-
1
-
-
0347444723
-
MicroRNAs: genomics, biogenesis, mechanism, and function
-
Bartel D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116:281-297.
-
(2004)
Cell
, vol.116
, pp. 281-297
-
-
Bartel, D.P.1
-
2
-
-
72549085095
-
Nuclear networking fashions pre-messenger RNA and primary microRNA transcripts for function
-
Pawlicki J.M., Steitz J.A. Nuclear networking fashions pre-messenger RNA and primary microRNA transcripts for function. Trends Cell Biol. 2010, 20:52-61.
-
(2010)
Trends Cell Biol.
, vol.20
, pp. 52-61
-
-
Pawlicki, J.M.1
Steitz, J.A.2
-
3
-
-
34248677845
-
MicroRNAs in skeletal and cardiac muscle development
-
Callis T.E., Chen J.-F., Wang D.-Z. MicroRNAs in skeletal and cardiac muscle development. DNA Cell Biol. 2007, 26:219-225.
-
(2007)
DNA Cell Biol.
, vol.26
, pp. 219-225
-
-
Callis, T.E.1
Chen, J.-F.2
Wang, D.-Z.3
-
5
-
-
78751660177
-
Pervasive roles of microRNAs in cardiovascular biology
-
Small E.M., Olson E.N. Pervasive roles of microRNAs in cardiovascular biology. Nature 2011, 469:336-342.
-
(2011)
Nature
, vol.469
, pp. 336-342
-
-
Small, E.M.1
Olson, E.N.2
-
6
-
-
78650486169
-
MicroRNA profiling during mouse ventricular maturation: a role for miR-27 modulating Mef2c expression
-
Chinchilla A., Lozano E., Daimi H., Esteban F.J., Crist C., Aranega A.E., Franco D. MicroRNA profiling during mouse ventricular maturation: a role for miR-27 modulating Mef2c expression. Cardiovasc. Res. 2011, 89:98-108.
-
(2011)
Cardiovasc. Res.
, vol.89
, pp. 98-108
-
-
Chinchilla, A.1
Lozano, E.2
Daimi, H.3
Esteban, F.J.4
Crist, C.5
Aranega, A.E.6
Franco, D.7
-
7
-
-
69449099803
-
Muscle stem cell behavior is modified by microRNA-27 regulation of Pax3 expression
-
Crist C.G., Montarras D., Pallafacchina G., Rocancourt D., Cumano A., Conway S.J., Buckingham M. Muscle stem cell behavior is modified by microRNA-27 regulation of Pax3 expression. Proc. Natl. Acad. Sci. U. S. A. 2009, 106:13383-13387.
-
(2009)
Proc. Natl. Acad. Sci. U. S. A.
, vol.106
, pp. 13383-13387
-
-
Crist, C.G.1
Montarras, D.2
Pallafacchina, G.3
Rocancourt, D.4
Cumano, A.5
Conway, S.J.6
Buckingham, M.7
-
8
-
-
80051473055
-
Pitx2c modulates Pax3+/Pax7+ cell populations and regulates Pax3 expression by repressing miR27 expression during myogenesis
-
Lozano-Velasco E., Contreras A., Crist C., Hernández-Torres F., Franco D., Aránega A.E. Pitx2c modulates Pax3+/Pax7+ cell populations and regulates Pax3 expression by repressing miR27 expression during myogenesis. Dev. Biol. 2011, 357:165-178.
-
(2011)
Dev. Biol.
, vol.357
, pp. 165-178
-
-
Lozano-Velasco, E.1
Contreras, A.2
Crist, C.3
Hernández-Torres, F.4
Franco, D.5
Aránega, A.E.6
-
9
-
-
67749106564
-
MiR-23a functions downstream of NFATc3 to regulate cardiac hypertrophy
-
Lin Z., Murtaza I., Wang K., Jiao J., Gao J., Li P.F. miR-23a functions downstream of NFATc3 to regulate cardiac hypertrophy. Proc. Natl. Acad. Sci. U. S. A. 2009, 106:12103-12108.
-
(2009)
Proc. Natl. Acad. Sci. U. S. A.
, vol.106
, pp. 12103-12108
-
-
Lin, Z.1
Murtaza, I.2
Wang, K.3
Jiao, J.4
Gao, J.5
Li, P.F.6
-
10
-
-
84855296257
-
Cardiac hypertrophy is positively regulated by microRNA miR-23a
-
Wang K., Lin Z.-Q., Long B., Li J.-H., Zhou J., Li P.-F. Cardiac hypertrophy is positively regulated by microRNA miR-23a. J. Biol. Chem. 2012, 287:589-599.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 589-599
-
-
Wang, K.1
Lin, Z.-Q.2
Long, B.3
Li, J.-H.4
Zhou, J.5
Li, P.-F.6
-
11
-
-
80055083727
-
Translational suppression of atrophic regulators by microRNA-23a integrates resistance to skeletal muscle atrophy
-
Wada S., Kato Y., Okutsu M., Miyaki S., Suzuki K., Yan Z., Schiaffino S., Asahara H., Ushida T., Akimoto T. Translational suppression of atrophic regulators by microRNA-23a integrates resistance to skeletal muscle atrophy. J. Biol. Chem. 2011, 286:38456-38465.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 38456-38465
-
-
Wada, S.1
Kato, Y.2
Okutsu, M.3
Miyaki, S.4
Suzuki, K.5
Yan, Z.6
Schiaffino, S.7
Asahara, H.8
Ushida, T.9
Akimoto, T.10
-
12
-
-
79251581576
-
MicroRNA-27a regulates beta cardiac myosin heavy chain gene expression by targeting thyroid hormone receptor beta1 in neonatal rat ventricular myocytes
-
Nishi H., Ono K., Horie T., Nagao K., Kinoshita M., Kuwabara Y., Watanabe S., Takaya T., Tamaki Y., Takanabe-Mori R., Wada H., Hasegawa K., Iwanaga Y., Kawamura T., Kita T., Kimura T. MicroRNA-27a regulates beta cardiac myosin heavy chain gene expression by targeting thyroid hormone receptor beta1 in neonatal rat ventricular myocytes. Mol. Cell. Biol. 2011, 31:744-755.
