-
1
-
-
79952284127
-
Hallmarks of cancer: the next generation
-
Hanahan D, Weinberg RA. 2011. Hallmarks of cancer: the next generation. Cell 144: 646-74.
-
(2011)
Cell
, vol.144
, pp. 646-674
-
-
Hanahan, D.1
Weinberg, R.A.2
-
2
-
-
52649107626
-
Cancer cell metabolism: Warburg and beyond
-
Hsu PP, Sabatini DM. 2008. Cancer cell metabolism: Warburg and beyond. Cell 134: 703-7.
-
(2008)
Cell
, vol.134
, pp. 703-707
-
-
Hsu, P.P.1
Sabatini, D.M.2
-
3
-
-
20544449673
-
The glucose dependence of Akt-transformed cells can be reversed by pharmacologic activation of fatty acid beta-oxidation
-
Buzzai M, Bauer DE, Jones RG, Deberardinis RJ, et al. 2005. The glucose dependence of Akt-transformed cells can be reversed by pharmacologic activation of fatty acid beta-oxidation. Oncogene 24: 4165-73.
-
(2005)
Oncogene
, vol.24
, pp. 4165-4173
-
-
Buzzai, M.1
Bauer, D.E.2
Jones, R.G.3
Deberardinis, R.J.4
-
4
-
-
77952562382
-
Glucose addiction of TSC null cells is caused by failed mTORC1-dependent balancing of metabolic demand with supply
-
Choo AY, Kim SG, Vander Heiden MG, Mahoney SJ, et al. 2010. Glucose addiction of TSC null cells is caused by failed mTORC1-dependent balancing of metabolic demand with supply. Mol Cell 38: 487-99.
-
(2010)
Mol Cell
, vol.38
, pp. 487-499
-
-
Choo, A.Y.1
Kim, S.G.2
Vander Heiden, M.G.3
Mahoney, S.J.4
-
5
-
-
84894212463
-
Regulation of TORC1 in response to amino acid starvation via lysosomal recruitment of TSC2
-
Demetriades C, Doumpas N, Teleman AA. 2014. Regulation of TORC1 in response to amino acid starvation via lysosomal recruitment of TSC2. Cell 156: 786-99.
-
(2014)
Cell
, vol.156
, pp. 786-799
-
-
Demetriades, C.1
Doumpas, N.2
Teleman, A.A.3
-
6
-
-
2542561169
-
Akt stimulates aerobic glycolysis in cancer cells
-
Elstrom RL, Bauer DE, Buzzai M, Karnauskas R, et al. 2004. Akt stimulates aerobic glycolysis in cancer cells. Cancer Res 64: 3892-9.
-
(2004)
Cancer Res
, vol.64
, pp. 3892-3899
-
-
Elstrom, R.L.1
Bauer, D.E.2
Buzzai, M.3
Karnauskas, R.4
-
7
-
-
84878271546
-
The eEF2 kinase confers resistance to nutrient deprivation by blocking translation elongation
-
Leprivier G, Remke M, Rotblat B, Dubuc A, et al. 2013. The eEF2 kinase confers resistance to nutrient deprivation by blocking translation elongation. Cell 153: 1064-79.
-
(2013)
Cell
, vol.153
, pp. 1064-1079
-
-
Leprivier, G.1
Remke, M.2
Rotblat, B.3
Dubuc, A.4
-
8
-
-
84869027086
-
ATF4 regulates MYC-mediated neuroblastoma cell death upon glutamine deprivation
-
Qing G, Li B, Vu A, Skuli N, et al. 2012. ATF4 regulates MYC-mediated neuroblastoma cell death upon glutamine deprivation. Cancer Cell 22: 631-44.
-
(2012)
Cancer Cell
, vol.22
, pp. 631-644
-
-
Qing, G.1
Li, B.2
Vu, A.3
Skuli, N.4
-
10
-
-
62549151252
-
Why are tumour blood vessels abnormal and why is it important to know
-
Nagy JA, Chang SH, Dvorak AM, Dvorak HF. 2009. Why are tumour blood vessels abnormal and why is it important to know? Br J Cancer 100: 865-9.
-
(2009)
Br J Cancer
, vol.100
, pp. 865-869
-
-
Nagy, J.A.1
Chang, S.H.2
Dvorak, A.M.3
Dvorak, H.F.4
-
11
-
-
61849135453
-
Tumor suppressors and cell metabolism: a recipe for cancer growth
-
Jones RG, Thompson CB. 2009. Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev 23: 537-48.
