메뉴 건너뛰기




Volumn 53, Issue 1, 2015, Pages 527-541

Spatial-aware dictionary learning for hyperspectral image classification

Author keywords

Classification; dictionary learning; hyperspectral imagery (HSI); linear support vector machines (SVMs); probabilistic joint sparse model

Indexed keywords

CLASSIFICATION (OF INFORMATION); COMPUTER SIMULATION; INDEPENDENT COMPONENT ANALYSIS; PIXELS; SPECTROSCOPY; SUPPORT VECTOR MACHINES;

EID: 84906283945     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2014.2325067     Document Type: Article
Times cited : (126)

References (62)
  • 1
    • 85032751780 scopus 로고    scopus 로고
    • Dictionary learning
    • Mar.
    • I. Tosic and P. Frossard, "Dictionary learning," IEEE Signal Process. Mag., vol. 28, no. 2, pp. 27-38, Mar. 2011.
    • (2011) IEEE Signal Process. Mag. , vol.28 , Issue.2 , pp. 27-38
    • Tosic, I.1    Frossard, P.2
  • 2
    • 77952743002 scopus 로고    scopus 로고
    • Low-dimensional models for dimensionality reduction and signal recovery: A geometric perspective
    • Jun.
    • R. Baraniuk, V. Cevher, and M. Wakin, "Low-dimensional models for dimensionality reduction and signal recovery: A geometric perspective," Proc. IEEE, vol. 98, no. 6, pp. 959-971, Jun. 2010.
    • (2010) Proc. IEEE , vol.98 , Issue.6 , pp. 959-971
    • Baraniuk, R.1    Cevher, V.2    Wakin, M.3
  • 3
    • 0030779611 scopus 로고    scopus 로고
    • Sparse coding with an overcomplete basis set: A strategy employed by v1?
    • Dec.
    • B. Olshausen and D. Field, "Sparse coding with an overcomplete basis set: A strategy employed by v1?" Vis. Res., vol. 37, no. 23, pp. 3311-3325, Dec. 1997.
    • (1997) Vis. Res. , vol.37 , Issue.23 , pp. 3311-3325
    • Olshausen, B.1    Field, D.2
  • 4
    • 33750383209 scopus 로고    scopus 로고
    • K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
    • Nov.
    • M. Aharon, M. Elad, and A. Bruckstein, "K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation," IEEE Trans. Signal Process., vol. 54, no. 11, pp. 4311-4322, Nov. 2006.
    • (2006) IEEE Trans. Signal Process. , vol.54 , Issue.11 , pp. 4311-4322
    • Aharon, M.1    Elad, M.2    Bruckstein, A.3
  • 5
    • 33751379736 scopus 로고    scopus 로고
    • Image denoising via sparse and redundant representations over learned dictionaries
    • Dec.
    • M. Elad and M. Aharon, "Image denoising via sparse and redundant representations over learned dictionaries," IEEE Trans. Image Process., vol. 15, no. 12, pp. 3736-3745, Dec. 2006.
    • (2006) IEEE Trans. Image Process. , vol.15 , Issue.12 , pp. 3736-3745
    • Elad, M.1    Aharon, M.2
  • 6
    • 70450209196 scopus 로고    scopus 로고
    • Linear spatial pyramid matching using sparse coding for image classification
    • J. Yang, K. Yu, Y. Gong, and T. Huang, "Linear spatial pyramid matching using sparse coding for image classification," in Proc. IEEE CVPR, 2009, pp. 1794-1801.
    • (2009) Proc. IEEE CVPR , pp. 1794-1801
    • Yang, J.1    Yu, K.2    Gong, Y.3    Huang, T.4
  • 7
    • 78149344615 scopus 로고    scopus 로고
    • Image classification using super-vector coding of local image descriptors
    • Springer-Verlag
    • X. Zhou, K. Yu, T. Zhang, and T. Huang, "Image classification using super-vector coding of local image descriptors," in Proc. ECCV, 2010, vol. 5, pp. 141-154, Springer-Verlag.
    • (2010) Proc. ECCV , vol.5 , pp. 141-154
    • Zhou, X.1    Yu, K.2    Zhang, T.3    Huang, T.4
  • 8
    • 84856650212 scopus 로고    scopus 로고
    • Building a better probabilistic model of images by factorization
    • B. J. Culpepper, J. Sohl-Dickstein, and B. Olshausen, "Building a better probabilistic model of images by factorization," in Proc. IEEE ICCV, 2011, pp. 2011-2017.