-
(2011)
Mol. Cell. Biol.
, vol.31
, pp. 744-755
-
-
Nishi, H.1
Ono, K.2
Horie, T.3
Nagao, K.4
Kinoshita, M.5
Kuwabara, Y.6
Watanabe, S.7
Takaya, T.8
Tamaki, Y.9
Takanabe-Mori, R.10
Wada, H.11
Hasegawa, K.12
Iwanaga, Y.13
Kawamura, T.14
Kita, T.15
Kimura, T.16
-
13
-
-
84862834932
-
MicroRNA-27a promotes myoblast proliferation by targeting myostatin
-
Huang Z., Chen X., Yu B., He J., Chen D. MicroRNA-27a promotes myoblast proliferation by targeting myostatin. Biochem. Biophys. Res. Commun. 2012, 423(2):265-269.
-
(2012)
Biochem. Biophys. Res. Commun.
, vol.423
, Issue.2
, pp. 265-269
-
-
Huang, Z.1
Chen, X.2
Yu, B.3
He, J.4
Chen, D.5
-
14
-
-
84874255537
-
In vivo suppression of microRNA-24 prevents the transition toward decompensated hypertrophy in aortic-constricted mice
-
Li R.-C., Tao J., Guo Y.-B., Wu H.-D., Liu R.-F., Bai Y., Lv Z.-Z., Luo G.-Z., Li L.-L., Wang M., Yang H.-Q., Gao W., Han Q.-D., Zhang Y.-Y., Wang X.-J., Xu M., Wang S.-Q. In vivo suppression of microRNA-24 prevents the transition toward decompensated hypertrophy in aortic-constricted mice. Circ. Res. 2013, 112:601-605.
-
(2013)
Circ. Res.
, vol.112
, pp. 601-605
-
-
Li, R.-C.1
Tao, J.2
Guo, Y.-B.3
Wu, H.-D.4
Liu, R.-F.5
Bai, Y.6
Lv, Z.-Z.7
Luo, G.-Z.8
Li, L.-L.9
Wang, M.10
Yang, H.-Q.11
Gao, W.12
Han, Q.-D.13
Zhang, Y.-Y.14
Wang, X.-J.15
Xu, M.16
Wang, S.-Q.17
-
15
-
-
8144225486
-
MicroRNA genes are transcribed by RNA polymerase II
-
Lee Y., Kim M., Han J., Yeom K.-H., Lee S., Baek S.H., Kim V.N. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004, 23:4051-4060.
-
(2004)
EMBO J.
, vol.23
, pp. 4051-4060
-
-
Lee, Y.1
Kim, M.2
Han, J.3
Yeom, K.-H.4
Lee, S.5
Baek, S.H.6
Kim, V.N.7
-
16
-
-
84875197291
-
Intron retention and transcript chimerism conserved across mammals: Ly6g5b and Csnk2b-Ly6g5b as examples
-
Hernández-Torres F., Rastrojo A., Aguado B. Intron retention and transcript chimerism conserved across mammals: Ly6g5b and Csnk2b-Ly6g5b as examples. BMC Genomics 2013, 14:199.
-
(2013)
BMC Genomics
, vol.14
, pp. 199
-
-
Hernández-Torres, F.1
Rastrojo, A.2
Aguado, B.3
-
17
-
-
34047272129
-
The transcription factor MEF2C is required for craniofacial development
-
Verzi M.P., Agarwal P., Brown C., McCulley D.J., Schwarz J.J., Black B.L. The transcription factor MEF2C is required for craniofacial development. Dev. Cell 2007, 12:645-652.
-
(2007)
Dev. Cell
, vol.12
, pp. 645-652
-
-
Verzi, M.P.1
Agarwal, P.2
Brown, C.3
McCulley, D.J.4
Schwarz, J.J.5
Black, B.L.6
-
18
-
-
0035203948
-
The Mef2c gene is a direct transcriptional target of myogenic bHLH and MEF2 proteins during skeletal muscle development
-
Wang D.Z., Valdez M.R., McAnally J., Richardson J., Olson E.N. The Mef2c gene is a direct transcriptional target of myogenic bHLH and MEF2 proteins during skeletal muscle development. Development 2001, 128:4623-4633.
-
(2001)
Development
, vol.128
, pp. 4623-4633
-
-
Wang, D.Z.1
Valdez, M.R.2
McAnally, J.3
Richardson, J.4
Olson, E.N.5
-
19
-
-
84861858796
-
Targeted deletion of microRNA-22 promotes stress-induced cardiac dilation and contractile dysfunction
-
Gurha P., Abreu-Goodger C., Wang T., Ramirez M.O., Drumond A.L., van Dongen S., Chen Y., Bartonicek N., Enright A.J., Lee B., Kelm R.J., Reddy A.K., Taffet G.E., Bradley A., Wehrens X.H., Entman M.L., Rodriguez A. Targeted deletion of microRNA-22 promotes stress-induced cardiac dilation and contractile dysfunction. Circulation 2012, 125:2751-2761.
