메뉴 건너뛰기




Volumn 33, Issue 18, 2013, Pages 3611-3626

Correct assembly of RNA polymerase II depends on the foot domain and is required for multiple steps of transcription in Saccharomyces cerevisiae

Author keywords

[No Author keywords available]

Indexed keywords

MESSENGER RNA; RNA POLYMERASE II; RPB1 PROTEIN; TATA BINDING PROTEIN; UNCLASSIFIED DRUG;

EID: 84883505232     PISSN: 02707306     EISSN: 10985549     Source Type: Journal    
DOI: 10.1128/MCB.00262-13     Document Type: Article
Times cited : (26)

References (82)
  • 1
    • 2542428546 scopus 로고    scopus 로고
    • Structure and mechanism of the RNA polymerase II transcription machinery
    • Hahn S. 2004. Structure and mechanism of the RNA polymerase II transcription machinery. Nat. Struct. Mol. Biol. 11:394-403.
    • (2004) Nat. Struct. Mol. Biol. , vol.11 , pp. 394-403
    • Hahn, S.1
  • 2
    • 0035827346 scopus 로고    scopus 로고
    • Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution.
    • Cramer P, Bushnell DA, Kornberg RD. 2001. Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution. Science 292: 1863-1876.
    • (2001) Science , vol.292 , pp. 1863-1876
    • Cramer, P.1    Bushnell, D.A.2    Kornberg, R.D.3
  • 3
    • 42649112370 scopus 로고    scopus 로고
    • Early evolution of eukaryotic DNA-dependent RNA polymerases
    • Kwapisz M, Beckouet F, Thuriaux P. 2008. Early evolution of eukaryotic DNA-dependent RNA polymerases. Trends Genet. 24:211-215.
    • (2008) Trends Genet. , vol.24 , pp. 211-215
    • Kwapisz, M.1    Beckouet, F.2    Thuriaux, P.3
  • 4
    • 0037022279 scopus 로고    scopus 로고
    • Structural basis of transcription: α-amanitin-RNA polymerase II cocrystal at 2.8 Å resolution
    • Bushnell DA, Cramer P, Kornberg RD. 2002. Structural basis of transcription: α-amanitin-RNA polymerase II cocrystal at 2.8 Å resolution. Proc. Natl. Acad. Sci. U. S. A. 99:1218-1222.
    • (2002) Proc. Natl. Acad. Sci. U. S. A. , vol.99 , pp. 1218-1222
    • Bushnell, D.A.1    Cramer, P.2    Kornberg, R.D.3
  • 5
    • 14844290215 scopus 로고    scopus 로고
    • Structures of complete RNA polymerase II and its subcomplex, Rpb4/7
    • Armache KJ, Mitterweger S, Meinhart A, Cramer P. 2005. Structures of complete RNA polymerase II and its subcomplex, Rpb4/7. J. Biol. Chem. 280:7131-7134.
    • (2005) J. Biol. Chem. , vol.280 , pp. 7131-7134
    • Armache, K.J.1    Mitterweger, S.2    Meinhart, A.3    Cramer, P.4
  • 6
    • 67249110911 scopus 로고    scopus 로고
    • Structure of the 12-subunit RNA polymerase II refined with the aid of anomalous diffraction data
    • Meyer PA, Ye P, Suh MH, Zhang M, Fu J. 2009. Structure of the 12-subunit RNA polymerase II refined with the aid of anomalous diffraction data. J. Biol. Chem. 284:12933-12939.
    • (2009) J. Biol. Chem. , vol.284 , pp. 12933-12939
    • Meyer, P.A.1    Ye, P.2    Suh, M.H.3    Zhang, M.4    Fu, J.5
  • 7
    • 33646853872 scopus 로고    scopus 로고
    • Mechanistic studies of the mRNA transcription cycle
    • Cramer P. 2006. Mechanistic studies of the mRNA transcription cycle. Biochem. Soc. Symp. 73:41-47.
    • (2006) Biochem. Soc. Symp. , vol.73 , pp. 41-47
    • Cramer, P.1
  • 10
    • 79960293634 scopus 로고    scopus 로고
    • RNA polymerase II conserved protein domains as platforms for protein-protein interactions
    • García-López MC, Navarro F. 2011. RNA polymerase II conserved protein domains as platforms for protein-protein interactions. Transcription 2:193-197.