-
(2009)
Genes Dev
, vol.23
, pp. 537-548
-
-
Jones, R.G.1
Thompson, C.B.2
-
12
-
-
0023158728
-
Elevated levels of glucose transport and transporter messenger RNA are induced by ras or src oncogenes
-
Flier JS, Mueckler MM, Usher P, Lodish HF. 1987. Elevated levels of glucose transport and transporter messenger RNA are induced by ras or src oncogenes. Science 235: 1492-5.
-
(1987)
Science
, vol.235
, pp. 1492-1495
-
-
Flier, J.S.1
Mueckler, M.M.2
Usher, P.3
Lodish, H.F.4
-
13
-
-
0034698178
-
Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc
-
Osthus RC, Shim H, Kim S, Li Q, et al. 2000. Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J Biol Chem 275: 21797-800.
-
(2000)
J Biol Chem
, vol.275
, pp. 21797-21800
-
-
Osthus, R.C.1
Shim, H.2
Kim, S.3
Li, Q.4
-
14
-
-
57749088701
-
Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction
-
Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, et al. 2008. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA 105: 18782-7.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 18782-18787
-
-
Wise, D.R.1
DeBerardinis, R.J.2
Mancuso, A.3
Sayed, N.4
-
15
-
-
64749116346
-
c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism
-
Gao P, Tchernyshyov I, Chang TC, Lee YS, et al. 2009. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458: 762-5.
-
(2009)
Nature
, vol.458
, pp. 762-765
-
-
Gao, P.1
Tchernyshyov, I.2
Chang, T.C.3
Lee, Y.S.4
-
16
-
-
0030921103
-
c-Myc transactivation of LDH-A: implications for tumor metabolism and growth
-
Shim H, Dolde C, Lewis BC, Wu CS, et al. 1997. c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc Natl Acad Sci USA 94: 6658-63.
-
(1997)
Proc Natl Acad Sci USA
, vol.94
, pp. 6658-6663
-
-
Shim, H.1
Dolde, C.2
Lewis, B.C.3
Wu, C.S.4
-
17
-
-
0028802746
-
A hierarchy of ATP-consuming processes in mammalian cells
-
Buttgereit F, Brand MD. 1995. A hierarchy of ATP-consuming processes in mammalian cells. Biochem J 312: 163-7.
-
(1995)
Biochem J
, vol.312
, pp. 163-167
-
-
Buttgereit, F.1
Brand, M.D.2
-
18
-
-
84863763440
-
AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress
-
Jeon SM, Chandel NS, Hay N. 2012. AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature 485: 661-5.
-
(2012)
Nature
, vol.485
, pp. 661-665
-
-
Jeon, S.M.1
Chandel, N.S.2
Hay, N.3
-
20
-
-
45849105156
-
The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1
-
Sancak Y, Peterson TR, Shaul YD, Lindquist RA, et al. 2008. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320: 1496-501.
-
(2008)
Science
, vol.320
, pp. 1496-1501
-
-
Sancak, Y.1
Peterson, T.R.2
Shaul, Y.D.3
Lindquist, R.A.4
-
21
-
-
79953728453
-
Eukaryotic elongation factor-2 (eEF2): its regulation and peptide chain elongation
-
Kaul G, Pattan G, Rafeequi T. 2011. Eukaryotic elongation factor-2 (eEF2): its regulation and peptide chain elongation. Cell Biochem Funct 29: 227-34.
-
(2011)
Cell Biochem Funct
, vol.29
, pp. 227-234
-
-
Kaul, G.1
Pattan, G.2
Rafeequi, T.3
-
23
-
-
0025048078
-
Three phosphorylation sites in elongation factor 2
-
Ovchinnikov LP, Motuz LP, Natapov PG, Averbuch LJ, et al. 1990. Three phosphorylation sites in elongation factor 2. FEBS Lett 275: 209-12.
-
(1990)
FEBS Lett
, vol.275
, pp. 209-212
-
-
Ovchinnikov, L.P.1
Motuz, L.P.2
Natapov, P.G.3
Averbuch, L.J.4
-
24
-
-
0025868969
-
Identification of the phosphorylation sites in elongation factor-2 from rabbit reticulocytes
-
Price NT, Redpath NT, Severinov KV, Campbell DG, et al. 1991. Identification of the phosphorylation sites in elongation factor-2 from rabbit reticulocytes. FEBS Lett 282: 253-8.