-
(2012)
Circulation
, vol.125
, pp. 2751-2761
-
-
Gurha, P.1
Abreu-Goodger, C.2
Wang, T.3
Ramirez, M.O.4
Drumond, A.L.5
van Dongen, S.6
Chen, Y.7
Bartonicek, N.8
Enright, A.J.9
Lee, B.10
Kelm, R.J.11
Reddy, A.K.12
Taffet, G.E.13
Bradley, A.14
Wehrens, X.H.15
Entman, M.L.16
Rodriguez, A.17
-
20
-
-
78650509132
-
Conservation and evolution in and among SRF- and MEF2-type MADS domains and their binding sites
-
Wu W., Huang X., Cheng J., Li Z., de Folter S., Huang Z., Jiang X., Pang H., Tao S. Conservation and evolution in and among SRF- and MEF2-type MADS domains and their binding sites. Mol. Cell. Evol. 2010, 28:501-511.
-
(2010)
Mol. Cell. Evol.
, vol.28
, pp. 501-511
-
-
Wu, W.1
Huang, X.2
Cheng, J.3
Li, Z.4
de Folter, S.5
Huang, Z.6
Jiang, X.7
Pang, H.8
Tao, S.9
-
21
-
-
0024296297
-
Functional activity of the two promoters of the myosin alkali light chain gene in primary muscle cell cultures: comparison with other muscle gene promoters and other culture systems
-
Daubas P., Klarsfeld A., Garner I., Pinset C., Cox R., Buckingham M. Functional activity of the two promoters of the myosin alkali light chain gene in primary muscle cell cultures: comparison with other muscle gene promoters and other culture systems. Nucleic Acids Res. 1988, 16:1251-1271.
-
(1988)
Nucleic Acids Res.
, vol.16
, pp. 1251-1271
-
-
Daubas, P.1
Klarsfeld, A.2
Garner, I.3
Pinset, C.4
Cox, R.5
Buckingham, M.6
-
22
-
-
84883840386
-
Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines
-
Todaro G.J., Green H. Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J. Cell Biol. 1963, 17:299-313.
-
(1963)
J. Cell Biol.
, vol.17
, pp. 299-313
-
-
Todaro, G.J.1
Green, H.2
-
23
-
-
0032539911
-
HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte
-
Claycomb W.C., Lanson N.A., Stallworth B.S., Egeland D.B., Delcarpio J.B., Bahinski A., Izzo N.J. HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc. Natl. Acad. Sci. U. S. A. 1998, 95:2979-2984.
-
(1998)
Proc. Natl. Acad. Sci. U. S. A.
, vol.95
, pp. 2979-2984
-
-
Claycomb, W.C.1
Lanson, N.A.2
Stallworth, B.S.3
Egeland, D.B.4
Delcarpio, J.B.5
Bahinski, A.6
Izzo, N.J.7
-
24
-
-
84883505232
-
Correct assembly of RNA polymerase II depends on the foot domain and is required for multiple steps of transcription in Saccharomyces cerevisiae
-
Garrido-Godino A.I., García-López M.C., Navarro F. Correct assembly of RNA polymerase II depends on the foot domain and is required for multiple steps of transcription in Saccharomyces cerevisiae. Mol. Cell. Biol. 2013, 33:3611-3626.
-
(2013)
Mol. Cell. Biol.
, vol.33
, pp. 3611-3626
-
-
Garrido-Godino, A.I.1
García-López, M.C.2
Navarro, F.3
-
25
-
-
80054732631
-
Pitx2c modulates cardiac-specific transcription factors networks in differentiating cardiomyocytes from murine embryonic stem cells
-
Lozano-Velasco E., Chinchilla A., Martínez-Fernández S., Hernández-Torres F., Navarro F., Lyons G.E., Franco D., Aránega A.E. Pitx2c modulates cardiac-specific transcription factors networks in differentiating cardiomyocytes from murine embryonic stem cells. Cells Tissues Organs (Print) 2011, 194:349-362.
-
(2011)
Cells Tissues Organs (Print)
, vol.194
, pp. 349-362
-
-
Lozano-Velasco, E.1
Chinchilla, A.2
Martínez-Fernández, S.3
Hernández-Torres, F.4
Navarro, F.5
Lyons, G.E.6
Franco, D.7
Aránega, A.E.8
-
26
-
-
0031281873
-
Embryonic stem cells: a model to study structural and functional properties in cardiomyogenesis
-
Hescheler J., Fleischmann B.K., Lentini S., Maltsev V.A., Rohwedel J., Wobus A.M., Addicks K. Embryonic stem cells: a model to study structural and functional properties in cardiomyogenesis. Cardiovasc. Res. 1997, 36:149-162.
-
(1997)
Cardiovasc. Res.
, vol.36
, pp. 149-162
-
-
Hescheler, J.1
Fleischmann, B.K.2
Lentini, S.3
Maltsev, V.A.4
Rohwedel, J.5
Wobus, A.M.6
Addicks, K.7
-
27
-
-
64149097786
-
The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments
-
Bustin S.A., Benes V., Garson J.A., Hellemans J., Huggett J., Kubista M., Mueller R., Nolan T., Pfaffl M.W., Shipley G.L., Vandesompele J., Wittwer C.T. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009, 55:611-622.
