-
2
-
-
64149126546
-
Regulation of insulin secretion: A matter of phase control and amplitude modulation
-
Henquin JC. Regulation of insulin secretion: a matter of phase control and amplitude modulation. Diabetologia. 2009;52:739-751.
-
(2009)
Diabetologia.
, vol.52
, pp. 739-751
-
-
Henquin, J.C.1
-
3
-
-
77953950600
-
Electrical bursting, calcium oscillations, and synchronization of pancreatic islets
-
Bertram R, Sherman A, Satin LS. Electrical bursting, calcium oscillations, and synchronization of pancreatic islets. Adv Exp Med Biol. 2010;654:261-279.
-
(2010)
Adv Exp Med Biol.
, vol.654
, pp. 261-279
-
-
Bertram, R.1
Sherman, A.2
Satin, L.S.3
-
4
-
-
84866370709
-
Cell signalling in insulin secretion: The molecular targets of ATP, cAMP and sulfonylurea
-
Seino S. Cell signalling in insulin secretion: the molecular targets of ATP, cAMP and sulfonylurea. Diabetologia. 2012;55:2096-2108.
-
(2012)
Diabetologia.
, vol.55
, pp. 2096-2108
-
-
Seino, S.1
-
5
-
-
4143118847
-
Hypothesis: One rate-limiting step controls the magnitude of both phases of glucose-stimulated insulin secretion
-
Straub SG, Sharp GW. Hypothesis: one rate-limiting step controls the magnitude of both phases of glucose-stimulated insulin secretion. Am J Physiol Cell Physiol. 2004;287:C565-C571.
-
(2004)
Am J Physiol Cell Physiol.
, vol.287
, pp. C565-C571
-
-
Straub, S.G.1
Sharp, G.W.2
-
6
-
-
77955879987
-
Metabolic amplifying pathway increases both phases of insulin secretion independently of β-cell actin microfilaments
-
Mourad NI, Nenquin M, Henquin JC. Metabolic amplifying pathway increases both phases of insulin secretion independently of β-cell actin microfilaments. Am J Physiol Cell Physiol. 2010;299: C389-C398.
-
(2010)
Am J Physiol Cell Physiol.
, vol.299
, pp. C389-C398
-
-
Mourad, N.I.1
Nenquin, M.2
Henquin, J.C.3
-
7
-
-
67349176115
-
Islet G protein-coupled receptors as potential targets for treatment of type 2 diabetes
-
Ahrén B. Islet G protein-coupled receptors as potential targets for treatment of type 2 diabetes. Nat Rev Drug Discov. 2009;8:369-385.
-
(2009)
Nat Rev Drug Discov.
, vol.8
, pp. 369-385
-
-
Ahrén, B.1
-
8
-
-
0018411266
-
The adenylate cyclase-cyclic AMP system in islets of Langerhans and its role in the control of insulin release
-
Sharp GW. The adenylate cyclase-cyclic AMP system in islets of Langerhans and its role in the control of insulin release. Diabetologia. 1979;16:287-296.
-
(1979)
Diabetologia.
, vol.16
, pp. 287-296
-
-
Sharp, G.W.1
-
9
-
-
0023525741
-
2+cAMP and phospholipid-de-rived messengers in coupling mechanisms of insulin secretion
-
2+, cAMP, and phospholipid-de-rived messengers in coupling mechanisms of insulin secretion. Physiol Rev. 1987;67:1185-1248.
-
(1987)
Physiol Rev.
, vol.67
, pp. 1185-1248
-
-
Prentki, M.1
Matschinsky, F.M.2
-
10
-
-
0032459512
-
Protein kinases, protein phosphorylation, and the regulation of insulin secretion from pancreatic β-cells
-
Jones PM, Persaud SJ. Protein kinases, protein phosphorylation, and the regulation of insulin secretion from pancreatic β-cells. Endocr Rev. 1998;19:429-461.
-
(1998)
Endocr Rev.
, vol.19
, pp. 429-461
-
-
Jones, P.M.1
Persaud, S.J.2
-
11
-
-
0030792753
-
Protein kinase A-dependent and-independent stimulation of exocytosis by cAMP in mouse pancreatic β-cells
-
Renström E, Eliasson L, Rorsman P. Protein kinase A-dependent and-independent stimulation of exocytosis by cAMP in mouse pancreatic β-cells. J Physiol. 1997;502:105-118.
-
(1997)
J Physiol.