    • (2011) Transcription , vol.2 , pp. 193-197
    • García-López, M.C.1    Navarro, F.2
  • 11
    • 79952803747 scopus 로고    scopus 로고
    • Direct interaction of RNA polymerase II and Mediator required for transcription in vivo
    • Soutourina J, Wydau S, Ambroise Y, Boschiero C, Werner M. 2011. Direct interaction of RNA polymerase II and Mediator required for transcription in vivo. Science 331:1451-1454.
    • (2011) Science , vol.331 , pp. 1451-1454
    • Soutourina, J.1    Wydau, S.2    Ambroise, Y.3    Boschiero, C.4    Werner, M.5
  • 12
    • 28444471999 scopus 로고    scopus 로고
    • Fcp1 directly recognizes the C-terminal domain (CTD) and interacts with a site on RNA polymerase II distinct from the CTD
    • Suh MH, Ye P, Zhang M, Hausmann S, Shuman S, Gnatt AL, Fu J. 2005. Fcp1 directly recognizes the C-terminal domain (CTD) and interacts with a site on RNA polymerase II distinct from the CTD. Proc. Natl. Acad. Sci. U. S. A. 102:17314-17319.
    • (2005) Proc. Natl. Acad. Sci. U. S. A. , vol.102 , pp. 17314-17319
    • Suh, M.H.1    Ye, P.2    Zhang, M.3    Hausmann, S.4    Shuman, S.5    Gnatt, A.L.6    Fu, J.7
  • 14
    • 77958608570 scopus 로고    scopus 로고
    • A dual interface determines the recognition of RNA polymerase II by RNA capping enzyme
    • Suh MH, Meyer PA, Gu M, Ye P, Zhang M, Kaplan CD, Lima CD, Fu J. 2010. A dual interface determines the recognition of RNA polymerase II by RNA capping enzyme. J. Biol. Chem. 285:34027-34038.
    • (2010) J. Biol. Chem. , vol.285 , pp. 34027-34038
    • Suh, M.H.1    Meyer, P.A.2    Gu, M.3    Ye, P.4    Zhang, M.5    Kaplan, C.D.6    Lima, C.D.7    Fu, J.8
  • 15
    • 0030611094 scopus 로고    scopus 로고
    • Genetic evidence for selective degradation of RNA polymerase subunits by the 20S proteasome in Saccharomyces cerevisiae
    • Nouraini S, Xu D, Nelson S, Lee M, Friesen JD. 1997. Genetic evidence for selective degradation of RNA polymerase subunits by the 20S proteasome in Saccharomyces cerevisiae. Nucleic Acids Res. 25:3570-3579.
    • (1997) Nucleic Acids Res. , vol.25 , pp. 3570-3579
    • Nouraini, S.1    Xu, D.2    Nelson, S.3    Lee, M.4    Friesen, J.D.5
  • 16
    • 0026608874 scopus 로고
    • Isolation and phenotypic analysis of conditional-lethal, linker-insertion mutations in the gene encoding the largest subunit of RNA polymerase II in Saccharomyces cerevisiae
    • Archambault J, Drebot MA, Stone JC, Friesen JD. 1992. Isolation and phenotypic analysis of conditional-lethal, linker-insertion mutations in the gene encoding the largest subunit of RNA polymerase II in Saccharomyces cerevisiae. Mol. Gen. Genet. 232:408-414.
    • (1992) Mol. Gen. Genet. , vol.232 , pp. 408-414
    • Archambault, J.1    Drebot, M.A.2    Stone, J.C.3    Friesen, J.D.4
  • 17
    • 0025250721 scopus 로고
    • A suppressor of an RNA polymerase II mutation of Saccharomyces cerevisiae encodes a subunit common to RNA polymerases I, II, and III
    • Archambault J, Schappert KT, Friesen JD. 1990. A suppressor of an RNA polymerase II mutation of Saccharomyces cerevisiae encodes a subunit common to RNA polymerases I, II, and III. Mol. Cell. Biol. 10:6123-6131.
    • (1990) Mol. Cell. Biol. , vol.10 , pp. 6123-6131
    • Archambault, J.1    Schappert, K.T.2    Friesen, J.D.3
  • 18
    • 0030974313 scopus 로고    scopus 로고
    • 'Marker swap' plasmids: convenient tools for budding yeast molecular genetics
    • Cross FR. 1997. 'Marker swap' plasmids: convenient tools for budding yeast molecular genetics. Yeast 13:647-653.
    • (1997) Yeast , vol.13 , pp. 647-653
    • Cross, F.R.1
  • 21
    • 0031455421 scopus 로고    scopus 로고
    • Persistent initiation of DNA replication and chromatin-bound MCM proteins during the cell cycle in cdc6 mutants
    • Liang C, Stillman B. 1997. Persistent initiation of DNA replication and chromatin-bound MCM proteins during the cell cycle in cdc6 mutants. Genes Dev. 11:3375-3386.