-
(2009)
Clin. Chem.
, vol.55
, pp. 611-622
-
-
Bustin, S.A.1
Benes, V.2
Garson, J.A.3
Hellemans, J.4
Huggett, J.5
Kubista, M.6
Mueller, R.7
Nolan, T.8
Pfaffl, M.W.9
Shipley, G.L.10
Vandesompele, J.11
Wittwer, C.T.12
-
28
-
-
0035710746
-
Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the method
-
(ISSN 1046-2023)
-
Livak K.J., Schmittgen T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the method. Methods 2001, 25(4):402-408. (ISSN 1046-2023).
-
(2001)
Methods
, vol.25
, Issue.4
, pp. 402-408
-
-
Livak, K.J.1
Schmittgen, T.D.2
-
29
-
-
56149091721
-
MicroRNA: novel regulators involved in the remodeling and reverse remodeling of the heart
-
Wang J., Xu R., Lin F., Zhang S., Zhang G., Hu S., Zheng Z. MicroRNA: novel regulators involved in the remodeling and reverse remodeling of the heart. Cardiology 2009, 113:81-88.
-
(2009)
Cardiology
, vol.113
, pp. 81-88
-
-
Wang, J.1
Xu, R.2
Lin, F.3
Zhang, S.4
Zhang, G.5
Hu, S.6
Zheng, Z.7
-
31
-
-
84866625282
-
MicroRNA expression profiling of the developing mouse heart
-
Cao L., Kong L.-P., Yu Z.-B., Han S.-P., Bai Y.-F., Zhu J., Hu X., Zhu C., Zhu S., Guo X.-R. MicroRNA expression profiling of the developing mouse heart. Int. J. Mol. Med. 2012, 30:1095-1104.
-
(2012)
Int. J. Mol. Med.
, vol.30
, pp. 1095-1104
-
-
Cao, L.1
Kong, L.-P.2
Yu, Z.-B.3
Han, S.-P.4
Bai, Y.-F.5
Zhu, J.6
Hu, X.7
Zhu, C.8
Zhu, S.9
Guo, X.-R.10
-
32
-
-
12744261452
-
Evolution and functional classification of vertebrate gene deserts
-
Ovcharenko I., Loots G.G., Nobrega M.A., Hardison R.C., Miller W., Stubbs L. Evolution and functional classification of vertebrate gene deserts. Genome Res. 2005, 15:137-145.
-
(2005)
Genome Res.
, vol.15
, pp. 137-145
-
-
Ovcharenko, I.1
Loots, G.G.2
Nobrega, M.A.3
Hardison, R.C.4
Miller, W.5
Stubbs, L.6
-
33
-
-
84860361227
-
Gli2 and MEF2C activate each other's expression and function synergistically during cardiomyogenesis in vitro
-
Voronova A., Al Madhoun A., Fischer A., Shelton M., Karamboulas C., Skerjanc I.S. Gli2 and MEF2C activate each other's expression and function synergistically during cardiomyogenesis in vitro. Nucleic Acids Res. 2012, 40:3329-3347.
-
(2012)
Nucleic Acids Res.
, vol.40
, pp. 3329-3347
-
-
Voronova, A.1
Al Madhoun, A.2
Fischer, A.3
Shelton, M.4
Karamboulas, C.5
Skerjanc, I.S.6
-
34
-
-
57649149249
-
Synergistic up-regulation of muscle LIM protein expression in C2C12 and NIH3T3 cells by myogenin and MEF2C
-
Ji Z.-X., Du C., Wu G.-S., Li S.-Y., An G.-S., Yang Y.-X., Jia R., Jia H.-T., Ni J.-H. Synergistic up-regulation of muscle LIM protein expression in C2C12 and NIH3T3 cells by myogenin and MEF2C. Mol. Genet. Genomics 2009, 281:1-10.
-
(2009)
Mol. Genet. Genomics
, vol.281
, pp. 1-10
-
-
Ji, Z.-X.1
Du, C.2
Wu, G.-S.3
Li, S.-Y.4
An, G.-S.5
Yang, Y.-X.6
Jia, R.7
Jia, H.-T.8
Ni, J.-H.9
-
35
-
-
33745765249
-
Molecular mechanisms controlling the coupled development of myocardium and coronary vasculature
-
Bhattacharya S., Macdonald S.T., Farthing C.R. Molecular mechanisms controlling the coupled development of myocardium and coronary vasculature. Clin. Sci. 2006, 111:35-46.
-
(2006)
Clin. Sci.
, vol.111
, pp. 35-46
-
-
Bhattacharya, S.1
Macdonald, S.T.2
Farthing, C.R.3
-
36
-
-
84862768812
-
Interplay between two myogenesis-related proteins: TBP-interacting protein 120B and MyoD
-
Suzuki H., Suzuki A., Maekawa Y., Shiraishi S., Tamura T.-A. Interplay between two myogenesis-related proteins: TBP-interacting protein 120B and MyoD. Gene 2012, 504(2):213-219.
-
(2012)
Gene
, vol.504
, Issue.2
, pp. 213-219
-
-
Suzuki, H.1
Suzuki, A.2
Maekawa, Y.3
Shiraishi, S.4
Tamura, T.-A.5
-
37
-
-
84855306505
-
Down-regulation of myogenin can reverse terminal muscle cell differentiation
-
Mastroyiannopoulos N.P., Nicolaou P., Anayasa M., Uney J.B., Phylactou L.A. Down-regulation of myogenin can reverse terminal muscle cell differentiation. PLoS One 2012, 7:e29896.