, vol.502
, pp. 105-118
-
-
Renström, E.1
Eliasson, L.2
Rorsman, P.3
-
12
-
-
0033769693
-
CAMP-GEFII is a direct target of cAMP in regulated exocytosis
-
Ozaki N, Shibasaki T, Kashima Y, et al. cAMP-GEFII is a direct target of cAMP in regulated exocytosis. Nat Cell Biol. 2000;2:805-811.
-
(2000)
Nat Cell Biol.
, vol.2
, pp. 805-811
-
-
Ozaki, N.1
Shibasaki, T.2
Kashima, Y.3
-
14
-
-
0347990624
-
Epac: A new cAMP-binding protein in support of gluca-gon-like peptide-1 receptor-mediated signal transduction in the pancreatic β-cell
-
Holz GG. Epac: a new cAMP-binding protein in support of gluca-gon-like peptide-1 receptor-mediated signal transduction in the pancreatic β-cell. Diabetes. 2004;53:5-13.
-
(2004)
Diabetes.
, vol.53
, pp. 5-13
-
-
Holz, G.G.1
-
15
-
-
77949538387
-
Epac: Defining a new mechanism for cAMP action
-
Gloerich M, Bos JL. Epac: defining a new mechanism for cAMP action. Annu Rev Pharmacol Toxicol. 2010;50:355-375.
-
(2010)
Annu Rev Pharmacol Toxicol.
, vol.50
, pp. 355-375
-
-
Gloerich, M.1
Bos, J.L.2
-
17
-
-
84891698714
-
Pancreatic β-cell response to increased metabolic demand and to pharmacologic secretagogues requires EPAC2A
-
Song WJ, Mondal P, Li Y, Lee SE, Hussain MA. Pancreatic β-cell response to increased metabolic demand and to pharmacologic secretagogues requires EPAC2A. Diabetes. 2013;62:2796-2807.
-
(2013)
Diabetes.
, vol.62
, pp. 2796-2807
-
-
Song, W.J.1
Mondal, P.2
Li, Y.3
Lee, S.E.4
Hussain, M.A.5
-
18
-
-
79959390543
-
Glucose-and hormone-induced cAMP oscillations in a-and β-cells within intact pancreatic islets
-
Tian G, Sandler S, Gylfe E, Tengholm A. Glucose-and hormone-induced cAMP oscillations in a-and β-cells within intact pancreatic islets. Diabetes. 2011;60:1535-1543.
-
(2011)
Diabetes.
, vol.60
, pp. 1535-1543
-
-
Tian, G.1
Sandler, S.2
Gylfe, E.3
Tengholm, A.4
-
20
-
-
0041315574
-
CAMP analog mapping of Epac1 and cAMP kinase. Discriminating analogs demonstrate that Epac and cAMP kinase act synergistically to promote PC-12 cell neurite extension
-
Christensen AE, Selheim F, de Rooij J, et al. cAMP analog mapping of Epac1 and cAMP kinase. Discriminating analogs demonstrate that Epac and cAMP kinase act synergistically to promote PC-12 cell neurite extension. J Biol Chem. 2003;278:35394-35402.
-
(2003)
J Biol Chem.
, vol.278
, pp. 35394-35402
-
-
Christensen, A.E.1
Selheim, F.2
De Rooij, J.3
-
21
-
-
54349106705
-
8-pCPT-2'-O-Me-cAMP-AM: An improved Epac-selective cAMP analogue
-
Vliem MJ, Ponsioen B, Schwede F, et al. 8-pCPT-2'-O-Me-cAMP-AM: an improved Epac-selective cAMP analogue. Chembiochem. 2008;9:2052-2054.
-
(2008)
Chembiochem.
, vol.9
, pp. 2052-2054
-
-
Vliem, M.J.1
Ponsioen, B.2
Schwede, F.3
-
22
-
-
36249019009
-
Epac-selective cAMP analogs: New tools with which to evaluate the signal transduction properties of cAMP-regulated guanine nucleotide exchange factors
-
Holz GG, Chepurny OG, Schwede F. Epac-selective cAMP analogs: new tools with which to evaluate the signal transduction properties of cAMP-regulated guanine nucleotide exchange factors. Cell Signal. 2008;20:10-20.
-
(2008)
Cell Signal.
