메뉴 건너뛰기




Volumn 26, Issue , 2014, Pages 77-88

Engineering modular ester fermentative pathways in Escherichia coli

Author keywords

Butyrate esters; Ethyl butyrate; Fermentation; Isobutyl butyrate; Isopropyl butyrate; Modular cell chassis

Indexed keywords

ETHYL BUTYRATE; ISOBUTYL; ISOPROPYL BUTYRATE; MODULAR CELLS;

EID: 84907930055     PISSN: 10967176     EISSN: 10967184     Source Type: Journal    
DOI: 10.1016/j.ymben.2014.09.006     Document Type: Article
Times cited : (78)

References (69)
  • 3
    • 38049001166 scopus 로고    scopus 로고
    • Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels
    • Atsumi S., Hanai T., Liao J.C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 2008, 451:86-89.
    • (2008) Nature , vol.451 , pp. 86-89
    • Atsumi, S.1    Hanai, T.2    Liao, J.C.3
  • 5
    • 84861988496 scopus 로고    scopus 로고
    • Bioprocessing for biofuels
    • Blanch H.W. Bioprocessing for biofuels. Curr. Opin. Biotechnol. 2012, 23:390-395.
    • (2012) Curr. Opin. Biotechnol. , vol.23 , pp. 390-395
    • Blanch, H.W.1
  • 6
    • 79952910616 scopus 로고    scopus 로고
    • Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways
    • Bond-Watts B.B., Bellerose R.J., Chang M.C.Y. Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nat. Chem. Biol. 2011, 7:222-227.
    • (2011) Nat. Chem. Biol. , vol.7 , pp. 222-227
    • Bond-Watts, B.B.1    Bellerose, R.J.2    Chang, M.C.Y.3
  • 7
    • 0019812148 scopus 로고
    • Regulation of fatty acid degradation in Escherichia coli: analysis by operon fusion
    • Clark D. Regulation of fatty acid degradation in Escherichia coli: analysis by operon fusion. J. Bacteriol. 1981, 148:521-526.
    • (1981) J. Bacteriol. , vol.148 , pp. 521-526
    • Clark, D.1
  • 8
    • 36249017917 scopus 로고    scopus 로고
    • Programming gene expression with combinatorial promoters
    • Cox R.S., Surette M.G., Elowitz M.B. Programming gene expression with combinatorial promoters. Mol. Syst. Biol. 2007, 3.
    • (2007) Mol. Syst. Biol. , pp. 3
    • Cox, R.S.1    Surette, M.G.2    Elowitz, M.B.3
  • 9
    • 80051941601 scopus 로고    scopus 로고
    • Engineered reversal of the b-oxidation cycle for the synthesis of fuels and chemicals
    • Dellomonaco C., Clomburg J.M., Miller E.N., Gonzalez R. Engineered reversal of the b-oxidation cycle for the synthesis of fuels and chemicals. Nature 2011, 476:355-359.
    • (2011) Nature , vol.476 , pp. 355-359
    • Dellomonaco, C.1    Clomburg, J.M.2    Miller, E.N.3    Gonzalez, R.4
  • 10
    • 27144466835 scopus 로고    scopus 로고
    • Functional characterization of a melon alcohol acyl-transferase gene family involved in the biosynthesis of ester volatiles. identification of the crucial role of a threonine residue for enzyme activity*
    • El-Sharkawy I., Manríquez D., Flores F., Regad F., Bouzayen M., Latché A., Pech J.-C. Functional characterization of a melon alcohol acyl-transferase gene family involved in the biosynthesis of ester volatiles. identification of the crucial role of a threonine residue for enzyme activity*. Plant Mol. Biol. 2005, 59:345-362.
    • (2005) Plant Mol. Biol. , vol.59 , pp. 345-362
    • El-Sharkawy, I.1    Manríquez, D.2    Flores, F.3    Regad, F.4    Bouzayen, M.5    Latché, A.6    Pech, J.-C.7
  • 13
    • 84893503533 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for production of fatty acid short-chain esters through combination of the fatty acid and 2-keto acid pathways
    • Guo D., Zhu J., Deng Z., Liu T. Metabolic engineering of Escherichia coli for production of fatty acid short-chain esters through combination of the fatty acid and 2-keto acid pathways. Metab. Eng. 2014, 22:69-75.
