-
1
-
-
0035427442
-
Skeletal muscle formation in vertebrates
-
Buckingham M. Skeletal muscle formation in vertebrates. Curr. Opin. Genet. Dev. 2001, 11:440-448.
-
(2001)
Curr. Opin. Genet. Dev.
, vol.11
, pp. 440-448
-
-
Buckingham, M.1
-
2
-
-
33748419667
-
Myogenic progenitor cells and skeletal myogenesis in vertebrates
-
Buckingham M. Myogenic progenitor cells and skeletal myogenesis in vertebrates. Curr. Opin. Genet. Dev. 2006, 16:525-532.
-
(2006)
Curr. Opin. Genet. Dev.
, vol.16
, pp. 525-532
-
-
Buckingham, M.1
-
3
-
-
26844576473
-
Stretch-induced myoblast proliferation is dependent on the COX2 pathway
-
Otis J.S., Burkholder T.J., Pavlath G.K. Stretch-induced myoblast proliferation is dependent on the COX2 pathway. Exp. Cell. Res. 2005, 310:417-425.
-
(2005)
Exp. Cell. Res.
, vol.310
, pp. 417-425
-
-
Otis, J.S.1
Burkholder, T.J.2
Pavlath, G.K.3
-
4
-
-
0034704106
-
Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation
-
Thomas M., Langley B., Berry C., et al. Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J. Biol. Chem. 2000, 275:40235-40243.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 40235-40243
-
-
Thomas, M.1
Langley, B.2
Berry, C.3
-
5
-
-
0035010607
-
Myostatin inhibits cell proliferation and protein synthesis in C2C12 muscle cells
-
Taylor W.E., Bbasin S., Artaza J. Myostatin inhibits cell proliferation and protein synthesis in C2C12 muscle cells. Am. J. Physiol. Endocrinol. Metab. 2001, 280:E221-E228.
-
(2001)
Am. J. Physiol. Endocrinol. Metab.
, vol.280
-
-
Taylor, W.E.1
Bbasin, S.2
Artaza, J.3
-
6
-
-
0038636430
-
Mechanisms involved in the inhibition of myoblast proliferation and differentiation by myostatin
-
Joulia D., Bernardi H., Garandel V., et al. Mechanisms involved in the inhibition of myoblast proliferation and differentiation by myostatin. Exp. Cell. Res. 2003, 286:263-275.
-
(2003)
Exp. Cell. Res.
, vol.286
, pp. 263-275
-
-
Joulia, D.1
Bernardi, H.2
Garandel, V.3
-
7
-
-
8444243360
-
Regulation of muscle mass by myostatin
-
Lee S.J. Regulation of muscle mass by myostatin. Annu. Rev. Cell. Dev. Biol. 2004, 20:61-86.
-
(2004)
Annu. Rev. Cell. Dev. Biol.
, vol.20
, pp. 61-86
-
-
Lee, S.J.1
-
8
-
-
34548431604
-
Regulation of myostatin signaling by c-Jun N-terminal kinase in C2C12 cells
-
Huang Z.Q., Chen D.W., Zhang K.Y., et al. Regulation of myostatin signaling by c-Jun N-terminal kinase in C2C12 cells. Cell. Signal. 2007, 19:2286-2295.
-
(2007)
Cell. Signal.
, vol.19
, pp. 2286-2295
-
-
Huang, Z.Q.1
Chen, D.W.2
Zhang, K.Y.3
-
9
-
-
79958767884
-
Myostatin: A novel insight into its role in metabolism, signal pathways, and expression regulation
-
Huang Z.Q., Chen X.L., Chen D.W. Myostatin: A novel insight into its role in metabolism, signal pathways, and expression regulation. Cell. Signal. 2011, 23:1441-1446.
-
(2011)
Cell. Signal.
, vol.23
, pp. 1441-1446
-
-
Huang, Z.Q.1
Chen, X.L.2
Chen, D.W.3
-
10
-
-
34848922072
-
MiRNAs play a tune
-
Hobert O. MiRNAs play a tune. Cell 2007, 131:22-24.
-
(2007)
Cell
, vol.131
, pp. 22-24
-
-
Hobert, O.1
-
11
-
-
58249088751
-
MicroRNAs: target recognition and regulatory functions
-
Bartel D.P. MicroRNAs: target recognition and regulatory functions. Cell 2009, 136:215-233.
-
(2009)
Cell
, vol.136
, pp. 215-233
-
-
Bartel, D.P.1
-
12
-
-
79851504306
-
MicroRNAs in skeletal myogenesis
-
Ge Y.J., Chen J. MicroRNAs in skeletal myogenesis. Cell Cycle 2011, 10:441-448.