-
(2012)
PLoS One
, vol.7
-
-
Mastroyiannopoulos, N.P.1
Nicolaou, P.2
Anayasa, M.3
Uney, J.B.4
Phylactou, L.A.5
-
38
-
-
39349106325
-
Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development
-
Murry C.E., Keller G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 2008, 132:661-680.
-
(2008)
Cell
, vol.132
, pp. 661-680
-
-
Murry, C.E.1
Keller, G.2
-
39
-
-
84155186597
-
A phenotypic screen to identify hypertrophy-modulating microRNAs in primary cardiomyocytes
-
Jentzsch C., Leierseder S., Loyer X., Flohrschütz I., Sassi Y., Hartmann D., Thum T., Laggerbauer B., Engelhardt S. A phenotypic screen to identify hypertrophy-modulating microRNAs in primary cardiomyocytes. J. Mol. Cell. Cardiol. 2012, 52:13-20.
-
(2012)
J. Mol. Cell. Cardiol.
, vol.52
, pp. 13-20
-
-
Jentzsch, C.1
Leierseder, S.2
Loyer, X.3
Flohrschütz, I.4
Sassi, Y.5
Hartmann, D.6
Thum, T.7
Laggerbauer, B.8
Engelhardt, S.9
-
40
-
-
0033592696
-
MEF2 is upregulated during cardiac hypertrophy and is required for normal post-natal growth of the myocardium
-
Kolodziejczyk S.M., Wang L., Balazsi K., DeRepentigny Y., Kothary R., Megeney L.A. MEF2 is upregulated during cardiac hypertrophy and is required for normal post-natal growth of the myocardium. Curr. Biol. 1999, 9:1203-1206.
-
(1999)
Curr. Biol.
, vol.9
, pp. 1203-1206
-
-
Kolodziejczyk, S.M.1
Wang, L.2
Balazsi, K.3
DeRepentigny, Y.4
Kothary, R.5
Megeney, L.A.6
-
41
-
-
6644220044
-
Cardiomyopathy in transgenic mice with cardiac-specific overexpression of serum response factor
-
Zhang X., Azhar G., Chai J., Sheridan P., Nagano K., Brown T., Yang J., Khrapko K., Borras A.M., Lawitts J., Misra R.P., Wei J.Y. Cardiomyopathy in transgenic mice with cardiac-specific overexpression of serum response factor. Am. J. Physiol. Heart Circ. Physiol. 2001, 280:H1782-H1792.
-
(2001)
Am. J. Physiol. Heart Circ. Physiol.
, vol.280
-
-
Zhang, X.1
Azhar, G.2
Chai, J.3
Sheridan, P.4
Nagano, K.5
Brown, T.6
Yang, J.7
Khrapko, K.8
Borras, A.M.9
Lawitts, J.10
Misra, R.P.11
Wei, J.Y.12
-
42
-
-
34248168531
-
Modulation of adverse cardiac remodeling by STARS, a mediator of MEF2 signaling and SRF activity
-
Kuwahara K., Teg Pipes G.C., McAnally J., Richardson J.A., Hill J.A., Bassel-Duby R., Olson E.N. Modulation of adverse cardiac remodeling by STARS, a mediator of MEF2 signaling and SRF activity. J. Clin. Invest. 2007, 117:1324-1334.
-
(2007)
J. Clin. Invest.
, vol.117
, pp. 1324-1334
-
-
Kuwahara, K.1
Teg Pipes, G.C.2
McAnally, J.3
Richardson, J.A.4
Hill, J.A.5
Bassel-Duby, R.6
Olson, E.N.7
-
43
-
-
84887117034
-
Skeletal muscle hypertrophy and regeneration: interplay between the myogenic regulatory factors (MRFs) and insulin-like growth factors (IGFs) pathways
-
Zanou N., Gailly P. Skeletal muscle hypertrophy and regeneration: interplay between the myogenic regulatory factors (MRFs) and insulin-like growth factors (IGFs) pathways. Cell. Mol. Life Sci. 2013, 70(21):4117-4130.
-
(2013)
Cell. Mol. Life Sci.
, vol.70
, Issue.21
, pp. 4117-4130
-
-
Zanou, N.1
Gailly, P.2
-
45
-
-
81355132744
-
Angiotensin II and norepinephrine activate specific calcineurin-dependent NFAT transcription factor isoforms in cardiomyocytes
-
Lunde I.G., Kvaløy H., Austbø B., Christensen G., Carlson C.R. Angiotensin II and norepinephrine activate specific calcineurin-dependent NFAT transcription factor isoforms in cardiomyocytes. J. Appl. Physiol. 2011, 111:1278-1289.
-
(2011)
J. Appl. Physiol.
, vol.111
, pp. 1278-1289
-
-
Lunde, I.G.1
Kvaløy, H.2
Austbø, B.3
Christensen, G.4
Carlson, C.R.5
-
46
-
-
0032510743
-
Signal transduction and activator of transcription (STAT) protein-dependent activation of angiotensinogen promoter: a cellular signal for hypertrophy in cardiac muscle
-
Mascareno E., Dhar M., Siddiqui M.A. Signal transduction and activator of transcription (STAT) protein-dependent activation of angiotensinogen promoter: a cellular signal for hypertrophy in cardiac muscle. Proc. Natl. Acad. Sci. U. S. A. 1998, 95:5590-5594.
-
(1998)
Proc. Natl. Acad. Sci. U. S. A.