-
(1991)
FEBS Lett
, vol.282
, pp. 253-258
-
-
Price, N.T.1
Redpath, N.T.2
Severinov, K.V.3
Campbell, D.G.4
-
25
-
-
0035881470
-
Regulation of elongation factor 2 kinase by p90(RSK1) and p70 S6 kinase
-
Wang X, Li W, Williams M, Terada N, et al. 2001. Regulation of elongation factor 2 kinase by p90(RSK1) and p70 S6 kinase. EMBO J 20: 4370-9.
-
(2001)
EMBO J
, vol.20
, pp. 4370-4379
-
-
Wang, X.1
Li, W.2
Williams, M.3
Terada, N.4
-
29
-
-
1642328617
-
Stimulation of the AMP-activated protein kinase leads to activation of eukaryotic elongation factor 2 kinase and to its phosphorylation at a novel site, serine 398
-
Browne GJ, Finn SG, Proud CG. 2004. Stimulation of the AMP-activated protein kinase leads to activation of eukaryotic elongation factor 2 kinase and to its phosphorylation at a novel site, serine 398. J Biol Chem 279: 12220-31.
-
(2004)
J Biol Chem
, vol.279
, pp. 12220-12231
-
-
Browne, G.J.1
Finn, S.G.2
Proud, C.G.3
-
30
-
-
84893455835
-
The dark face of AMPK as an essential tumor promoter
-
Jeon SM, Hay N. 2012. The dark face of AMPK as an essential tumor promoter. Cell Logist 2: 197-202.
-
(2012)
Cell Logist
, vol.2
, pp. 197-202
-
-
Jeon, S.M.1
Hay, N.2
-
31
-
-
84858782079
-
AMPK: a nutrient and energy sensor that maintains energy homeostasis
-
Hardie DG, Ross FA, Hawley SA. 2012. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13: 251-62.
-
(2012)
Nat Rev Mol Cell Biol
, vol.13
, pp. 251-262
-
-
Hardie, D.G.1
Ross, F.A.2
Hawley, S.A.3
-
32
-
-
0036438894
-
Regulation of peptide-chain elongation in mammalian cells
-
Browne GJ, Proud CG. 2002. Regulation of peptide-chain elongation in mammalian cells. Eur J Bio chem 269: 5360-8.
-
(2002)
Eur J Bio chem
, vol.269
, pp. 5360-5368
-
-
Browne, G.J.1
Proud, C.G.2
-
33
-
-
84873810502
-
Eukaryotic elongation factor 2 controls TNF-alpha translation in LPS-induced hepatitis
-
Gonzalez-Teran B, Cortes JR, Manieri E, Matesanz N, et al. 2013. Eukaryotic elongation factor 2 controls TNF-alpha translation in LPS-induced hepatitis. J Clin Invest 123: 164-78.
-
(2013)
J Clin Invest
, vol.123
, pp. 164-178
-
-
Gonzalez-Teran, B.1
Cortes, J.R.2
Manieri, E.3
Matesanz, N.4
-
34
-
-
1642363230
-
Loss of translational control in yeast compromised for the major mRNA decay pathway
-
Holmes LE, Campbell SG, De Long SK, Sachs AB, et al. 2004. Loss of translational control in yeast compromised for the major mRNA decay pathway. Mol Cell Biol 24: 2998-3010.
-
(2004)
Mol Cell Biol
, vol.24
, pp. 2998-3010
-
-
Holmes, L.E.1
Campbell, S.G.2
De Long, S.K.3
Sachs, A.B.4
-
35
-
-
84884887844
-
A perspective on mammalian upstream open reading frame function
-
Somers J, Poyry T, Willis AE. 2013. A perspective on mammalian upstream open reading frame function. Int J Biochem Cell Biol 45: 1690-700.
-
(2013)
Int J Biochem Cell Biol
, vol.45
, pp. 1690-1700
-
-
Somers, J.1
Poyry, T.2
Willis, A.E.3
-
36
-
-
0035853762
-
Internal ribosome entry site-mediated translation of a mammalian mRNA is regulated by amino acid availability
-
Fernandez J, Yaman I, Mishra R, Merrick WC, et al. 2001. Internal ribosome entry site-mediated translation of a mammalian mRNA is regulated by amino acid availability. J Biol Chem 276: 12285-91.