    • (1997) Genes Dev. , vol.11 , pp. 3375-3386
    • Liang, C.1    Stillman, B.2
  • 22
    • 0023143706 scopus 로고
    • Eucaryotic RNA polymerase conditional mutant that rapidly ceases mRNA synthesis
    • Nonet M, Scafe C, Sexton J, Young R. 1987. Eucaryotic RNA polymerase conditional mutant that rapidly ceases mRNA synthesis. Mol. Cell. Biol. 7:1602-1611.
    • (1987) Mol. Cell. Biol. , vol.7 , pp. 1602-1611
    • Nonet, M.1    Scafe, C.2    Sexton, J.3    Young, R.4
  • 24
  • 26
    • 0030798070 scopus 로고    scopus 로고
    • A set of vectors with a tetracycline-regulatable promoter system for modulated gene expression in Saccharomyces cerevisiae
    • Garí E, Piedrafita L, Aldea M, Herrero E. 1997. A set of vectors with a tetracycline-regulatable promoter system for modulated gene expression in Saccharomyces cerevisiae. Yeast 13:837-848.
    • (1997) Yeast , vol.13 , pp. 837-848
    • Garí, E.1    Piedrafita, L.2    Aldea, M.3    Herrero, E.4
  • 27
    • 0029808168 scopus 로고    scopus 로고
    • Rpo26p, a subunit common to yeast RNA polymerases, is essential for the assembly of RNA polymerases I and II and for the stability of the largest subunits of these enzymes
    • Nouraini S, Archambault J, Friesen JD. 1996. Rpo26p, a subunit common to yeast RNA polymerases, is essential for the assembly of RNA polymerases I and II and for the stability of the largest subunits of these enzymes. Mol. Cell. Biol. 16:5985-5996.
    • (1996) Mol. Cell. Biol. , vol.16 , pp. 5985-5996
    • Nouraini, S.1    Archambault, J.2    Friesen, J.D.3
  • 28
    • 0037405790 scopus 로고    scopus 로고
    • Loss of the Rpb4/Rpb7 subcomplex in a mutant form of the Rpb6 subunit shared by RNA polymerases I, II, and III
    • Tan Q, Prysak MH, Woychik NA. 2003. Loss of the Rpb4/Rpb7 subcomplex in a mutant form of the Rpb6 subunit shared by RNA polymerases I, II, and III. Mol. Cell. Biol. 23:3329-3338.
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 3329-3338
    • Tan, Q.1    Prysak, M.H.2    Woychik, N.A.3
  • 29
    • 79952467550 scopus 로고    scopus 로고
    • Cotranscriptional assembly of mRNP complexes that determine the cytoplasmic fate of mRNA
    • Forget A, Chartrand P. 2011. Cotranscriptional assembly of mRNP complexes that determine the cytoplasmic fate of mRNA. Transcription 2:86-90.
    • (2011) Transcription , vol.2 , pp. 86-90
    • Forget, A.1    Chartrand, P.2
  • 32
    • 78650077626 scopus 로고    scopus 로고
    • The protein interaction network of the human transcription machinery reveals a role for the conserved GTPase RPAP4/GPN1 and microtubule assembly in nuclear import and biogenesis of RNA polymerase II
    • Forget D, Lacombe AA, Cloutier P, Al-Khoury R, Bouchard A, Lavallee-Adam M, Faubert D, Jeronimo C, Blanchette M, Coulombe B. 2010. The protein interaction network of the human transcription machinery reveals a role for the conserved GTPase RPAP4/GPN1 and microtubule assembly in nuclear import and biogenesis of RNA polymerase II. Mol. Cell. Proteomics 9:2827-2839.
    • (2010) Mol. Cell. Proteomics , vol.9 , pp. 2827-2839
    • Forget, D.1    Lacombe, A.A.2    Cloutier, P.3    Al-Khoury, R.4    Bouchard, A.5    Lavallee-Adam, M.6    Faubert, D.7    Jeronimo, C.8    Blanchette, M.9    Coulombe, B.10
  • 33
    • 63049138291 scopus 로고    scopus 로고
    • Damage control: DNA repair, transcription, and the ubiquitin-proteasome system
    • Daulny A, Tansey WP. 2009. Damage control: DNA repair, transcription, and the ubiquitin-proteasome system. DNA Repair (Amst.) 8:444-448.