, vol.95
, pp. 5590-5594
-
-
Mascareno, E.1
Dhar, M.2
Siddiqui, M.A.3
-
48
-
-
0028135399
-
Angiotensin II stimulates cis-inducing factor-like DNA binding activity. Evidence that the AT1A receptor activates transcription factor-Stat91 and/or a related protein
-
Bhat G.J., Thekkumkara T.J., Thomas W.G., Conrad K.M., Baker K.M. Angiotensin II stimulates cis-inducing factor-like DNA binding activity. Evidence that the AT1A receptor activates transcription factor-Stat91 and/or a related protein. J. Biol. Chem. 1994, 269:31443-31449.
-
(1994)
J. Biol. Chem.
, vol.269
, pp. 31443-31449
-
-
Bhat, G.J.1
Thekkumkara, T.J.2
Thomas, W.G.3
Conrad, K.M.4
Baker, K.M.5
-
49
-
-
77951964981
-
Posttranscriptional regulation of microRNA biogenesis in animals
-
Siomi H., Siomi M.C. Posttranscriptional regulation of microRNA biogenesis in animals. Mol. Cell 2010, 38:323-332.
-
(2010)
Mol. Cell
, vol.38
, pp. 323-332
-
-
Siomi, H.1
Siomi, M.C.2
-
50
-
-
77951972792
-
Regulation of microRNA biogenesis: a myriad of mechanisms
-
Davis B.N., Hata A. Regulation of microRNA biogenesis: a myriad of mechanisms. Cell Commun. Signal. 2009, 7:18.
-
(2009)
Cell Commun. Signal.
, vol.7
, pp. 18
-
-
Davis, B.N.1
Hata, A.2
-
51
-
-
65449183132
-
Features of mammalian microRNA promoters emerge from polymerase II chromatin immunoprecipitation data
-
Corcoran D.L., Pandit K.V., Gordon B., Bhattacharjee A., Kaminski N., Benos P.V. Features of mammalian microRNA promoters emerge from polymerase II chromatin immunoprecipitation data. PLoS One 2009, 4:e5279.
-
(2009)
PLoS One
, vol.4
-
-
Corcoran, D.L.1
Pandit, K.V.2
Gordon, B.3
Bhattacharjee, A.4
Kaminski, N.5
Benos, P.V.6
-
52
-
-
77149153066
-
Structure and activity of putative intronic miRNA promoters
-
Monteys A.M., Spengler R.M., Wan J., Tecedor L., Lennox K.A., Xing Y., Davidson B.L. Structure and activity of putative intronic miRNA promoters. RNA 2010, 16:495-505.
-
(2010)
RNA
, vol.16
, pp. 495-505
-
-
Monteys, A.M.1
Spengler, R.M.2
Wan, J.3
Tecedor, L.4
Lennox, K.A.5
Xing, Y.6
Davidson, B.L.7
-
53
-
-
34548816770
-
Regulatory conservation of protein coding and microRNA genes in vertebrates: lessons from the opossum genome
-
Mahony S., Corcoran D.L., Feingold E., Benos P.V. Regulatory conservation of protein coding and microRNA genes in vertebrates: lessons from the opossum genome. Genome Biol. 2007, 8:R84.
-
(2007)
Genome Biol.
, vol.8
-
-
Mahony, S.1
Corcoran, D.L.2
Feingold, E.3
Benos, P.V.4
-
54
-
-
47049125858
-
Upregulation of miR-23a approximately 27a approximately 24 decreases transforming growth factor-beta-induced tumor-suppressive activities in human hepatocellular carcinoma cells
-
Huang S., He X., Ding J., Liang L., Zhao Y., Zhang Z., Yao X., Pan Z., Zhang P., Li J., Wan D., Gu J. Upregulation of miR-23a approximately 27a approximately 24 decreases transforming growth factor-beta-induced tumor-suppressive activities in human hepatocellular carcinoma cells. Int. J. Cancer 2008, 123:972-978.
-
(2008)
Int. J. Cancer
, vol.123
, pp. 972-978
-
-
Huang, S.1
He, X.2
Ding, J.3
Liang, L.4
Zhao, Y.5
Zhang, Z.6
Yao, X.7
Pan, Z.8
Zhang, P.9
Li, J.10
Wan, D.11
Gu, J.12
-
55
-
-
64749116346
-
C-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism
-
Gao P., Tchernyshyov I., Chang T.-C., Lee Y.-S., Kita K., Ochi T., Zeller K.I., De Marzo A.M., Van Eyk J.E., Mendell J.T., Dang C.V. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 2009, 458:762-765.
-
(2009)
Nature
, vol.458
, pp. 762-765
-
-
Gao, P.1
Tchernyshyov, I.2
Chang, T.-C.3
Lee, Y.-S.4
Kita, K.5
Ochi, T.6
Zeller, K.I.7
De Marzo, A.M.8
Van Eyk, J.E.9
Mendell, J.T.10
Dang, C.V.11
-
56
-
-
67649217148
-
Upregulation of miR-23a-27a-24-2 cluster induces caspase-dependent and -independent apoptosis in human embryonic kidney cells
-
Chhabra R., Adlakha Y.K., Hariharan M., Scaria V., Saini N. Upregulation of miR-23a-27a-24-2 cluster induces caspase-dependent and -independent apoptosis in human embryonic kidney cells. PLoS One 2009, 4:e5848.