, vol.20
, pp. 10-20
-
-
Holz, G.G.1
Chepurny, O.G.2
Schwede, F.3
-
23
-
-
77349096383
-
PKA-dependent potentiation of glucose-stimulated insulin secretion by Epac activator 8-pCPT-2'-O-Me-cAMP-AM in human islets of Langerhans
-
Chepurny OG, Kelley GG, Dzhura I, et al. PKA-dependent potentiation of glucose-stimulated insulin secretion by Epac activator 8-pCPT-2'-O-Me-cAMP-AM in human islets of Langerhans. Am J Physiol Endocrinol Metab. 2010;298:E622-E633.
-
(2010)
Am J Physiol Endocrinol Metab.
, vol.298
, pp. E622-E633
-
-
Chepurny, O.G.1
Kelley, G.G.2
Dzhura, I.3
-
24
-
-
3542993224
-
Both triggering and amplifying pathways contribute to fuel-induced insulin secretion in the absence of sulfonylurea receptor-1 in pancreatic β-cells
-
Nenquin M, Szollosi A, Aguilar-Bryan L, Bryan J, Henquin JC. Both triggering and amplifying pathways contribute to fuel-induced insulin secretion in the absence of sulfonylurea receptor-1 in pancreatic β-cells. J Biol Chem. 2004;279:32316-32324.
-
(2004)
J Biol Chem.
, vol.279
, pp. 32316-32324
-
-
Nenquin, M.1
Szollosi, A.2
Aguilar-Bryan, L.3
Bryan, J.4
Henquin, J.C.5
-
25
-
-
0029833117
-
Stable and diffusible pools of nucleotides in pancreatic islet cells
-
Detimary P, Jonas JC, Henquin JC. Stable and diffusible pools of nucleotides in pancreatic islet cells. Endocrinology. 1996;137: 4671-4676.
-
(1996)
Endocrinology.
, vol.137
, pp. 4671-4676
-
-
Detimary, P.1
Jonas, J.C.2
Henquin, J.C.3
-
26
-
-
0033760442
-
Triggering and amplifying pathways of regulation of insulin secretion by glucose
-
Henquin JC. Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes. 2000;49:1751-1760.
-
(2000)
Diabetes.
, vol.49
, pp. 1751-1760
-
-
Henquin, J.C.1
-
27
-
-
84868570315
-
Isoform-specific antagonists of exchange proteins directly activated by cAMP
-
Tsalkova T, Mei FC, Li S, et al. Isoform-specific antagonists of exchange proteins directly activated by cAMP. Proc Natl Acad Sci USA. 2012;109:18613-18618.
-
(2012)
Proc Natl Acad Sci USA.
, vol.109
, pp. 18613-18618
-
-
Tsalkova, T.1
Mei, F.C.2
Li, S.3
-
28
-
-
84889581761
-
Epac-inhibitors: Facts and artefacts
-
Rehmann H. Epac-inhibitors: facts and artefacts. Sci Rep. 2013;3: 3032.
-
(2013)
Sci Rep.
, vol.3
, pp. 3032
-
-
Rehmann, H.1
-
29
-
-
84885160578
-
Exchange protein activated by cAMP 1 (Epac1)-deficient mice develop β-cell dysfunction and metabolic syndrome
-
Kai AK, Lam AK, Chen Y, et al. Exchange protein activated by cAMP 1 (Epac1)-deficient mice develop β-cell dysfunction and metabolic syndrome. FASEB J. 2013;27:4122-4135.
-
(2013)
FASEB J.
, vol.27
, pp. 4122-4135
-
-
Kai, A.K.1
Lam, A.K.2
Chen, Y.3
-
31
-
-
68149136367
-
The cAMP sensor Epac2 is a direct target of antidiabetic sulfonylurea drugs
-
Zhang CL, Katoh M, Shibasaki T, et al. The cAMP sensor Epac2 is a direct target of antidiabetic sulfonylurea drugs. Science. 2009; 325:607-610.
-
(2009)
Science.
, vol.325
, pp. 607-610
-
-
Zhang, C.L.1
Katoh, M.2
Shibasaki, T.3
-
32
-
-
84886737102
-
Antidiabetic sulfonylureas and cAMP cooperatively activate Epac2A
-
Takahashi T, Shibasaki T, Takahashi H, et al. Antidiabetic sulfonylureas and cAMP cooperatively activate Epac2A. Sci Signal. 2013; 6:ra94.
-
(2013)
Sci Signal.