    • (2009) DNA Repair (Amst.) , vol.8 , pp. 444-448
    • Daulny, A.1    Tansey, W.P.2
  • 34
    • 20444428382 scopus 로고    scopus 로고
    • Multiple mechanisms confining RNA polymerase II ubiquitylation to polymerases undergoing transcriptional arrest
    • Somesh BP, Reid J, Liu WF, Sogaard TM, Erdjument-Bromage H, Tempst P, Svejstrup JQ. 2005. Multiple mechanisms confining RNA polymerase II ubiquitylation to polymerases undergoing transcriptional arrest. Cell 121:913-923.
    • (2005) Cell , vol.121 , pp. 913-923
    • Somesh, B.P.1    Reid, J.2    Liu, W.F.3    Sogaard, T.M.4    Erdjument-Bromage, H.5    Tempst, P.6    Svejstrup, J.Q.7
  • 36
    • 0033542436 scopus 로고    scopus 로고
    • Binding of TBP to promoters in vivo is stimulated by activators and requires Pol II holoenzyme
    • Kuras L, Struhl K. 1999. Binding of TBP to promoters in vivo is stimulated by activators and requires Pol II holoenzyme. Nature 399:609-613.
    • (1999) Nature , vol.399 , pp. 609-613
    • Kuras, L.1    Struhl, K.2
  • 38
    • 2942594663 scopus 로고    scopus 로고
    • An array of coactivators is required for optimal recruitment of TATA binding protein and RNA polymerase II by promoter-bound Gcn4p
    • Qiu H, Hu C, Yoon S, Natarajan K, Swanson MJ, Hinnebusch AG. 2004. An array of coactivators is required for optimal recruitment of TATA binding protein and RNA polymerase II by promoter-bound Gcn4p. Mol. Cell. Biol. 24:4104-4117.
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 4104-4117
    • Qiu, H.1    Hu, C.2    Yoon, S.3    Natarajan, K.4    Swanson, M.J.5    Hinnebusch, A.G.6
  • 43
    • 84863229897 scopus 로고    scopus 로고
    • Ssu72 phosphatase-dependent erasure of phospho-Ser7 marks on the RNA polymerase II C-terminal domain is essential for viability and transcription termination
    • Zhang DW, Mosley AL, Ramisetty SR, Rodriguez-Molina JB, Washburn MP, Ansari AZ. 2012. Ssu72 phosphatase-dependent erasure of phospho-Ser7 marks on the RNA polymerase II C-terminal domain is essential for viability and transcription termination. J. Biol. Chem. 287: 8541-8551.
    • (2012) J. Biol. Chem. , vol.287 , pp. 8541-8551
    • Zhang, D.W.1    Mosley, A.L.2    Ramisetty, S.R.3    Rodriguez-Molina, J.B.4    Washburn, M.P.5    Ansari, A.Z.6
  • 45
    • 11344268432 scopus 로고    scopus 로고
    • Efficient release from promoter-proximal stall sites requires transcript cleavage factor TFIIS
    • Adelman K, Marr MT, Werner J, Saunders A, Ni Z, Andrulis ED, Lis JT. 2005. Efficient release from promoter-proximal stall sites requires transcript cleavage factor TFIIS. Mol. Cell 17:103-112.
    • (2005) Mol. Cell , vol.17 , pp. 103-112
    • Adelman, K.1    Marr, MT.2    Werner, J.3    Saunders, A.4    Ni, Z.5    Andrulis, E.D.6    Lis, J.T.7
  • 46
    • 79952609007 scopus 로고    scopus 로고
    • The multifunctional Ccr4-Not complex directly promotes transcription elongation
    • Kruk JA, Dutta A, Fu J, Gilmour DS, Reese JC. 2011. The multifunctional Ccr4-Not complex directly promotes transcription elongation. Genes Dev. 25:581-593.
    • (2011) Genes Dev. , vol.25 , pp. 581-593
    • Kruk, J.A.1    Dutta, A.2    Fu, J.3    Gilmour, D.S.4    Reese, J.C.5
  • 47
    • 75849118597 scopus 로고    scopus 로고
    • Structure of the Saccharomyces cerevisiae Cet1-Ceg1 mRNA capping apparatus
    • Gu M, Rajashankar KR, Lima CD. 2010. Structure of the Saccharomyces cerevisiae Cet1-Ceg1 mRNA capping apparatus. Structure 18:216-227.