    • (2014) Metab. Eng. , vol.22 , pp. 69-75
    • Guo, D.1    Zhu, J.2    Deng, Z.3    Liu, T.4
  • 14
    • 37349093415 scopus 로고    scopus 로고
    • Engineered synthetic pathway for isopropanol production in Escherichia coli
    • Hanai T., Atsumi S., Liao J.C. Engineered synthetic pathway for isopropanol production in Escherichia coli. Appl. Environ. Microbiol. 2007, 73:7814-7818.
    • (2007) Appl. Environ. Microbiol. , vol.73 , pp. 7814-7818
    • Hanai, T.1    Atsumi, S.2    Liao, J.C.3
  • 15
    • 78650570829 scopus 로고    scopus 로고
    • Application and engineering of fatty acid biosynthesis in Escherichia coli for advanced fuels and chemicals
    • Handke P., Lynch S.A., Gill R.T. Application and engineering of fatty acid biosynthesis in Escherichia coli for advanced fuels and chemicals. Metab. Eng. 2011, 13:28-37.
    • (2011) Metab. Eng. , vol.13 , pp. 28-37
    • Handke, P.1    Lynch, S.A.2    Gill, R.T.3
  • 16
    • 0000095437 scopus 로고
    • Purification and some properties of alcohol acetyltransferase from banana fruit
    • Harada M., Ueda Y., Iwata T. Purification and some properties of alcohol acetyltransferase from banana fruit. Plant Cell Physiol. 1985, 26:1067-1074.
    • (1985) Plant Cell Physiol. , vol.26 , pp. 1067-1074
    • Harada, M.1    Ueda, Y.2    Iwata, T.3
  • 18
    • 33746655320 scopus 로고    scopus 로고
    • Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels
    • Hill J., Nelson E., Tilman D., Polasky S., Tiffany D. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc. Natl. Acad. Sci. 2006, 103:11206-11210.
    • (2006) Proc. Natl. Acad. Sci. , vol.103 , pp. 11206-11210
    • Hill, J.1    Nelson, E.2    Tilman, D.3    Polasky, S.4    Tiffany, D.5
  • 19
    • 33846951759 scopus 로고    scopus 로고
    • Biomass recalcitrance: engineering plants and enzymes for biofuels production
    • Himmel M., Ding S., Johnson D., Adney W., Nimlos M., Brady J., Foust T. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 2007, 315:804-807.
    • (2007) Science , vol.315 , pp. 804-807
    • Himmel, M.1    Ding, S.2    Johnson, D.3    Adney, W.4    Nimlos, M.5    Brady, J.6    Foust, T.7
  • 20
    • 79952334316 scopus 로고    scopus 로고
    • Analysis of biofuels production from sugar based on three criteria: thermodynamics, bioenergetics, and product separation
    • Huang W.D., Zhang Y.H.P. Analysis of biofuels production from sugar based on three criteria: thermodynamics, bioenergetics, and product separation. Energy Environ. Sci. 2011, 4:784-792.
    • (2011) Energy Environ. Sci. , vol.4 , pp. 784-792
    • Huang, W.D.1    Zhang, Y.H.P.2
  • 22
    • 81055127603 scopus 로고    scopus 로고
    • Dehydratase mediated 1-propanol production in metabolically engineered Escherichia coli
    • Jain R., Yan Y. Dehydratase mediated 1-propanol production in metabolically engineered Escherichia coli. Microb. Cell Factories 2011, 10:97.
    • (2011) Microb. Cell Factories , vol.10 , pp. 97
    • Jain, R.1    Yan, Y.2
  • 23
    • 41249084917 scopus 로고    scopus 로고
    • Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate
    • Jantama K., Haupt M., Svoronos S.A., Zhang X., Moore J., Shanmugam K., Ingram L. Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate. Biotechnol. Bioeng. 2008, 99:1140-1153.
    • (2008) Biotechnol. Bioeng. , vol.99 , pp. 1140-1153
    • Jantama, K.1    Haupt, M.2    Svoronos, S.A.3    Zhang, X.4    Moore, J.5    Shanmugam, K.6    Ingram, L.7
  • 24
    • 84865590395 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for the production of 1-propanol
    • Jun Choi Y., Hwan Park J., Yong Kim T., Yup Lee S. Metabolic engineering of Escherichia coli for the production of 1-propanol. Metab. Eng. 2012.
