.3    Olivier, E.4
  • 58
    • 0037599235 scopus 로고    scopus 로고
    • Dynamic alterations of replication timing in mammalian cells
    • Lin CM, Fu H, Martinovsky M, Bouhassira E, et al. 2003. Dynamic alterations of replication timing in mammalian cells. Curr Biol 13: 1019-28.
    • (2003) Curr Biol , vol.13 , pp. 1019-1028
    • Lin, C.M.1    Fu, H.2    Martinovsky, M.3    Bouhassira, E.4
  • 59
    • 33646546043 scopus 로고    scopus 로고
    • Preventing gene silencing with human replicators
    • Fu H, Wang L, Lin CM, Singhania S, et al. 2006. Preventing gene silencing with human replicators. Nat Biotechnol 24: 572-6.
    • (2006) Nat Biotechnol , vol.24 , pp. 572-576
    • Fu, H.1    Wang, L.2    Lin, C.M.3    Singhania, S.4
  • 60
    • 39449139672 scopus 로고    scopus 로고
    • Conversion of a replication origin to a silencer through a pathway shared by a Forkhead transcription factor and an S phase cyclin
    • Casey L, Patterson EE, Muller U, Fox CA. 2008. Conversion of a replication origin to a silencer through a pathway shared by a Forkhead transcription factor and an S phase cyclin. Mol Biol Cell 19: 608-22.
    • (2008) Mol Biol Cell , vol.19 , pp. 608-622
    • Casey, L.1    Patterson, E.E.2    Muller, U.3    Fox, C.A.4
  • 61
    • 84884698163 scopus 로고    scopus 로고
    • A link between ORC-origin binding mechanisms and origin activation time revealed in budding yeast
    • Hoggard T, Shor E, Muller CA, Nieduszynski CA, et al. 2013. A link between ORC-origin binding mechanisms and origin activation time revealed in budding yeast. PLoS Genet 9: e1003798.
    • (2013) PLoS Genet , vol.9
    • Hoggard, T.1    Shor, E.2    Muller, C.A.3    Nieduszynski, C.A.4
  • 62
    • 75649109712 scopus 로고    scopus 로고
    • Drosophila ORC localizes to open chromatin and marks sites of cohesin complex loading
    • MacAlpine HK, Gordan R, Powell SK, Hartemink AJ, et al. 2010. Drosophila ORC localizes to open chromatin and marks sites of cohesin complex loading. Genome Res 20: 201-11.
    • (2010) Genome Res , vol.20 , pp. 201-211
    • MacAlpine, H.K.1    Gordan, R.2    Powell, S.K.3    Hartemink, A.J.4
  • 63
    • 3142768347 scopus 로고    scopus 로고
    • Chromatin regulates origin activity in Drosophila follicle cells
    • Aggarwal BD, Calvi BR. 2004. Chromatin regulates origin activity in Drosophila follicle cells. Nature 430: 372-6.
    • (2004) Nature , vol.430 , pp. 372-376
    • Aggarwal, B.D.1    Calvi, B.R.2
  • 64
    • 0347457073 scopus 로고    scopus 로고
    • Role for a Drosophila Myb-containing protein complex in site-specific DNA replication
    • Beall EL, Manak JR, Zhou S, Bell M, et al. 2002. Role for a Drosophila Myb-containing protein complex in site-specific DNA replication. Nature 420: 833-7.
    • (2002) Nature , vol.420 , pp. 833-837
    • Beall, E.L.1    Manak, J.R.2    Zhou, S.3    Bell, M.4
  • 65
    • 36248935601 scopus 로고    scopus 로고
    • Genomic profiling and expression studies reveal both positive and negative activities for the Drosophila Myb MuvB/dREAM complex in proliferating cells
    • Georlette D, Ahn S, MacAlpine DM, Cheung E, et al. 2007. Genomic profiling and expression studies reveal both positive and negative activities for the Drosophila Myb MuvB/dREAM complex in proliferating cells. Genes Dev 21: 2880-96.
    • (2007) Genes Dev , vol.21 , pp. 2880-2896
    • Georlette, D.1    Ahn, S.2    MacAlpine, D.M.3    Cheung, E.4
  • 66
    • 4143082817 scopus 로고    scopus 로고
    • Specification of a DNA replication origin by a transcription complex
    • Danis E, Brodolin K, Menut S, Maiorano D, et al. 2004. Specification of a DNA replication origin by a transcription complex. Nat Cell Biol 6: 721-30.