    • (2010) Structure , vol.18 , pp. 216-227
    • Gu, M.1    Rajashankar, K.R.2    Lima, C.D.3
  • 48
    • 1242271996 scopus 로고    scopus 로고
    • A function of yeast mRNA cap methyltransferase, Abd1, in transcription by RNA polymerase II
    • Schroeder SC, Zorio DA, Schwer B, Shuman S, Bentley D. 2004. A function of yeast mRNA cap methyltransferase, Abd1, in transcription by RNA polymerase II. Mol. Cell 13:377-387.
    • (2004) Mol. Cell , vol.13 , pp. 377-387
    • Schroeder, S.C.1    Zorio, D.A.2    Schwer, B.3    Shuman, S.4    Bentley, D.5
  • 49
    • 0031453408 scopus 로고    scopus 로고
    • mRNA capping enzyme is recruited to the transcription complex by phosphorylation of the RNA polymerase II carboxy-terminal domain
    • Cho EJ, Takagi T, Moore CR, Buratowski S. 1997. mRNA capping enzyme is recruited to the transcription complex by phosphorylation of the RNA polymerase II carboxy-terminal domain. Genes Dev. 11:3319-3326.
    • (1997) Genes Dev. , vol.11 , pp. 3319-3326
    • Cho, E.J.1    Takagi, T.2    Moore, C.R.3    Buratowski, S.4
  • 50
    • 0033895727 scopus 로고    scopus 로고
    • Structurefunction analysis of yeast mRNA cap methyltransferase and high-copy suppression of conditional mutants by AdoMet synthase and the ubiquitin conjugating enzyme Cdc34p
    • Schwer B, Saha N, Mao X, Chen HW, Shuman S. 2000. Structurefunction analysis of yeast mRNA cap methyltransferase and high-copy suppression of conditional mutants by AdoMet synthase and the ubiquitin conjugating enzyme Cdc34p. Genetics 155:1561-1576.
    • (2000) Genetics , vol.155 , pp. 1561-1576
    • Schwer, B.1    Saha, N.2    Mao, X.3    Chen, H.W.4    Shuman, S.5
  • 51
    • 0035970037 scopus 로고    scopus 로고
    • Bacterial RNA polymerase subunit omega and eukaryotic RNA polymerase subunit RPB6 are sequence, structural, and functional homologs and promote RNA polymerase assembly
    • Minakhin L, Bhagat S, Brunning A, Campbell EA, Darst SA, Ebright RH, Severinov K. 2001. Bacterial RNA polymerase subunit omega and eukaryotic RNA polymerase subunit RPB6 are sequence, structural, and functional homologs and promote RNA polymerase assembly. Proc. Natl. Acad. Sci. U. S. A. 98:892-897.
    • (2001) Proc. Natl. Acad. Sci. U. S. A. , vol.98 , pp. 892-897
    • Minakhin, L.1    Bhagat, S.2    Brunning, A.3    Campbell, E.A.4    Darst, S.A.5    Ebright, R.H.6    Severinov, K.7
  • 53
    • 0037832543 scopus 로고    scopus 로고
    • Complete, 12-subunit RNA polymerase II at 4.1-Å resolution: implications for the initiation of transcription
    • Bushnell DA, Kornberg RD. 2003. Complete, 12-subunit RNA polymerase II at 4.1-Å resolution: implications for the initiation of transcription. Proc. Natl. Acad. Sci. U. S. A. 100:6969-6973.
    • (2003) Proc. Natl. Acad. Sci. U. S. A. , vol.100 , pp. 6969-6973
    • Bushnell, D.A.1    Kornberg, R.D.2
  • 54
    • 0025962218 scopus 로고
    • Two dissociable subunits of yeast RNA polymerase II stimulate the initiation of transcription at a promoter in vitro
    • Edwards AM, Kane CM, Young RA, Kornberg RD. 1991. Two dissociable subunits of yeast RNA polymerase II stimulate the initiation of transcription at a promoter in vitro. J. Biol. Chem. 266:71-75.
    • (1991) J. Biol. Chem. , vol.266 , pp. 71-75
    • Edwards, A.M.1    Kane, C.M.2    Young, R.A.3    Kornberg, R.D.4
  • 55
    • 35148816658 scopus 로고    scopus 로고
    • Structural biology of RNA polymerase III: mass spectrometry elucidates subcomplex architecture
    • Lorenzen K, Vannini A, Cramer P, Heck AJ. 2007. Structural biology of RNA polymerase III: mass spectrometry elucidates subcomplex architecture. Structure 15:1237-1245.