    • (2012) Metab. Eng.
    • Jun Choi, Y.1    Hwan Park, J.2    Yong Kim, T.3    Yup Lee, S.4
  • 25
    • 33748762752 scopus 로고    scopus 로고
    • Microdiesel: Escherichia coli engineered for fuel production
    • Kalscheuer R., Stolting T., Steinbuchel A. Microdiesel: Escherichia coli engineered for fuel production. Microbiol. 2006, 152:2529-2536.
    • (2006) Microbiol. , vol.152 , pp. 2529-2536
    • Kalscheuer, R.1    Stolting, T.2    Steinbuchel, A.3
  • 26
    • 79960569987 scopus 로고    scopus 로고
    • Rapid optimization of gene dosage in E. coli using DIAL strains
    • Kittleson J.T., Cheung S., Anderson J.C. Rapid optimization of gene dosage in E. coli using DIAL strains. J. Biol. Eng. 2011, 5.
    • (2011) J. Biol. Eng. , pp. 5
    • Kittleson, J.T.1    Cheung, S.2    Anderson, J.C.3
  • 27
    • 0037211529 scopus 로고    scopus 로고
    • Biosynthesis and secretion of plant cuticular wax
    • Kunst L., Samuels A.L. Biosynthesis and secretion of plant cuticular wax. Prog. Lipid Res. 2003, 42:51-80.
    • (2003) Prog. Lipid Res. , vol.42 , pp. 51-80
    • Kunst, L.1    Samuels, A.L.2
  • 28
    • 70450219004 scopus 로고    scopus 로고
    • Plant cuticles shine: advances in wax biosynthesis and export
    • Kunst L., Samuels L. Plant cuticles shine: advances in wax biosynthesis and export. Curr. Opin. Plant Biol. 2009, 12:721-727.
    • (2009) Curr. Opin. Plant Biol. , vol.12 , pp. 721-727
    • Kunst, L.1    Samuels, L.2
  • 31
    • 84907921849 scopus 로고    scopus 로고
    • Rational design of efficient modular cells
    • (under review)
    • Liu Y. and Trinh C.T., Rational design of efficient modular cells, Metab. Eng. (under review).
    • Metab. Eng.
    • Liu, Y.1    Trinh, C.T.2
  • 32
    • 34447330709 scopus 로고    scopus 로고
    • Biochemical and catalytic properties of three recombinant alcohol acyltransferases of melon. Sulfur-containing ester formation, regulatory role of CoA-SH in activity, and sequence elements conferring substrate preference
    • Lucchetta L., Manriquez D., El-Sharkawy I., Flores F.-B., Sanchez-Bel P., Zouine M., Ginies C., Bouzayen M., Rombaldi C., Pech J.-C., Latché A. Biochemical and catalytic properties of three recombinant alcohol acyltransferases of melon. Sulfur-containing ester formation, regulatory role of CoA-SH in activity, and sequence elements conferring substrate preference. J. Agric. Food Chem. 2007, 55:5213-5220.
    • (2007) J. Agric. Food Chem. , vol.55 , pp. 5213-5220
    • Lucchetta, L.1    Manriquez, D.2    El-Sharkawy, I.3    Flores, F.-B.4    Sanchez-Bel, P.5    Zouine, M.6    Ginies, C.7    Bouzayen, M.8    Rombaldi, C.9    Pech, J.-C.10    Latché, A.11
  • 34
    • 0027291426 scopus 로고
    • Regulation of fatty acid biosynthesis in Escherichia coli
    • Magnuson K., Jackowski S., Rock C., Cronan J. Regulation of fatty acid biosynthesis in Escherichia coli. Microbiol. Rev. 1993, 57:522-542.
    • (1993) Microbiol. Rev. , vol.57 , pp. 522-542
    • Magnuson, K.1    Jackowski, S.2    Rock, C.3    Cronan, J.4
  • 35
    • 84901346017 scopus 로고    scopus 로고
    • Expanding the chemical diversity of natural esters by engineering a polyketide-derived pathway into Escherichia coli
    • Menendez-Bravo S., Comba S., Sabatini M., Arabolaza A., Gramajo H. Expanding the chemical diversity of natural esters by engineering a polyketide-derived pathway into Escherichia coli. Metab. Eng. 2014, 24:97-106.