    • (2011) Proc. IEEE ICCV , pp. 2011-2017
    • Culpepper, B.J.1    Sohl-Dickstein, J.2    Olshausen, B.3
  • 9
    • 77955998411 scopus 로고    scopus 로고
    • Discriminative K-SVD for dictionary learning in face recognition
    • Q. Zhang and B. Li, "Discriminative K-SVD for dictionary learning in face recognition," in Proc. IEEE CVPR, 2010, pp. 2691-2698.
    • (2010) Proc. IEEE CVPR , pp. 2691-2698
    • Zhang, Q.1    Li, B.2
  • 11
    • 77955994663 scopus 로고    scopus 로고
    • Classification and clustering via dictionary learning with structured incoherence and shared features
    • I. Ramirez, P. Sprechmann, and G. Sapiro, "Classification and clustering via dictionary learning with structured incoherence and shared features," in Proc. IEEE CVPR, 2010, pp. 3501-3508.
    • (2010) Proc. IEEE CVPR , pp. 3501-3508
    • Ramirez, I.1    Sprechmann, P.2    Sapiro, G.3
  • 12
    • 85162319688 scopus 로고    scopus 로고
    • Sparse manifold clustering and embedding
    • E. Elhamifar and R. Vidal, "Sparse manifold clustering and embedding," in Proc. 25th Annu. Conf. NIPS, 2011, vol. 24, pp. 55-63.
    • (2011) Proc. 25th Annu. Conf. NIPS , vol.24 , pp. 55-63
    • Elhamifar, E.1    Vidal, R.2
  • 13
    • 67650436064 scopus 로고    scopus 로고
    • Recent advances in techniques for hyperspectral image processing
    • Sep.
    • A. Plaza et al., "Recent advances in techniques for hyperspectral image processing," Remote Sens. Environ., vol. 113, no. S1, pp. S110-S122, Sep. 2009.
    • (2009) Remote Sens. Environ. , vol.113 , Issue.S1
    • Plaza, A.1
  • 14
    • 33749063369 scopus 로고    scopus 로고
    • Estimating and mapping crop residues cover on agricultural lands using hyperspectral and Ikonos data
    • Oct.
    • A. Bannari, A. Pacheco, K. Staenz, H. McNairn, and K. Omari, "Estimating and mapping crop residues cover on agricultural lands using hyperspectral and Ikonos data," Remote Sens. Environ., vol. 104, no. 4, pp. 447-459, Oct. 2006.
    • (2006) Remote Sens. Environ. , vol.104 , Issue.4 , pp. 447-459
    • Bannari, A.1    Pacheco, A.2    Staenz, K.3    McNairn, H.4    Omari, K.5
  • 15
    • 33947544369 scopus 로고    scopus 로고
    • Measuring crop status using multivariate analysis of hyperspectral field reflectance with application to disease severity and plant density
    • Apr.
    • A. Larsolle and H. H. Muhammed, "Measuring crop status using multivariate analysis of hyperspectral field reflectance with application to disease severity and plant density," Precis. Agr., vol. 8, no. 1/2, pp. 37-47, Apr. 2007.
    • (2007) Precis. Agr. , vol.8 , Issue.1-2 , pp. 37-47
    • Larsolle, A.1    Muhammed, H.H.2
  • 16
    • 33746885881 scopus 로고    scopus 로고
    • A support vector method for anomaly detection in hyperspectral imagery
    • Aug.
    • A. Banerjee, P. Burlina, and C. Diehl, "A support vector method for anomaly detection in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 8, pp. 2282-2291, Aug. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.8 , pp. 2282-2291
    • Banerjee, A.1    Burlina, P.2    Diehl, C.3
  • 17
    • 66249130979 scopus 로고    scopus 로고
    • Automated hyperspectral cueing for civilian search and rescue
    • Jun.
    • M. Eismann, A. Stocker, and N. Nasrabadi, "Automated hyperspectral cueing for civilian search and rescue," Proc. IEEE, vol. 97, no. 6, pp. 1031-1055, Jun. 2009.
    • (2009) Proc. IEEE , vol.97 , Issue.6 , pp. 1031-1055
    • Eismann, M.1    Stocker, A.2    Nasrabadi, N.3
  • 18
    • 31344453556 scopus 로고    scopus 로고
    • Mapping invasive plants using hyperspectral imagery and breiman cutler classifications (randomforest)