-
(2001)
J Biol Chem
, vol.276
, pp. 12285-12291
-
-
Fernandez, J.1
Yaman, I.2
Mishra, R.3
Merrick, W.C.4
-
37
-
-
33745838924
-
Amino acid starvation induces the SNAT2 neutral amino acid transporter by a mechanism that involves eukaryotic initiation factor 2alpha phosphorylation and cap-independent translation
-
Gaccioli F, Huang CC, Wang C, Bevilacqua E, et al. 2006. Amino acid starvation induces the SNAT2 neutral amino acid transporter by a mechanism that involves eukaryotic initiation factor 2alpha phosphorylation and cap-independent translation. J Biol Chem 281: 17929-40.
-
(2006)
J Biol Chem
, vol.281
, pp. 17929-17940
-
-
Gaccioli, F.1
Huang, C.C.2
Wang, C.3
Bevilacqua, E.4
-
38
-
-
17144424622
-
Translational control in stress and apoptosis
-
Holcik M, Sonenberg N. 2005. Translational control in stress and apoptosis. Nat Rev Mol Cell Biol 6: 318-27.
-
(2005)
Nat Rev Mol Cell Biol
, vol.6
, pp. 318-327
-
-
Holcik, M.1
Sonenberg, N.2
-
39
-
-
38849172516
-
Re-programming of translation following cell stress allows IRES-mediated translation to predominate
-
Spriggs KA, Stoneley M, Bushell M, Willis AE. 2008. Re-programming of translation following cell stress allows IRES-mediated translation to predominate. Biol Cell 100: 27-38.
-
(2008)
Biol Cell
, vol.100
, pp. 27-38
-
-
Spriggs, K.A.1
Stoneley, M.2
Bushell, M.3
Willis, A.E.4
-
40
-
-
35649001888
-
A hypoxia-controlled cap-dependent to cap-independent translation switch in breast cancer
-
Braunstein S, Karpisheva K, Pola C, Goldberg J, et al. 2007. A hypoxia-controlled cap-dependent to cap-independent translation switch in breast cancer. Mol Cell 28: 501-12.
-
(2007)
Mol Cell
, vol.28
, pp. 501-512
-
-
Braunstein, S.1
Karpisheva, K.2
Pola, C.3
Goldberg, J.4
-
41
-
-
0031869662
-
Translation of vascular endothelial growth factor mRNA by internal ribosome entry: implications for translation under hypoxia
-
Stein I, Itin A, Einat P, Skaliter R, et al. 1998. Translation of vascular endothelial growth factor mRNA by internal ribosome entry: implications for translation under hypoxia. Mol Cell Biol 18: 3112-9.
-
(1998)
Mol Cell Biol
, vol.18
, pp. 3112-3119
-
-
Stein, I.1
Itin, A.2
Einat, P.3
Skaliter, R.4
-
42
-
-
77953565102
-
The GCN2-ATF4 pathway is critical for tumour cell survival and proliferation in response to nutrient deprivation
-
Ye J, Kumanova M, Hart LS, Sloane K, et al. 2010. The GCN2-ATF4 pathway is critical for tumour cell survival and proliferation in response to nutrient deprivation. EMBO J 29: 2082-96.
-
(2010)
EMBO J
, vol.29
, pp. 2082-2096
-
-
Ye, J.1
Kumanova, M.2
Hart, L.S.3
Sloane, K.4
-
43
-
-
0033160190
-
A new internal-ribosome-entry-site motif potentiates XIAP-mediated cytoprotection
-
Holcik M, Lefebvre C, Yeh C, Chow T, et al. 1999. A new internal-ribosome-entry-site motif potentiates XIAP-mediated cytoprotection. Nat Cell Biol 1: 190-2.
-
(1999)
Nat Cell Biol
, vol.1
, pp. 190-192
-
-
Holcik, M.1
Lefebvre, C.2
Yeh, C.3
Chow, T.4
-
44
-
-
3142754413
-
BCL-2 translation is mediated via internal ribosome entry during cell stress
-
Sherrill KW, Byrd MP, Van Eden ME, Lloyd RE. 2004. BCL-2 translation is mediated via internal ribosome entry during cell stress. J Biol Chem 279: 29066-74.
-
(2004)
J Biol Chem
, vol.279
, pp. 29066-29074
-
-
Sherrill, K.W.1
Byrd, M.P.2
Van Eden, M.E.3
Lloyd, R.E.4
-
45
-
-
33744955344
-
Internal ribosome entry site-mediated translation of Apaf-1, but not XIAP, is regulated during UV-induced cell death
-
Ungureanu NH, Cloutier M, Lewis SM, de Silva N, et al. 2006. Internal ribosome entry site-mediated translation of Apaf-1, but not XIAP, is regulated during UV-induced cell death. J Biol Chem 281: 15155-63.