-
(2009)
PLoS One
, vol.4
-
-
Chhabra, R.1
Adlakha, Y.K.2
Hariharan, M.3
Scaria, V.4
Saini, N.5
-
57
-
-
80052598793
-
β-MyHC and cardiac hypertrophy: size does matter
-
Pandya K., Smithies O. β-MyHC and cardiac hypertrophy: size does matter. Circ. Res. 2011, 109:609-610.
-
(2011)
Circ. Res.
, vol.109
, pp. 609-610
-
-
Pandya, K.1
Smithies, O.2
-
58
-
-
84868347665
-
Identification of novel microRNAs negatively regulating cardiac hypertrophy
-
Jeong M.H., Lee J.S., Kim D.H., Park W.J., Yang D.K. Identification of novel microRNAs negatively regulating cardiac hypertrophy. Biochem. Biophys. Res. Commun. 2012, 428:191-196.
-
(2012)
Biochem. Biophys. Res. Commun.
, vol.428
, pp. 191-196
-
-
Jeong, M.H.1
Lee, J.S.2
Kim, D.H.3
Park, W.J.4
Yang, D.K.5
-
59
-
-
84882944649
-
Reciprocal regulation ofmiR-23a and lysophosphatidic acid receptor signaling in cardiomyocytehypertrophy
-
Yang J., Nie Y., Wang F., Hou J., Cong X., Hu S., Chen X. Reciprocal regulation ofmiR-23a and lysophosphatidic acid receptor signaling in cardiomyocytehypertrophy. Biochim Biophys Acta 2013, 1831(8):1386-1394.
-
(2013)
Biochim Biophys Acta
, vol.1831
, Issue.8
, pp. 1386-1394
-
-
Yang, J.1
Nie, Y.2
Wang, F.3
Hou, J.4
Cong, X.5
Hu, S.6
Chen, X.7
-
60
-
-
84898615240
-
MiR-24 regulates intrinsic apoptosis pathway in mouse cardiomyocytes
-
Wang L., Quian L. miR-24 regulates intrinsic apoptosis pathway in mouse cardiomyocytes. PLoS One 2014, 9:e85389.
-
(2014)
PLoS One
, vol.9
-
-
Wang, L.1
Quian, L.2
-
61
-
-
80051802344
-
MicroRNA-24 regulates vascularity after myocardial infarction
-
Fiedler J., Jazbutyte V., Kirchmaier B.C., Gupta S.K., Lorenzen J., Hartmann D., Galuppo P., Kneitz S., Pena J.T., Sohn-Lee C., Loyer X., Suotschek J., Brand T., Tuschi T., Heineke J., Martin U., Shulte-Merker S., Ertl G., Engelhardt S., Bauersachs J., Thum T. MicroRNA-24 regulates vascularity after myocardial infarction. Circulation 2012, 124:720-730.
-
(2012)
Circulation
, vol.124
, pp. 720-730
-
-
Fiedler, J.1
Jazbutyte, V.2
Kirchmaier, B.C.3
Gupta, S.K.4
Lorenzen, J.5
Hartmann, D.6
Galuppo, P.7
Kneitz, S.8
Pena, J.T.9
Sohn-Lee, C.10
Loyer, X.11
Suotschek, J.12
Brand, T.13
Tuschi, T.14
Heineke, J.15
Martin, U.16
Shulte-Merker, S.17
Ertl, G.18
Engelhardt, S.19
Bauersachs, J.20
Thum, T.21
more..
-
62
-
-
79952731167
-
MiR-24 inhibits apoptosis and represses Bim in mouse cardiomyocytes
-
Quian L., van Laake L.W., Huang Y., Liu S., Wendland M.F., Srivastava D. miR-24 inhibits apoptosis and represses Bim in mouse cardiomyocytes. J. Exp. Med. 2011, 208:549-560.
-
(2011)
J. Exp. Med.
, vol.208
, pp. 549-560
-
-
Quian, L.1
van Laake, L.W.2
Huang, Y.3
Liu, S.4
Wendland, M.F.5
Srivastava, D.6
-
63
-
-
84874255537
-
In vivo suppression of microRNA-24 prevents the transition toward decompensated hypertrophy in aortic-constricted mice
-
Li R.C., Tao J., Guo Y.B., Wu H.D., Liu R.F., Bai Y., Lv Z.Z., Luo G.Z., Li L.L., Wang M., Wang H.Q., Gao W., Han Q.D., Zhang Y.Y., Wang X.J., Xu M., Wang S.Q. In vivo suppression of microRNA-24 prevents the transition toward decompensated hypertrophy in aortic-constricted mice. Circ. Res. 2013, 112:601-605.
-
(2013)
Circ. Res.
, vol.112
, pp. 601-605
-
-
Li, R.C.1
Tao, J.2
Guo, Y.B.3
Wu, H.D.4
Liu, R.F.5
Bai, Y.6
Lv, Z.Z.7
Luo, G.Z.8
Li, L.L.9
Wang, M.10
Wang, H.Q.11
Gao, W.12
Han, Q.D.13
Zhang, Y.Y.14
Wang, X.J.15
Xu, M.16
Wang, S.Q.17
-
64
-
-
84899998574
-
MiR-23a is decreased during muscle atrophy by a mechanism that includes calcineurin signaling and exosome-mediated export
-
Hudson M.B., Woodworth-Hobbs M.E., Zheng B., Rahnert J.A., Blount M.A., Gooch J.L., Searles C.D., Price S.R. miR-23a is decreased during muscle atrophy by a mechanism that includes calcineurin signaling and exosome-mediated export. Am. J. Physiol. Cell Physiol. 2014, 306:C551-C558.