    • (2004) Nat Cell Biol , vol.6 , pp. 721-730
    • Danis, E.1    Brodolin, K.2    Menut, S.3    Maiorano, D.4
  • 67
    • 84864453016 scopus 로고    scopus 로고
    • Regulation of DNA replication within the immunoglobulin heavy-chain locus during B cell commitment
    • Demczuk A, Gauthier MG, Veras I, Kosiyatrakul S, et al. 2012. Regulation of DNA replication within the immunoglobulin heavy-chain locus during B cell commitment. PLoS Biol 10: e1001360.
    • (2012) PLoS Biol , vol.10
    • Demczuk, A.1    Gauthier, M.G.2    Veras, I.3    Kosiyatrakul, S.4
  • 68
    • 8644245871 scopus 로고    scopus 로고
    • Transcription factor binding and induced transcription alter chromosomal c-myc replicator activity
    • Ghosh M, Liu G, Randall G, Bevington J, et al. 2004. Transcription factor binding and induced transcription alter chromosomal c-myc replicator activity. Mol Cell Biol 24: 10193-207.
    • (2004) Mol Cell Biol , vol.24 , pp. 10193-10207
    • Ghosh, M.1    Liu, G.2    Randall, G.3    Bevington, J.4
  • 69
    • 53549122748 scopus 로고    scopus 로고
    • HBO1 histone acetylase is a coactivator of the replication licensing factor Cdt1
    • Miotto B, Struhl K. 2008. HBO1 histone acetylase is a coactivator of the replication licensing factor Cdt1. Genes Dev 22: 2633-8.
    • (2008) Genes Dev , vol.22 , pp. 2633-2638
    • Miotto, B.1    Struhl, K.2
  • 70
    • 73649089696 scopus 로고    scopus 로고
    • HBO1 histone acetylase activity is essential for DNA replication licensing and inhibited by Geminin
    • Miotto B, Struhl K. 2010. HBO1 histone acetylase activity is essential for DNA replication licensing and inhibited by Geminin. Mol Cell 37: 57-66.
    • (2010) Mol Cell , vol.37 , pp. 57-66
    • Miotto, B.1    Struhl, K.2
  • 71
    • 80053130580 scopus 로고    scopus 로고
    • JNK1 phosphorylation of Cdt1 inhibits recruitment of HBO1 histone acetylase and blocks replication licensing in response to stress
    • Miotto B, Struhl K. 2011. JNK1 phosphorylation of Cdt1 inhibits recruitment of HBO1 histone acetylase and blocks replication licensing in response to stress. Mol Cell 44: 62-71.
    • (2011) Mol Cell , vol.44 , pp. 62-71
    • Miotto, B.1    Struhl, K.2
  • 72
    • 59449090734 scopus 로고    scopus 로고
    • The homeotic protein HOXC13 is a member of human DNA replication complexes
    • Comelli L, Marchetti L, Arosio D, Riva S, et al. 2009. The homeotic protein HOXC13 is a member of human DNA replication complexes. Cell Cycle 8: 454-9.
    • (2009) Cell Cycle , vol.8 , pp. 454-459
    • Comelli, L.1    Marchetti, L.2    Arosio, D.3    Riva, S.4
  • 73
    • 0242353369 scopus 로고    scopus 로고
    • In vitro protein-DNA interactions at the human lamin B2 replication origin
    • Stefanovic D, Stanojcic S, Vindigni A, Ochem A, et al. 2003. In vitro protein-DNA interactions at the human lamin B2 replication origin. J Biol Chem 278: 42737-43.
    • (2003) J Biol Chem , vol.278 , pp. 42737-42743
    • Stefanovic, D.1    Stanojcic, S.2    Vindigni, A.3    Ochem, A.4
  • 74
    • 33751310350 scopus 로고    scopus 로고
    • A deletion at the mouse Xist gene exposes trans-effects that alter the heterochromatin of the inactive X chromosome and the replication time and DNA stability of both X chromosomes
    • Diaz-Perez SV, Ferguson DO, Wang C, Csankovszki G, et al. 2006. A deletion at the mouse Xist gene exposes trans-effects that alter the heterochromatin of the inactive X chromosome and the replication time and DNA stability of both X chromosomes. Genetics 174: 1115-33.
    • (2006) Genetics , vol.174 , pp. 1115-1133
    • Diaz-Perez, S.V.1    Ferguson, D.O.2    Wang, C.3    Csankovszki, G.4
  • 75
    • 26444557705 scopus 로고    scopus 로고
    • Engineering translocations with delayed replication: evidence for cis control of chromosome replication timing
    • Breger KS, Smith L, Thayer MJ. 2005. Engineering translocations with delayed replication: evidence for cis control of chromosome replication timing. Hum Mol Genet 14: 2813-27.