    • Feb.
    • R. L. Lawrence, S. D. Wood, and R. L. Sheley, "Mapping invasive plants using hyperspectral imagery and breiman cutler classifications (randomforest)," Remote Sens. Environ., vol. 100, no. 3, pp. 356-362, Feb. 2006.
    • (2006) Remote Sens. Environ. , vol.100 , Issue.3 , pp. 356-362
    • Lawrence, R.L.1    Wood, S.D.2    Sheley, R.L.3
  • 19
    • 67349196780 scopus 로고    scopus 로고
    • Building spectral libraries for wetlands land cover classification and hyperspectral remote sensing
    • May
    • R. Zomer, A. Trabucco, and S. Ustin, "Building spectral libraries for wetlands land cover classification and hyperspectral remote sensing," J. Environ. Manage., vol. 90, no. 7, pp. 2170-2177, May 2009.
    • (2009) J. Environ. Manage. , vol.90 , Issue.7 , pp. 2170-2177
    • Zomer, R.1    Trabucco, A.2    Ustin, S.3
  • 20
    • 41249092070 scopus 로고    scopus 로고
    • NFindR method versus independent component analysis for lithological identification in hyperspectral imagery
    • Nov.
    • C. Gomez, H. L. Borgne, P. Allemand, C. Delacourt, and P. Ledru, "NFindR method versus independent component analysis for lithological identification in hyperspectral imagery," Int. J. Remote Sens., vol. 28, no. 23, pp. 5315-5338, Nov. 2007.
    • (2007) Int. J. Remote Sens. , vol.28 , Issue.23 , pp. 5315-5338
    • Gomez, C.1    Borgne, H.L.2    Allemand, P.3    Delacourt, C.4    Ledru, P.5
  • 21
    • 84861772901 scopus 로고    scopus 로고
    • Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches
    • Apr.
    • J. M. Bioucas-Dias et al., "Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 5, no. 2, pp. 354-379, Apr. 2012.
    • (2012) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.5 , Issue.2 , pp. 354-379
    • Bioucas-Dias, J.M.1
  • 25
    • 84869498082 scopus 로고    scopus 로고
    • Total variation spatial regularization for sparse hyperspectral unmixing
    • Nov.
    • M. D. Iordache, J. M. Bioucas-Dias, and A. Plaza, "Total variation spatial regularization for sparse hyperspectral unmixing," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 11, pp. 4484-4502, Nov. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.11 , pp. 4484-4502
    • Iordache, M.D.1    Bioucas-Dias, J.M.2    Plaza, A.3
  • 26
    • 0029753233 scopus 로고    scopus 로고
    • A method for manual endmember selection and spectral unmixing
    • Mar.
    • A. Bateson and B. Curtiss, "A method for manual endmember selection and spectral unmixing," Remote Sens. Environ., vol. 55, no. 3, pp. 229-243, Mar. 1996.
    • (1996) Remote Sens. Environ. , vol.55 , Issue.3 , pp. 229-243
    • Bateson, A.1    Curtiss, B.2
  • 28
    • 80455122805 scopus 로고    scopus 로고
    • Learning discriminative sparse representations for modeling, source separation, and mapping of hyperspectral imagery
    • Nov.
    • A. Castrodad et al., "Learning discriminative sparse representations for modeling, source separation, and mapping of hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 11, pp. 4263-4281, Nov. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.11 , pp. 4263-4281
    • Castrodad, A.1
  • 29
    • 84255178230 scopus 로고    scopus 로고
    • Sparse demixing of hyperspectral images
    • Jan.
    • J. Greer, "Sparse demixing of hyperspectral images," IEEE Trans. Image Process., vol. 21, no. 1, pp. 219-228, Jan. 2012.
    • (2012) IEEE Trans. Image Process. , vol.21 , Issue.1 , pp. 219-228
    • Greer, J.1
  • 30
    • 14644412366 scopus 로고    scopus 로고
    • Classification of hyperspectral data from urban areas based on extended morphological profiles
    • Mar.