-
(2014)
Am. J. Physiol. Cell Physiol.
, vol.306
-
-
Hudson, M.B.1
Woodworth-Hobbs, M.E.2
Zheng, B.3
Rahnert, J.A.4
Blount, M.A.5
Gooch, J.L.6
Searles, C.D.7
Price, S.R.8
-
65
-
-
84895906247
-
Role of miRNA-27a in myoblast differentiation
-
Chen X., Huang Z., Chen D., Yang T., Liu G. Role of miRNA-27a in myoblast differentiation. Cell Biol. Int. 2014, 38:266-271.
-
(2014)
Cell Biol. Int.
, vol.38
, pp. 266-271
-
-
Chen, X.1
Huang, Z.2
Chen, D.3
Yang, T.4
Liu, G.5
-
66
-
-
43349091055
-
Transforming growth factor-beta-regulated miR-24 promotes skeletal muscle differentiation
-
Sun Q., Zhang Y., Yang G., Chen X., Zhang Y., Cao G., Wang J., Sun Y., Zhang P., Fan M., Shao N., Yang X. Transforming growth factor-beta-regulated miR-24 promotes skeletal muscle differentiation. Nucleic Acids Res. 2008, 36:2690-2699.
-
(2008)
Nucleic Acids Res.
, vol.36
, pp. 2690-2699
-
-
Sun, Q.1
Zhang, Y.2
Yang, G.3
Chen, X.4
Zhang, Y.5
Cao, G.6
Wang, J.7
Sun, Y.8
Zhang, P.9
Fan, M.10
Shao, N.11
Yang, X.12
-
67
-
-
84895907629
-
The Mef2 transcription network is disrupted in myotonic dystrophy heart tissue, dramatically altering miRNA and mRNA expression
-
Kalsotra A., Singh R.K., Gurha P., Ward A.J., Creighton C.J., Cooper T.A. The Mef2 transcription network is disrupted in myotonic dystrophy heart tissue, dramatically altering miRNA and mRNA expression. Cell Rep. 2014, 6:336-345.
-
(2014)
Cell Rep.
, vol.6
, pp. 336-345
-
-
Kalsotra, A.1
Singh, R.K.2
Gurha, P.3
Ward, A.J.4
Creighton, C.J.5
Cooper, T.A.6
-
68
-
-
84884165217
-
An intragenic SRF-dependent regulatory motif directs cardiac-specific microRNA-1-1/133a-2 expression
-
Li Q., Guo J., Lin X., Yang X., Ma Y., Fan G.C., Chang J. An intragenic SRF-dependent regulatory motif directs cardiac-specific microRNA-1-1/133a-2 expression. PLoS One 2013, 8:e75470.
-
(2013)
PLoS One
, vol.8
-
-
Li, Q.1
Guo, J.2
Lin, X.3
Yang, X.4
Ma, Y.5
Fan, G.C.6
Chang, J.7
-
69
-
-
84887944466
-
Brief report: SRF-dependent miR-201 silences the sonic hedgehog signaling during cardiopoesis
-
Zheng G., Tao Y., Yu W., Schwartz R.J. Brief report: SRF-dependent miR-201 silences the sonic hedgehog signaling during cardiopoesis. Stem Cells 2013, 31:2279-2285.
-
(2013)
Stem Cells
, vol.31
, pp. 2279-2285
-
-
Zheng, G.1
Tao, Y.2
Yu, W.3
Schwartz, R.J.4
-
70
-
-
82455188317
-
Transcription factor binding sites are highly enriched within microRNA precursor sequences
-
Piriyapongsa J., Jordan I.K., Conley A.B., Ronan T., Smalheiser N.R. Transcription factor binding sites are highly enriched within microRNA precursor sequences. Biol. Direct 2011, 6:61.
-
(2011)
Biol. Direct
, vol.6
, pp. 61
-
-
Piriyapongsa, J.1
Jordan, I.K.2
Conley, A.B.3
Ronan, T.4
Smalheiser, N.R.5
-
71
-
-
46449128469
-
SMAD proteins control DROSHA-mediated microRNA maturation
-
Davis B.N., Hilyard A.C., Lagna G., Hata A. SMAD proteins control DROSHA-mediated microRNA maturation. Nature 2008, 454:56-61.
-
(2008)
Nature
, vol.454
, pp. 56-61
-
-
Davis, B.N.1
Hilyard, A.C.2
Lagna, G.3
Hata, A.4
-
72
-
-
77955484492
-
Smad proteins bind a conserved RNA sequence to promote microRNA maturation by Drosha
-
Davis B.N., Hilyard A.C., Nguyen P.H., Lagna G., Hata A. Smad proteins bind a conserved RNA sequence to promote microRNA maturation by Drosha. Mol. Cell 2010, 39:373-384.
-
(2010)
Mol. Cell
, vol.39
, pp. 373-384
-
-
Davis, B.N.1
Hilyard, A.C.2
Nguyen, P.H.3
Lagna, G.4
Hata, A.5
-
73
-
-
84877928475
-
Regulation of miRNA biogenesis as an integrated component of growth factor signaling
-
Blahna M.T., Hata A. Regulation of miRNA biogenesis as an integrated component of growth factor signaling. Curr. Opin. Cell Biol. 2013, 25:233-240.
-
(2013)
Curr. Opin. Cell Biol.
, vol.25
, pp. 233-240
-
-
Blahna, M.T.1
Hata, A.2
|