    • (2007) Structure , vol.15 , pp. 1237-1245
    • Lorenzen, K.1    Vannini, A.2    Cramer, P.3    Heck, A.J.4
  • 56
    • 0024396228 scopus 로고
    • RNA polymerase II subunit RPB4 is essential for high-and low-temperature yeast cell growth
    • Woychik NA, Young RA. 1989. RNA polymerase II subunit RPB4 is essential for high-and low-temperature yeast cell growth. Mol. Cell. Biol. 9:2854-2859.
    • (1989) Mol. Cell. Biol. , vol.9 , pp. 2854-2859
    • Woychik, N.A.1    Young, R.A.2
  • 57
    • 0033529595 scopus 로고    scopus 로고
    • Rpb4p is necessary for RNA polymerase II activity at high temperature
    • Maillet I, Buhler JM, Sentenac A, Labarre J. 1999. Rpb4p is necessary for RNA polymerase II activity at high temperature. J. Biol. Chem. 274: 22586-22590.
    • (1999) J. Biol. Chem. , vol.274 , pp. 22586-22590
    • Maillet, I.1    Buhler, J.M.2    Sentenac, A.3    Labarre, J.4
  • 59
    • 0032522546 scopus 로고    scopus 로고
    • Structure of wild-type yeast RNA polymerase II and location of Rpb4 and Rpb7
    • Jensen GJ, Meredith G, Bushnell DA, Kornberg RD. 1998. Structure of wild-type yeast RNA polymerase II and location of Rpb4 and Rpb7. EMBO J. 17:2353-2358.
    • (1998) EMBO J. , vol.17 , pp. 2353-2358
    • Jensen, G.J.1    Meredith, G.2    Bushnell, D.A.3    Kornberg, R.D.4
  • 61
    • 80053614676 scopus 로고    scopus 로고
    • Human GTPases associate with RNA polymerase II to mediate its nuclear import
    • Carré C, Shiekhattar R. 2011. Human GTPases associate with RNA polymerase II to mediate its nuclear import. Mol. Cell. Biol. 31:3953-3962.
    • (2011) Mol. Cell. Biol. , vol.31 , pp. 3953-3962
    • Carré, C.1    Shiekhattar, R.2
  • 62
    • 84858006492 scopus 로고    scopus 로고
    • Biogenesis of multisubunit RNA polymerases
    • Wild T, Cramer P. 2012. Biogenesis of multisubunit RNA polymerases. Trends Biochem. Sci. 37:99-105.
    • (2012) Trends Biochem. Sci. , vol.37 , pp. 99-105
    • Wild, T.1    Cramer, P.2
  • 63
    • 0025767136 scopus 로고
    • Mutations in the three largest subunits of yeast RNA polymerase II that affect enzyme assembly
    • Kolodziej PA, Young RA. 1991. Mutations in the three largest subunits of yeast RNA polymerase II that affect enzyme assembly. Mol. Cell. Biol. 11:4669-4678.
    • (1991) Mol. Cell. Biol. , vol.11 , pp. 4669-4678
    • Kolodziej, P.A.1    Young, R.A.2
  • 64
    • 0019330792 scopus 로고
    • Defective assembly of ribonucleic acid polymerase subunits in a temperature-sensitive alpha-subunit mutant of Escherichia coli
    • Kawakami K, Ishihama A. 1980. Defective assembly of ribonucleic acid polymerase subunits in a temperature-sensitive alpha-subunit mutant of Escherichia coli. Biochemistry 19:3491-3495.
    • (1980) Biochemistry , vol.19 , pp. 3491-3495
    • Kawakami, K.1    Ishihama, A.2
  • 65
    • 0033615355 scopus 로고    scopus 로고
    • Functional characterization of ABC10α, an essential polypeptide shared by all three forms of eukaryotic DNA-dependent RNA polymerases
    • Rubbi L, Labarre-Mariotte S, Chedin S, Thuriaux P. 1999. Functional characterization of ABC10α, an essential polypeptide shared by all three forms of eukaryotic DNA-dependent RNA polymerases. J. Biol. Chem. 274:31485-31492.
    • (1999) J. Biol. Chem. , vol.274 , pp. 31485-31492
    • Rubbi, L.1    Labarre-Mariotte, S.2    Chedin, S.3    Thuriaux, P.4
  • 66
    • 79954496632 scopus 로고    scopus 로고
    • Going nuclear: transcribers in transit
    • Corden J. 2011. Going nuclear: transcribers in transit. Mol. Cell 42:143-145.
    • (2011) Mol. Cell , vol.42 , pp. 143-145
    • Corden, J.1
  • 67
    • 0030881610 scopus 로고    scopus 로고
    • RNA polymerase II subunits 2, 3, and 11 form a core subassembly with DNA binding activity
    • Kimura M, Ishiguro A, Ishihama A. 1997. RNA polymerase II subunits 2, 3, and 11 form a core subassembly with DNA binding activity. J. Biol. Chem. 272:25851-25855.