, pp. 6ra94
-
-
Takahashi, T.1
Shibasaki, T.2
Takahashi, H.3
-
33
-
-
84866749128
-
CAMP-mediated and metabolic amplification of insulin secretion are distinct pathways sharing independence of β-cell microfilaments
-
Mourad NI, Nenquin M, Henquin JC. cAMP-mediated and metabolic amplification of insulin secretion are distinct pathways sharing independence of β-cell microfilaments. Endocrinology. 2012;153: 4644-4654.
-
(2012)
Endocrinology.
, vol.153
, pp. 4644-4654
-
-
Mourad, N.I.1
Nenquin, M.2
Henquin, J.C.3
-
34
-
-
77349114753
-
Glucose-dependent potentiation of mouse islet insulin secretion by Epac activator 8-pCPT-2'-O-Me-cAMP-AM
-
Kelley GG, Chepurny OG, Schwede F, et al. Glucose-dependent potentiation of mouse islet insulin secretion by Epac activator 8-pCPT-2'-O-Me-cAMP-AM. Islets. 2009;1:260-265.
-
(2009)
Islets.
, vol.1
, pp. 260-265
-
-
Kelley, G.G.1
Chepurny, O.G.2
Schwede, F.3
-
35
-
-
79952126838
-
Snapin mediates incretin action and augments glucose-dependent insulin secretion
-
Song WJ, Seshadri M, Ashraf U, et al. Snapin mediates incretin action and augments glucose-dependent insulin secretion. Cell Metab. 2011;13:308-319.
-
(2011)
Cell Metab.
, vol.13
, pp. 308-319
-
-
Song, W.J.1
Seshadri, M.2
Ashraf, U.3
-
36
-
-
84876532885
-
β-Cell-specific protein kinase A activation enhances the efficiency of glucose control by increasing acute-phase insulin secretion
-
Kaihara KA, Dickson LM, Jacobson DA, et al. β-Cell-specific protein kinase A activation enhances the efficiency of glucose control by increasing acute-phase insulin secretion. Diabetes. 2013;62:1527-1536.
-
(2013)
Diabetes.
, vol.62
, pp. 1527-1536
-
-
Kaihara, K.A.1
Dickson, L.M.2
Jacobson, D.A.3
-
38
-
-
77954925625
-
CAMP mediators of pulsatile insulin secretion from glucose-stimulated single β-cells
-
Idevall-Hagren O, Barg S, Gylfe E, Tengholm A. cAMP mediators of pulsatile insulin secretion from glucose-stimulated single β-cells. J Biol Chem. 2010;285:23007-23018.
-
(2010)
J Biol Chem.
, vol.285
, pp. 23007-23018
-
-
Idevall-Hagren, O.1
Barg, S.2
Gylfe, E.3
Tengholm, A.4
-
39
-
-
33644538464
-
Rapid glucose sensing by protein kinase A for insulin exocytosis in mouse pancreatic islets
-
Hatakeyama H, Kishimoto T, Nemoto T, Kasai H, Takahashi N. Rapid glucose sensing by protein kinase A for insulin exocytosis in mouse pancreatic islets. J Physiol. 2006;570:271-282.
-
(2006)
J Physiol.
, vol.570
, pp. 271-282
-
-
Hatakeyama, H.1
Kishimoto, T.2
Nemoto, T.3
Kasai, H.4
Takahashi, N.5
-
40
-
-
37649002935
-
Essential role of Epac2/Rap1 signaling in regulation of insulin granule dynamics by cAMP
-
Shibasaki T, Takahashi H, Miki T, et al. Essential role of Epac2/Rap1 signaling in regulation of insulin granule dynamics by cAMP. Proc Natl Acad Sci USA. 2007;104:19333-19338.
-
(2007)
Proc Natl Acad Sci USA.
, vol.104
, pp. 19333-19338
-
-
Shibasaki, T.1
Takahashi, H.2
Miki, T.3
-
41
-
-
0020635976
-
2+-dependent electrical activity induced by glucose in mouse pancreatic β-cells
-
2+-dependent electrical activity induced by glucose in mouse pancreatic β-cells. Endocrinology. 1983; 112:2218-2220.
-
(1983)
Endocrinology.
, vol.112
, pp. 2218-2220
-
-
Henquin, J.C.1
Schmeer, W.2
Meissner, H.P.3
-
44
-
-
82455210942
-
Molecular physiology of glucagon-like peptide-1 insulin secretagogue action in pancreatic β cells
-
Leech CA, Dzhura I, Chepurny OG, et al. Molecular physiology of glucagon-like peptide-1 insulin secretagogue action in pancreatic β cells. Prog Biophys Mol Biol. 2011;107:236-247.