-
(2006)
J Biol Chem
, vol.281
, pp. 15155-15163
-
-
Ungureanu, N.H.1
Cloutier, M.2
Lewis, S.M.3
de Silva, N.4
-
46
-
-
34250307059
-
Ras transformation of RIE-1 cells activates cap-independent translation of ornithine decarboxylase: regulation by the Raf/MEK/ERK and phosphatidylinositol 3-kinase pathways
-
Origanti S, Shantz LM. 2007. Ras transformation of RIE-1 cells activates cap-independent translation of ornithine decarboxylase: regulation by the Raf/MEK/ERK and phosphatidylinositol 3-kinase pathways. Cancer Res 67: 4834-42.
-
(2007)
Cancer Res
, vol.67
, pp. 4834-4842
-
-
Origanti, S.1
Shantz, L.M.2
-
47
-
-
19944433283
-
Ribosome stalling regulates IRES-mediated translation in eukaryotes, a parallel to prokaryotic attenuation
-
Fernandez J, Yaman I, Huang C, Liu H, et al. 2005. Ribosome stalling regulates IRES-mediated translation in eukaryotes, a parallel to prokaryotic attenuation. Mol Cell 17: 405-16.
-
(2005)
Mol Cell
, vol.17
, pp. 405-416
-
-
Fernandez, J.1
Yaman, I.2
Huang, C.3
Liu, H.4
-
48
-
-
46149087988
-
Elongation factor 2 and fragile X mental retardation protein control the dynamic translation of Arc/Arg3.1 essential for mGluR-LTD
-
Park S, Park JM, Kim S, Kim JA, et al. 2008. Elongation factor 2 and fragile X mental retardation protein control the dynamic translation of Arc/Arg3.1 essential for mGluR-LTD. Neuron 59: 70-83.
-
(2008)
Neuron
, vol.59
, pp. 70-83
-
-
Park, S.1
Park, J.M.2
Kim, S.3
Kim, J.A.4
-
49
-
-
84888136766
-
Less is more: improving proteostasis by translation slow down
-
Sherman MY, Qian SB. 2013. Less is more: improving proteostasis by translation slow down. Trends Biochem Sci 38: 585-91.
-
(2013)
Trends Biochem Sci
, vol.38
, pp. 585-591
-
-
Sherman, M.Y.1
Qian, S.B.2
-
50
-
-
77649272553
-
Slowing bacterial translation speed enhances eukaryotic protein folding efficiency
-
Siller E, DeZwaan DC, Anderson JF, Freeman BC, et al. 2010. Slowing bacterial translation speed enhances eukaryotic protein folding efficiency. J Mol Biol 396: 1310-8.
-
(2010)
J Mol Biol
, vol.396
, pp. 1310-1318
-
-
Siller, E.1
DeZwaan, D.C.2
Anderson, J.F.3
Freeman, B.C.4
-
51
-
-
62049083910
-
Transient ribosomal attenuation coordinates protein synthesis and co-translational folding
-
Zhang G, Hubalewska M, Ignatova Z. 2009. Transient ribosomal attenuation coordinates protein synthesis and co-translational folding. Nat Struct Mol Biol 16: 274-80.
-
(2009)
Nat Struct Mol Biol
, vol.16
, pp. 274-280
-
-
Zhang, G.1
Hubalewska, M.2
Ignatova, Z.3
-
52
-
-
34948856961
-
Ribosome kinetics and aa-tRNA competition determine rate and fidelity of peptide synthesis
-
Fluitt A, Pienaar E, Viljoen H. 2007. Ribosome kinetics and aa-tRNA competition determine rate and fidelity of peptide synthesis. Comput Biol Chem 31: 335-46.
-
(2007)
Comput Biol Chem
, vol.31
, pp. 335-346
-
-
Fluitt, A.1
Pienaar, E.2
Viljoen, H.3
-
53
-
-
84870806182
-
A conserved eEF2 coding variant in SCA26 leads to loss of translational fidelity and increased susceptibility to proteostatic insult
-
Hekman KE, Yu GY, Brown CD, Zhu H, et al. 2012. A conserved eEF2 coding variant in SCA26 leads to loss of translational fidelity and increased susceptibility to proteostatic insult. Hum Mol Genet 21: 5472-83.