-
(2011)
Cell Cycle
, vol.10
, pp. 441-448
-
-
Ge, Y.J.1
Chen, J.2
-
13
-
-
31744432337
-
The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation
-
Chen J.F., Mandel E.M., Thomson J.M., et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat. Genet. 2006, 38:228-233.
-
(2006)
Nat. Genet.
, vol.38
, pp. 228-233
-
-
Chen, J.F.1
Mandel, E.M.2
Thomson, J.M.3
-
14
-
-
33748102321
-
Muscle-specific microRNA miR-206 promotes muscle differentiation
-
Kim H.K., Lee Y.S., Sivaprasad U., et al. Muscle-specific microRNA miR-206 promotes muscle differentiation. J. Cell Biol. 2006, 174:677-687.
-
(2006)
J. Cell Biol.
, vol.174
, pp. 677-687
-
-
Kim, H.K.1
Lee, Y.S.2
Sivaprasad, U.3
-
15
-
-
43349091055
-
Transforming growth factor-beta-regulated miR-24 promotes skeletal muscle differentiation
-
Sun Q., Zhang Y., Yang G., et al. Transforming growth factor-beta-regulated miR-24 promotes skeletal muscle differentiation. Nucleic Acids Res. 2008, 36:2690-2699.
-
(2008)
Nucleic Acids Res.
, vol.36
, pp. 2690-2699
-
-
Sun, Q.1
Zhang, Y.2
Yang, G.3
-
16
-
-
44349086037
-
MicroRNA-26a targets the histone methyltransferase Enhancer of Zeste homolog 2 during myogenesis
-
Wong C.F., Tellam R.L. MicroRNA-26a targets the histone methyltransferase Enhancer of Zeste homolog 2 during myogenesis. J. Biol. Chem. 2008, 283:9836-9843.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 9836-9843
-
-
Wong, C.F.1
Tellam, R.L.2
-
17
-
-
77954210384
-
MiR-322/424 and -503 are induced during muscle differentiation and promote cell cycle quiescence and differentiation by downregulation of Cdc25A
-
Sarkar S., Dey B.K., Dutta A. MiR-322/424 and -503 are induced during muscle differentiation and promote cell cycle quiescence and differentiation by downregulation of Cdc25A. Mol. Biol. Cell 2010, 21:2138-2149.
-
(2010)
Mol. Biol. Cell
, vol.21
, pp. 2138-2149
-
-
Sarkar, S.1
Dey, B.K.2
Dutta, A.3
-
18
-
-
78751689243
-
MiR-206 and -486 induce myoblast differentiation by downregulating Pax7
-
Dey B.K., Gagan J., Dutta A. MiR-206 and -486 induce myoblast differentiation by downregulating Pax7. Mol. Cell. Biol. 2011, 31:203-214.
-
(2011)
Mol. Cell. Biol.
, vol.31
, pp. 203-214
-
-
Dey, B.K.1
Gagan, J.2
Dutta, A.3
-
19
-
-
70449558856
-
Microrna-221 and microrna-222 modulate differentiation and maturation of skeletal muscle cells
-
Cardinali B., Castellani L., Fasanaro P., et al. Microrna-221 and microrna-222 modulate differentiation and maturation of skeletal muscle cells. PLoS One 2009, 4:e7607.
-
(2009)
PLoS One
, vol.4
-
-
Cardinali, B.1
Castellani, L.2
Fasanaro, P.3
-
20
-
-
78651301788
-
IGF-II is regulated by microRNA-125b in skeletal myogenesis
-
Ge Y., Sun Y., Chen J. IGF-II is regulated by microRNA-125b in skeletal myogenesis. J. Cell Biol. 2011, 192:69-81.
-
(2011)
J. Cell Biol.
, vol.192
, pp. 69-81
-
-
Ge, Y.1
Sun, Y.2
Chen, J.3
-
21
-
-
63049108381
-
A role of miR-27 in the regulation of adipogenesis
-
Lin Q., Gao Z., Alarcon R.M., et al. A role of miR-27 in the regulation of adipogenesis. FEBS J. 2009, 276:2348-2358.
-
(2009)
FEBS J.
, vol.276
, pp. 2348-2358
-
-
Lin, Q.1
Gao, Z.2
Alarcon, R.M.3
-
22
-
-
70350125874
-
MicroRNA miR-27b impairs human adipocyte differentiation and targets PPARγ
-
Karbiener M., Fischer C., Nowitsch S., et al. MicroRNA miR-27b impairs human adipocyte differentiation and targets PPARγ. Biochem. Biophys. Res. Commun. 2009, 390:247-251.