-
(2011)
Prog Biophys Mol Biol.
, vol.107
, pp. 236-247
-
-
Leech, C.A.1
Dzhura, I.2
Chepurny, O.G.3
-
46
-
-
0023020084
-
Regulation of insulin secretion by cAMP in rat islets of Langerhans permeabilised by high-voltage discharge
-
Jones PM, Fyles JM, Howell SL. Regulation of insulin secretion by cAMP in rat islets of Langerhans permeabilised by high-voltage discharge. FEBS Lett. 1986;205:205-209.
-
(1986)
FEBS Lett.
, vol.205
, pp. 205-209
-
-
Jones, P.M.1
Fyles, J.M.2
Howell, S.L.3
-
47
-
-
0027235323
-
Calcium-independent potentiation of insulin release by cyclic AMP in single β-cells
-
Ammälä C, Ashcroft FM, Rorsman P. Calcium-independent potentiation of insulin release by cyclic AMP in single β-cells. Nature. 1993;363:356-358.
-
(1993)
Nature.
, vol.363
, pp. 356-358
-
-
Ammälä, C.1
Ashcroft, F.M.2
Rorsman, P.3
-
49
-
-
0037337832
-
SUR1 regulates PKA-indepen-dent cAMP-induced granule priming in mouse pancreatic B-cells
-
Eliasson L, Ma X, Renström E, et al. SUR1 regulates PKA-indepen-dent cAMP-induced granule priming in mouse pancreatic B-cells. J Gen Physiol. 2003;121:181-197.
-
(2003)
J Gen Physiol.
, vol.121
, pp. 181-197
-
-
Eliasson, L.1
Ma, X.2
Renström, E.3
-
50
-
-
84904759768
-
Here come the newcomer granules, better late than never
-
Gaisano HY. Here come the newcomer granules, better late than never. Trends Endocrinol Metab. 2014;25:381-388.
-
(2014)
Trends Endocrinol Metab.
, vol.25
, pp. 381-388
-
-
Gaisano, H.Y.1
-
51
-
-
79951816217
-
Direct activation of Epac by sulfonylurea is isoform selective
-
Herbst KJ, Coltharp C, Amzel LM, Zhang J. Direct activation of Epac by sulfonylurea is isoform selective. Chem Biol. 2011;18:243-251.
-
(2011)
Chem Biol.
, vol.18
, pp. 243-251
-
-
Herbst, K.J.1
Coltharp, C.2
Amzel, L.M.3
Zhang, J.4
-
52
-
-
79951696645
-
Exchange protein directly activated by cyclic AMP isoform 2 is not a direct target of sulfonylurea drugs
-
Tsalkova T, Gribenko AV, Cheng X. Exchange protein directly activated by cyclic AMP isoform 2 is not a direct target of sulfonylurea drugs. Assay Drug Dev Technol. 2011;9:88-91.
-
(2011)
Assay Drug Dev Technol.
, vol.9
, pp. 88-91
-
-
Tsalkova, T.1
Gribenko, A.V.2
Cheng, X.3
-
53
-
-
84856285651
-
Epac2: A sulfonylurea receptor?
-
Rehmann H. Epac2: a sulfonylurea receptor? Biochem Soc Trans. 2012;40:6-10.
-
(2012)
Biochem Soc Trans.
, vol.40
, pp. 6-10
-
-
Rehmann, H.1
-
56
-
-
0032956241
-
+channel-independent pathway of glucose signaling in rat pancreatic islets
-
+channel-independent pathway of glucose signaling in rat pancreatic islets. Diabetes. 1999;48:1006-1012.
-
(1999)
Diabetes.
, vol.48
, pp. 1006-1012
-
-
Yajima, H.1
Komatsu, M.2
Schermerhorn, T.3
-
59
-
-
10344221040
-
2+-sensitive pool of granules is regulated by glucose andprotein kinases in insulin-secreting INS-1 cells
-
2+-sensitive pool of granules is regulated by glucose andprotein kinases in insulin-secreting INS-1 cells. J Gen Physiol. 2004;124:641-651.
-
(2004)
J Gen Physiol.
, vol.124
, pp. 641-651
-
-
Yang, Y.1
Gillis, K.D.2
|