    • (2014) Metab. Eng. , vol.24 , pp. 97-106
    • Menendez-Bravo, S.1    Comba, S.2    Sabatini, M.3    Arabolaza, A.4    Gramajo, H.5
  • 36
    • 83055180451 scopus 로고    scopus 로고
    • Engineering Escherichia coli for biodiesel production utilizing a bacterial fatty acid methyltransferase
    • Nawabi P., Bauer S., Kyrpides N., Lykidis A. Engineering Escherichia coli for biodiesel production utilizing a bacterial fatty acid methyltransferase. Appl. Environ. Microbiol. 2011, 77:8052-8061.
    • (2011) Appl. Environ. Microbiol. , vol.77 , pp. 8052-8061
    • Nawabi, P.1    Bauer, S.2    Kyrpides, N.3    Lykidis, A.4
  • 38
    • 0025825737 scopus 로고
    • Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II
    • Ohta K., Beall D.S., Mejia J.P., Shanmugam K.T., Ingram L.O. Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Appl. Environ. Microbiol. 1991, 57:893-900.
    • (1991) Appl. Environ. Microbiol. , vol.57 , pp. 893-900
    • Ohta, K.1    Beall, D.S.2    Mejia, J.P.3    Shanmugam, K.T.4    Ingram, L.O.5
  • 39
    • 0037014303 scopus 로고    scopus 로고
    • Catalytic properties of alcohol acyltransferase in different strawberry species and cultivars
    • Olías R., Pérez A.G., Sanz C. Catalytic properties of alcohol acyltransferase in different strawberry species and cultivars. J. Agric. Food Chem. 2002, 50:4031-4036.
    • (2002) J. Agric. Food Chem. , vol.50 , pp. 4031-4036
    • Olías, R.1    Pérez, A.G.2    Sanz, C.3
  • 41
    • 0001539337 scopus 로고
    • Partial purification and some properties of alcohol acyltransferase from strawberry fruits
    • Perez A.G., Sanz C., Olias J.M. Partial purification and some properties of alcohol acyltransferase from strawberry fruits. J. Agric. Food Chem. 1993, 41:1462-1466.
    • (1993) J. Agric. Food Chem. , vol.41 , pp. 1462-1466
    • Perez, A.G.1    Sanz, C.2    Olias, J.M.3
  • 42
    • 0000902070 scopus 로고    scopus 로고
    • Evolution of strawberry alcohol acyltransferase activity during fruit development and storage
    • Perez A.G., Sanz C., Olias R., Rios J.J., Olias J.M. Evolution of strawberry alcohol acyltransferase activity during fruit development and storage. J. Agric. Food Chem. 1996, 44:3286-3290.
    • (1996) J. Agric. Food Chem. , vol.44 , pp. 3286-3290
    • Perez, A.G.1    Sanz, C.2    Olias, R.3    Rios, J.J.4    Olias, J.M.5
  • 43
    • 84869196117 scopus 로고    scopus 로고
    • Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH: New York
    • Riemenschneider W., Bolt H.M. Esters, Organic 2005, Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH: New York.
    • (2005) Esters, Organic
    • Riemenschneider, W.1    Bolt, H.M.2
  • 45
    • 84891829362 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals
    • Runguphan W., Keasling J.D. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals. Metab. Eng. 2014, 21:103-113.
    • (2014) Metab. Eng. , vol.21 , pp. 103-113
    • Runguphan, W.1    Keasling, J.D.2
  • 46
    • 70349964350 scopus 로고    scopus 로고
    • Automated design of synthetic ribosome binding sites to control protein expression
    • Salis H.M., Mirsky E.A., Voigt C.A. Automated design of synthetic ribosome binding sites to control protein expression. Nat. Biotechnol. 2009, 27:946-950.
    • (2009) Nat. Biotechnol. , vol.27 , pp. 946-950
    • Salis, H.M.1    Mirsky, E.A.2    Voigt, C.A.3
  • 47
    • 43049180903 scopus 로고    scopus 로고
    • Sealing plant surfaces: cuticular wax formation by epidermal cells
    • Samuels L., Kunst L., Jetter R. Sealing plant surfaces: cuticular wax formation by epidermal cells. Annu. Rev. Plant Biol. 2008, 59:683-707.