    • (1997) J. Biol. Chem. , vol.272 , pp. 25851-25855
    • Kimura, M.1    Ishiguro, A.2    Ishihama, A.3
  • 68
    • 0030888109 scopus 로고    scopus 로고
    • The large subunit of RNA polymerase II is a substrate of the Rsp5 ubiquitin-protein ligase
    • Huibregtse JM, Yang JC, Beaudenon SL. 1997. The large subunit of RNA polymerase II is a substrate of the Rsp5 ubiquitin-protein ligase. Proc. Natl. Acad. Sci. U. S. A. 94:3656-3661.
    • (1997) Proc. Natl. Acad. Sci. U. S. A. , vol.94 , pp. 3656-3661
    • Huibregtse, J.M.1    Yang, J.C.2    Beaudenon, S.L.3
  • 70
    • 78650566210 scopus 로고    scopus 로고
    • Pol II waiting in the starting gates: regulating the transition from transcription initiation into productive elongation
    • Nechaev S, Adelman K. 2011. Pol II waiting in the starting gates: regulating the transition from transcription initiation into productive elongation. Biochim. Biophys. Acta 1809:34-45.
    • (2011) Biochim. Biophys. Acta , vol.1809 , pp. 34-45
    • Nechaev, S.1    Adelman, K.2
  • 71
    • 0034307008 scopus 로고    scopus 로고
    • Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription
    • Komarnitsky P, Cho EJ, Buratowski S. 2000. Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev. 14:2452-2460.
    • (2000) Genes Dev. , vol.14 , pp. 2452-2460
    • Komarnitsky, P.1    Cho, E.J.2    Buratowski, S.3
  • 72
    • 0036172151 scopus 로고    scopus 로고
    • Formation of a carboxyterminal domain phosphatase (Fcp1)/TFIIF/RNA polymerase II (pol II) complex in Schizosaccharomyces pombe involves direct interaction between Fcp1 and the Rpb4 subunit of pol II
    • Kimura M, Suzuki H, Ishihama A. 2002. Formation of a carboxyterminal domain phosphatase (Fcp1)/TFIIF/RNA polymerase II (pol II) complex in Schizosaccharomyces pombe involves direct interaction between Fcp1 and the Rpb4 subunit of pol II. Mol. Cell. Biol. 22:1577-1588.
    • (2002) Mol. Cell. Biol. , vol.22 , pp. 1577-1588
    • Kimura, M.1    Suzuki, H.2    Ishihama, A.3
  • 73
    • 0033986862 scopus 로고    scopus 로고
    • Kin28, the TFIIH-associated carboxy-terminal domain kinase, facilitates the recruitment ofmRNAprocessing machinery to RNA polymerase II
    • Rodriguez CR, Cho EJ, Keogh MC, Moore CL, Greenleaf AL, Buratowski S. 2000. Kin28, the TFIIH-associated carboxy-terminal domain kinase, facilitates the recruitment ofmRNAprocessing machinery to RNA polymerase II. Mol. Cell. Biol. 20:104-112.
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 104-112
    • Rodriguez, C.R.1    Cho, E.J.2    Keogh, M.C.3    Moore, C.L.4    Greenleaf, A.L.5    Buratowski, S.6
  • 74
    • 84866176227 scopus 로고    scopus 로고
    • Fcp1 dephosphorylation of the RNA polymerase II C-terminal domain is required for efficient transcription of heat shock genes Mol
    • Fuda NJ, Buckley MS, Wei W, Core LJ, Waters CT, Reinberg D, Lis JT. 2012. Fcp1 dephosphorylation of the RNA polymerase II C-terminal domain is required for efficient transcription of heat shock genes Mol. Cell. Biol. 32:3428-3437.
    • (2012) Cell. Biol. , vol.32 , pp. 3428-3437
    • Fuda, N.J.1    Buckley, M.S.2    Wei, W.3    Core, L.J.4    Waters, C.T.5    Reinberg, D.6    Lis, J.T.7
  • 75
    • 0029670585 scopus 로고    scopus 로고
    • Mutations in the RNA polymerase II transcription machinery suppress the hyperrecombination mutant hpr1δ of Saccharomyces cerevisiae
    • Fan HY, Cheng KK, Klein HL. 1996. Mutations in the RNA polymerase II transcription machinery suppress the hyperrecombination mutant hpr1δ of Saccharomyces cerevisiae. Genetics 142:749-759.