-
(2012)
Hum Mol Genet
, vol.21
, pp. 5472-5483
-
-
Hekman, K.E.1
Yu, G.Y.2
Brown, C.D.3
Zhu, H.4
-
54
-
-
84873467908
-
Cotranslational response to proteotoxic stress by elongation pausing of ribosomes
-
Liu B, Han Y, Qian SB. 2013. Cotranslational response to proteotoxic stress by elongation pausing of ribosomes. Mol Cell 49: 453-63.
-
(2013)
Mol Cell
, vol.49
, pp. 453-463
-
-
Liu, B.1
Han, Y.2
Qian, S.B.3
-
55
-
-
84873442839
-
Widespread regulation of translation by elongation pausing in heat shock
-
Shalgi R, Hurt JA, Krykbaeva I, Taipale M, et al. 2013. Widespread regulation of translation by elongation pausing in heat shock. Mol Cell 49: 439-52.
-
(2013)
Mol Cell
, vol.49
, pp. 439-452
-
-
Shalgi, R.1
Hurt, J.A.2
Krykbaeva, I.3
Taipale, M.4
-
56
-
-
0036086064
-
The unfolded protein response in nutrient sensing and differentiation
-
Kaufman RJ, Scheuner D, Schroder M, Shen X, et al. 2002. The unfolded protein response in nutrient sensing and differentiation. Nat Rev Mol Cell Biol 3: 411-21.
-
(2002)
Nat Rev Mol Cell Biol
, vol.3
, pp. 411-421
-
-
Kaufman, R.J.1
Scheuner, D.2
Schroder, M.3
Shen, X.4
-
57
-
-
84881055345
-
Glucose starvation induces cell death in K-ras-transformed cells by interfering with the hexosamine biosynthesis pathway and activating the unfolded protein response
-
Palorini R, Cammarata FP, Balestrieri C, Monestiroli A, et al. 2013. Glucose starvation induces cell death in K-ras-transformed cells by interfering with the hexosamine biosynthesis pathway and activating the unfolded protein response. Cell Death Dis 4: e732.
-
(2013)
Cell Death Dis
, vol.4
, pp. e732
-
-
Palorini, R.1
Cammarata, F.P.2
Balestrieri, C.3
Monestiroli, A.4
-
59
-
-
0035826689
-
Rck2, a member of the calmodulin-protein kinase family, links protein synthesis to high osmolarity MAP kinase signaling in budding yeast
-
Teige M, Scheikl E, Reiser V, Ruis H, et al. 2001. Rck2, a member of the calmodulin-protein kinase family, links protein synthesis to high osmolarity MAP kinase signaling in budding yeast. Proc Natl Acad Sci USA 98: 5625-30.
-
(2001)
Proc Natl Acad Sci USA
, vol.98
, pp. 5625-5630
-
-
Teige, M.1
Scheikl, E.2
Reiser, V.3
Ruis, H.4
-
60
-
-
64749108996
-
Tumours with PI3K activation are resistant to dietary restriction
-
Kalaany NY, Sabatini DM. 2009. Tumours with PI3K activation are resistant to dietary restriction. Nature 458: 725-31.
-
(2009)
Nature
, vol.458
, pp. 725-731
-
-
Kalaany, N.Y.1
Sabatini, D.M.2
-
61
-
-
84895529793
-
Calorie restriction and cancer prevention: a mechanistic perspective
-
Hursting SD, Dunlap SM, Ford NA, Hursting MJ, et al. 2013. Calorie restriction and cancer prevention: a mechanistic perspective. Cancer Metab 1: 10.
-
(2013)
Cancer Metab
, vol.1
, pp. 10
-
-
Hursting, S.D.1
Dunlap, S.M.2
Ford, N.A.3
Hursting, M.J.4
-
62
-
-
4143146391
-
Antiangiogenic and proapoptotic effects of dietary restriction on experimental mouse and human brain tumors
-
Mukherjee P, Abate LE, Seyfried TN. 2004. Antiangiogenic and proapoptotic effects of dietary restriction on experimental mouse and human brain tumors. Clin Cancer Res 10: 5622-59.
-
(2004)
Clin Cancer Res
, vol.10
, pp. 5622-5659
-
-
Mukherjee, P.1
Abate, L.E.2
Seyfried, T.N.3
-
63
-
-
84857407549
-
Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia
-
Conley SJ, Gheordunescu E, Kakarala P, Newman B, et al. 2012. Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia. Proc Natl Acad Sci USA 109: 2784-9.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. 2784-2789
-
-
Conley, S.J.1
Gheordunescu, E.2
Kakarala, P.3
Newman, B.4
|