-
(2009)
Biochem. Biophys. Res. Commun.
, vol.390
, pp. 247-251
-
-
Karbiener, M.1
Fischer, C.2
Nowitsch, S.3
-
23
-
-
76349089521
-
MiR-27a is a negative regulator of adipocyte differentiation via suppressing PPARγ expression
-
Kim S.Y., Kim A.Y., Lee H.W., et al. MiR-27a is a negative regulator of adipocyte differentiation via suppressing PPARγ expression. Biochem. Biophys. Res. Commun. 2010, 392:323-328.
-
(2010)
Biochem. Biophys. Res. Commun.
, vol.392
, pp. 323-328
-
-
Kim, S.Y.1
Kim, A.Y.2
Lee, H.W.3
-
24
-
-
64149120256
-
MicroRNA-27 enhances differentiation of myeloblasts into granulocytes by post-transcriptionally downregulating Runx1
-
Feng J., Iwama A., Satake M., et al. MicroRNA-27 enhances differentiation of myeloblasts into granulocytes by post-transcriptionally downregulating Runx1. Br. J. Haematol. 2009, 145:412-423.
-
(2009)
Br. J. Haematol.
, vol.145
, pp. 412-423
-
-
Feng, J.1
Iwama, A.2
Satake, M.3
-
25
-
-
69949119988
-
Coordinate regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast cancer cells
-
Guttilla I.K., White B.A. Coordinate regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast cancer cells. J. Biol. Chem. 2009, 284:23204-23216.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 23204-23216
-
-
Guttilla, I.K.1
White, B.A.2
-
26
-
-
57349146677
-
MicroRNA-27a functions as an oncogene in gastric adenocarcinoma by targeting prohibitin
-
Liu T., Tang H., Lang Y., et al. MicroRNA-27a functions as an oncogene in gastric adenocarcinoma by targeting prohibitin. Cancer Lett. 2009, 273:233-242.
-
(2009)
Cancer Lett.
, vol.273
, pp. 233-242
-
-
Liu, T.1
Tang, H.2
Lang, Y.3
-
27
-
-
17344392308
-
A new mathematical model for relative quantification in real-time RT-PCR
-
Pfaffl M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001, 29:e45.
-
(2001)
Nucleic Acids Res.
, vol.29
-
-
Pfaffl, M.W.1
-
29
-
-
69449099803
-
Muscle stem cell behavior is modified by microRNA-27 regulation of Pax3 expression
-
Crist C.G., Montarras D., Pallafacchina G., et al. Muscle stem cell behavior is modified by microRNA-27 regulation of Pax3 expression. Proc. Natl. Acad. Sci. USA 2009, 106:13383-13387.
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, pp. 13383-13387
-
-
Crist, C.G.1
Montarras, D.2
Pallafacchina, G.3
-
30
-
-
70349202176
-
MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice
-
Callis T.E., Pandya K., Seok H.Y., et al. MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J. Clin. Invest. 2009, 119:2772-2786.
-
(2009)
J. Clin. Invest.
, vol.119
, pp. 2772-2786
-
-
Callis, T.E.1
Pandya, K.2
Seok, H.Y.3
-
31
-
-
77950658339
-
Uncoupling of expression of an intronic microRNA and its myosin host gene by exon skipping
-
Bell M.L., Buvoli M., Leinwand L.A. Uncoupling of expression of an intronic microRNA and its myosin host gene by exon skipping. Mol. Cell. Biol. 2010, 30:1937-1945.
-
(2010)
Mol. Cell. Biol.
, vol.30
, pp. 1937-1945
-
-
Bell, M.L.1
Buvoli, M.2
Leinwand, L.A.3
-
32
-
-
78651353542
-
Posttranscriptional mechanisms involving microRNA-27a and b contribute to fast-specific and glucocorticoid-mediated myostatin expression in skeletal muscle
-
Allen D.L., Loh A.S. Posttranscriptional mechanisms involving microRNA-27a and b contribute to fast-specific and glucocorticoid-mediated myostatin expression in skeletal muscle. Am. J. Physiol. Cell Physiol. 2011, 300:C124-C137.
-
(2011)
Am. J. Physiol. Cell Physiol.
, vol.300
-
-
Allen, D.L.1
Loh, A.S.2
-
33
-
-
33745577150
-
A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep
-
Clop A., Marcq F., Takeda H., et al. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat. Genet. 2006, 38:813-818.
-
(2006)
Nat. Genet.
, vol.38
, pp. 813-818
-
-
Clop, A.1
Marcq, F.2
Takeda, H.3
|