    • (1996) Genetics , vol.142 , pp. 749-759
    • Fan, H.Y.1    Cheng, K.K.2    Klein, H.L.3
  • 76
    • 0034307172 scopus 로고    scopus 로고
    • Dynamic association of capping enzymes with transcribing RNA polymerase II
    • Schroeder SC, Schwer B, Shuman S, Bentley D. 2000. Dynamic association of capping enzymes with transcribing RNA polymerase II. Genes Dev. 14:2435-2440.
    • (2000) Genes Dev. , vol.14 , pp. 2435-2440
    • Schroeder, S.C.1    Schwer, B.2    Shuman, S.3    Bentley, D.4
  • 77
    • 0035086934 scopus 로고    scopus 로고
    • Yeast NC2 associates with the RNA polymerase II preinitiation complex and selectively affects transcription in vivo
    • Geisberg JV, Holstege FC, Young RA, Struhl K. 2001. Yeast NC2 associates with the RNA polymerase II preinitiation complex and selectively affects transcription in vivo. Mol. Cell. Biol. 21:2736-2742.
    • (2001) Mol. Cell. Biol. , vol.21 , pp. 2736-2742
    • Geisberg, J.V.1    Holstege, F.C.2    Young, R.A.3    Struhl, K.4
  • 78
    • 0037155793 scopus 로고    scopus 로고
    • The Rpb9 subunit of RNA polymerase II binds transcription factor TFIIE and interferes with the SAGA and Elongator histone acetyltransferases
    • Van Mullem V, Wery M, Werner M, Vandenhaute J, Thuriaux P. 2002. The Rpb9 subunit of RNA polymerase II binds transcription factor TFIIE and interferes with the SAGA and Elongator histone acetyltransferases. J. Biol. Chem. 277:10220-10225.
    • (2002) J. Biol. Chem. , vol.277 , pp. 10220-10225
    • Van Mullem, V.1    Wery, M.2    Werner, M.3    Vandenhaute, J.4    Thuriaux, P.5
  • 79
    • 0025021671 scopus 로고
    • Conditional mutations occur predominantly in highly conserved residues of RNA polymerase II subunits
    • Scafe C, Martin C, Nonet M, Podos S, Okamura S, Young RA. 1990. Conditional mutations occur predominantly in highly conserved residues of RNA polymerase II subunits. Mol. Cell. Biol. 10:1270-1275.
    • (1990) Mol. Cell. Biol. , vol.10 , pp. 1270-1275
    • Scafe, C.1    Martin, C.2    Nonet, M.3    Podos, S.4    Okamura, S.5    Young, R.A.6
  • 80
    • 0025785410 scopus 로고
    • A family of low and high copy replicative, integrative and single-stranded S. cerevisiae/E. coli shuttle vectors
    • Bonneaud N, Ozier-Kalogeropoulos O, Li GY, Labouesse M, Minvielle-Sebastia L, Lacroute F. 1991. A family of low and high copy replicative, integrative and single-stranded S. cerevisiae/E. coli shuttle vectors. Yeast 7:609-615.
    • (1991) Yeast , vol.7 , pp. 609-615
    • Bonneaud, N.1    Ozier-Kalogeropoulos, O.2    Li, G.Y.3    Labouesse, M.4    Minvielle-Sebastia, L.5    Lacroute, F.6
  • 81
    • 0029147734 scopus 로고
    • Four subunits that are shared by the three classes of RNA polymerase are functionally interchangeable between Homo sapiens and Saccharomyces cerevisiae
    • Shpakovski GV, Acker J, Wintzerith M, Lacroix JF, Thuriaux P, Vigneron M. 1995. Four subunits that are shared by the three classes of RNA polymerase are functionally interchangeable between Homo sapiens and Saccharomyces cerevisiae. Mol. Cell. Biol. 15:4702-4710.
    • (1995) Mol. Cell. Biol. , vol.15 , pp. 4702-4710
    • Shpakovski, G.V.1    Acker, J.2    Wintzerith, M.3    Lacroix, J.F.4    Thuriaux, P.5    Vigneron, M.6
  • 82
    • 12344306120 scopus 로고    scopus 로고
    • Rpc25, a conserved RNA polymerase III subunit, is critical for transcription initiation
    • Zaros C, Thuriaux P. 2005. Rpc25, a conserved RNA polymerase III subunit, is critical for transcription initiation. Mol. Microbiol. 55:104-114.
    • (2005) Mol. Microbiol. , vol.55 , pp. 104-114
    • Zaros, C.1    Thuriaux, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.