    • (2008) Annu. Rev. Plant Biol. , vol.59 , pp. 683-707
    • Samuels, L.1    Kunst, L.2    Jetter, R.3
  • 49
    • 54349114978 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways
    • Shen C., Liao J. Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways. Metab. Eng. 2008, 10:312-320.
    • (2008) Metab. Eng. , vol.10 , pp. 312-320
    • Shen, C.1    Liao, J.2
  • 51
    • 84904862031 scopus 로고    scopus 로고
    • Engineering of chromosomal wax ester synthase integrated Saccharomyces cerevisiae mutants for improved biosynthesis of fatty acid ethyl esters
    • Shi S., Valle Rodríguez J.O., Siewers V., Nielsen J. Engineering of chromosomal wax ester synthase integrated Saccharomyces cerevisiae mutants for improved biosynthesis of fatty acid ethyl esters. Biotechnol. Bioeng. 2014.
    • (2014) Biotechnol. Bioeng.
    • Shi, S.1    Valle Rodríguez, J.O.2    Siewers, V.3    Nielsen, J.4
  • 55
    • 33846950348 scopus 로고    scopus 로고
    • Challenges in engineering microbes for biofuels production
    • Stephanopoulos G. Challenges in engineering microbes for biofuels production. Science 2007, 315:801-804.
    • (2007) Science , vol.315 , pp. 801-804
    • Stephanopoulos, G.1
  • 56
    • 57049185838 scopus 로고    scopus 로고
    • Metabolic engineering: enabling technology for biofuels production
    • Stephanopoulos G. Metabolic engineering: enabling technology for biofuels production. Metab. Eng. 2008, 10:293-294.
    • (2008) Metab. Eng. , vol.10 , pp. 293-294
    • Stephanopoulos, G.1
  • 57
    • 84979447295 scopus 로고
    • The production of aroma compounds by yeast
    • Suomalainen H., Lehtonen M. The production of aroma compounds by yeast. J. Inst. Brew. 1979, 85:149-156.
    • (1979) J. Inst. Brew. , vol.85 , pp. 149-156
    • Suomalainen, H.1    Lehtonen, M.2
  • 58
    • 84864631184 scopus 로고    scopus 로고
    • Elucidating and reprogramming Escherichia coli metabolisms for obligate anaerobic n-butanol and isobutanol production
    • Trinh C.T. Elucidating and reprogramming Escherichia coli metabolisms for obligate anaerobic n-butanol and isobutanol production. Appl. Microbiol. Biotechnol. 2012, 1-12.
    • (2012) Appl. Microbiol. Biotechnol. , pp. 1-12
    • Trinh, C.T.1
  • 59
    • 33749448704 scopus 로고    scopus 로고
    • Design, construction and performance of the most efficient biomass producing E. coli bacterium
    • Trinh C.T., Carlson R., Wlaschin A., Srienc F. Design, construction and performance of the most efficient biomass producing E. coli bacterium. Metab. Eng. 2006, 8:628-638.
    • (2006) Metab. Eng. , vol.8 , pp. 628-638
    • Trinh, C.T.1    Carlson, R.2    Wlaschin, A.3    Srienc, F.4
  • 60
    • 79961084093 scopus 로고    scopus 로고
    • Redesigning Escherichia coli metabolism for anaerobic production of isobutanol
    • Trinh C.T., Li J., Blanch H.W., Clark D.S. Redesigning Escherichia coli metabolism for anaerobic production of isobutanol. Appl. Environ. Microbiol. 2011, 77:4894-4904.
    • (2011) Appl. Environ. Microbiol. , vol.77 , pp. 4894-4904
    • Trinh, C.T.1    Li, J.2    Blanch, H.W.3    Clark, D.S.4
  • 61
    • 70350517579 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for efficient conversion of glycerol to ethanol
    • Trinh C.T., Srienc F. Metabolic engineering of Escherichia coli for efficient conversion of glycerol to ethanol. Appl. Environ. Microbiol. 2009, 75:6696-6705.