    • (2005) Hum Mol Genet , vol.14 , pp. 2813-2827
    • Breger, K.S.1    Smith, L.2    Thayer, M.J.3
  • 76
    • 84876818673 scopus 로고    scopus 로고
    • Asynchronous replication, mono-allelic expression, and long range Cis-effects of ASAR6
    • Donley N, Stoffregen EP, Smith L, Montagna C, et al. 2013. Asynchronous replication, mono-allelic expression, and long range Cis-effects of ASAR6. PLoS Genet 9: e1003423.
    • (2013) PLoS Genet , vol.9
    • Donley, N.1    Stoffregen, E.P.2    Smith, L.3    Montagna, C.4
  • 77
    • 84865175192 scopus 로고    scopus 로고
    • Mammalian chromosomes contain cis-acting elements that control replication timing, mitotic condensation, and stability of entire chromosomes
    • Thayer MJ. 2012. Mammalian chromosomes contain cis-acting elements that control replication timing, mitotic condensation, and stability of entire chromosomes. BioEssays 34: 760-70.
    • (2012) BioEssays , vol.34 , pp. 760-770
    • Thayer, M.J.1
  • 78
    • 33747796664 scopus 로고    scopus 로고
    • Broadening of DNA replication origin usage during metazoan cell differentiation
    • Dazy S, Gandrillon O, Hyrien O, Prioleau MN. 2006. Broadening of DNA replication origin usage during metazoan cell differentiation. EMBO Rep 7: 806-11.
    • (2006) EMBO Rep , vol.7 , pp. 806-811
    • Dazy, S.1    Gandrillon, O.2    Hyrien, O.3    Prioleau, M.N.4
  • 79
    • 0036863542 scopus 로고    scopus 로고
    • Histone acetylation regulates the time of replication origin firing
    • Vogelauer M, Rubbi L, Lucas I, Brewer BJ, et al. 2002. Histone acetylation regulates the time of replication origin firing. Mol Cell 10: 1223-33.
    • (2002) Mol Cell , vol.10 , pp. 1223-1233
    • Vogelauer, M.1    Rubbi, L.2    Lucas, I.3    Brewer, B.J.4
  • 80
    • 84888869068 scopus 로고    scopus 로고
    • Chromothripsis and beyond: rapid genome evolution from complex chromosomal rearrangements
    • Zhang CZ, Leibowitz ML, Pellman D. 2013. Chromothripsis and beyond: rapid genome evolution from complex chromosomal rearrangements. Genes Dev 27: 2513-30.
    • (2013) Genes Dev , vol.27 , pp. 2513-2530
    • Zhang, C.Z.1    Leibowitz, M.L.2    Pellman, D.3
  • 81
    • 52949092763 scopus 로고    scopus 로고
    • Replication fork movement sets chromatin loop size and origin choice in mammalian cells
    • Courbet S, Gay S, Arnoult N, Wronka G, et al. 2008. Replication fork movement sets chromatin loop size and origin choice in mammalian cells. Nature 455: 557-60.
    • (2008) Nature , vol.455 , pp. 557-560
    • Courbet, S.1    Gay, S.2    Arnoult, N.3    Wronka, G.4
  • 82
    • 37249025795 scopus 로고    scopus 로고
    • Dormant origins licensed by excess Mcm2-7 are required for human cells to survive replicative stress
    • Ge XQ, Jackson DA, Blow JJ. 2007. Dormant origins licensed by excess Mcm2-7 are required for human cells to survive replicative stress. Genes Dev 21: 3331-41.
    • (2007) Genes Dev , vol.21 , pp. 3331-3341
    • Ge, X.Q.1    Jackson, D.A.2    Blow, J.J.3
  • 83
    • 84886784734 scopus 로고    scopus 로고
    • Hypermutation of the inactive X chromosome is a frequent event in cancer
    • Jager N, Schlesner M, Jones DT, Raffel S, et al. 2013. Hypermutation of the inactive X chromosome is a frequent event in cancer. Cell 155: 567-81.
    • (2013) Cell , vol.155 , pp. 567-581
    • Jager, N.1    Schlesner, M.2    Jones, D.T.3    Raffel, S.4
  • 84
    • 84874585488 scopus 로고    scopus 로고
    • DNA replication timing and higher-order nuclear organization determine single-nucleotide substitution patterns in cancer genomes
    • Liu L, De S, Michor F. 2013. DNA replication timing and higher-order nuclear organization determine single-nucleotide substitution patterns in cancer genomes. Nat Commun 4: 1502.
    • (2013) Nat Commun , vol.4 , pp. 1502
    • Liu, L.1    De, S.2    Michor, F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.