    • (2009) Appl. Environ. Microbiol. , vol.75 , pp. 6696-6705
    • Trinh, C.T.1    Srienc, F.2
  • 62
    • 45749137679 scopus 로고    scopus 로고
    • Minimal Escherichia coli cell for the most efficient production of ethanol from hexoses and pentoses
    • Trinh C.T., Unrean P., Srienc F. Minimal Escherichia coli cell for the most efficient production of ethanol from hexoses and pentoses. Appl. Environ. Microbiol. 2008, 74:3634-3643.
    • (2008) Appl. Environ. Microbiol. , vol.74 , pp. 3634-3643
    • Trinh, C.T.1    Unrean, P.2    Srienc, F.3
  • 63
    • 84868098920 scopus 로고    scopus 로고
    • Controlled biosynthesis of odd-chain fuels and chemicals via engineered modular metabolic pathways
    • Tseng H.-C., Prather K.L.J. Controlled biosynthesis of odd-chain fuels and chemicals via engineered modular metabolic pathways. Proc. Natl. Acad. Sci. 2012, 109:17925-17930.
    • (2012) Proc. Natl. Acad. Sci. , vol.109 , pp. 17925-17930
    • Tseng, H.-C.1    Prather, K.L.J.2
  • 64
    • 80555131153 scopus 로고    scopus 로고
    • Metabolic networks evolve towards states of maximum entropy production
    • Unrean P., Srienc F. Metabolic networks evolve towards states of maximum entropy production. Metab. Eng. 2011, 13:666-673.
    • (2011) Metab. Eng. , vol.13 , pp. 666-673
    • Unrean, P.1    Srienc, F.2
  • 65
    • 1542299100 scopus 로고    scopus 로고
    • Production of isoamyl acetate in ackA-pta and/or ldh mutants of Escherichia coli with overexpression of yeast ATF2
    • Vadali R., Horton C., Rudolph F., Bennett G., San K.-Y. Production of isoamyl acetate in ackA-pta and/or ldh mutants of Escherichia coli with overexpression of yeast ATF2. Appl. Microbiol. Biotechnol. 2004, 63:698-704.
    • (2004) Appl. Microbiol. Biotechnol. , vol.63 , pp. 698-704
    • Vadali, R.1    Horton, C.2    Rudolph, F.3    Bennett, G.4    San, K.-Y.5
  • 67
    • 84868263016 scopus 로고    scopus 로고
    • EPathBrick: a synthetic biology platform for engineering metabolic pathways in E. coli
    • Xu P., Vansiri A., Bhan N., Koffas M.A.G. ePathBrick: a synthetic biology platform for engineering metabolic pathways in E. coli. ACS Synth. Biol. 2012, 1:256-266.
    • (2012) ACS Synth. Biol. , vol.1 , pp. 256-266
    • Xu, P.1    Vansiri, A.2    Bhan, N.3    Koffas, M.A.G.4
  • 68
    • 0036096786 scopus 로고    scopus 로고
    • Molecular and biochemical characteristics of a gene encoding an alcohol acyl-transferase involved in the generation of aroma volatile esters during melon ripening
    • Yahyaoui F.E.L., Wongs-Aree C., Latché A., Hackett R., Grierson D., Pech J.-C. Molecular and biochemical characteristics of a gene encoding an alcohol acyl-transferase involved in the generation of aroma volatile esters during melon ripening. Eur. J. Biochem. 2002, 269:2359-2366.
    • (2002) Eur. J. Biochem. , vol.269 , pp. 2359-2366
    • Yahyaoui, F.E.L.1    Wongs-Aree, C.2    Latché, A.3    Hackett, R.4    Grierson, D.5    Pech, J.-C.6
  • 69
    • 81455143861 scopus 로고    scopus 로고
    • Synthesis of FAEEs from glycerol in engineered Saccharomyces cerevisiae using endogenously produced ethanol by heterologous expression of an unspecific bacterial acyltransferase
    • Yu K.O., Jung J., Kim S.W., Park C.H., Han S.O. Synthesis of FAEEs from glycerol in engineered Saccharomyces cerevisiae using endogenously produced ethanol by heterologous expression of an unspecific bacterial acyltransferase. Biotechnol. Bioeng. 2011, 109:110-115.
    • (2011) Biotechnol. Bioeng. , vol.109 , pp. 110-115
    • Yu, K.O.1    Jung, J.2    Kim, S.W.3    Park, C.H.4    Han, S.O.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.