    • J. Benediktsson, J. Palmason, and J. Sveinsson, "Classification of hyperspectral data from urban areas based on extended morphological profiles," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 480-491, Mar. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.3 , pp. 480-491
    • Benediktsson, J.1    Palmason, J.2    Sveinsson, J.3
  • 31
    • 32644440024 scopus 로고    scopus 로고
    • Support vector machines for crop classification using hyperspectral data
    • G. Camps-Valls et al., "Support vector machines for crop classification using hyperspectral data," in Proc. Pattern Recognit. Image Anal., 2003, vol. 2652, pp. 134-141.
    • (2003) Proc. Pattern Recognit. Image Anal. , vol.2652 , pp. 134-141
    • Camps-Valls, G.1
  • 33
    • 0037696635 scopus 로고    scopus 로고
    • Classification of hyperspectral data by decision trees and artificial neural networks to identify weed stress and nitrogen status of corn
    • May
    • P. Goel et al., "Classification of hyperspectral data by decision trees and artificial neural networks to identify weed stress and nitrogen status of corn," Comput. Electron. Agr., vol. 39, no. 2, pp. 67-93, May 2003.
    • (2003) Comput. Electron. Agr. , vol.39 , Issue.2 , pp. 67-93
    • Goel, P.1
  • 34
    • 0033540293 scopus 로고    scopus 로고
    • A back-propagation neural network for mineralogical mapping from AVIRIS data
    • Jan.
    • H. Yang, "A back-propagation neural network for mineralogical mapping from AVIRIS data," Int. J. Remote Sens., vol. 20, no. 1, pp. 97-110, Jan. 1999.
    • (1999) Int. J. Remote Sens. , vol.20 , Issue.1 , pp. 97-110
    • Yang, H.1
  • 36
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Aug.
    • F. Melgani and L. Bruzzone, "Classification of hyperspectral remote sensing images with support vector machines," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 8, pp. 1778-1790, Aug. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 37
    • 39049145967 scopus 로고    scopus 로고
    • Semi-supervised graphbased hyperspectral image classification
    • Oct.
    • G. Camps-Valls, T. B. Marsheva, and D. Zhou, "Semi-supervised graphbased hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 10, pp. 3044-3054, Oct. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.10 , pp. 3044-3054
    • Camps-Valls, G.1    Marsheva, T.B.2    Zhou, D.3
  • 38
    • 33750819329 scopus 로고    scopus 로고
    • A novel transductive SVM for semisupervised classification of remote-sensing images
    • Nov.
    • L. Bruzzone, M. Chi, and M. Marconcini, "A novel transductive SVM for semisupervised classification of remote-sensing images," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 11, pp. 3363-3373, Nov. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.11 , pp. 3363-3373
    • Bruzzone, L.1    Chi, M.2    Marconcini, M.3
  • 40
    • 77957993814 scopus 로고    scopus 로고
    • Spatio-spectral remote sensing image classification with graph kernels
    • Oct.
    • G. Camps-Valls, N. Shervashidze, and K. M. Borgwardt, "Spatio-spectral remote sensing image classification with graph kernels," IEEE Geosci. Remote Sens. Lett., vol. 7, no. 4, pp. 741-745, Oct. 2010.
    • (2010) IEEE Geosci. Remote Sens. Lett. , vol.7 , Issue.4 , pp. 741-745
    • Camps-Valls, G.1    Shervashidze, N.2    Borgwardt, K.M.3
  • 41
    • 80053571096 scopus 로고    scopus 로고
    • Hyperspectral image classification using dictionary-based sparse representation
    • Oct.
    • Y. Chen, N. Nasrabadi, and T. Tran, "Hyperspectral image classification using dictionary-based sparse representation," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 10, pp. 3973-3985, Oct. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.10 , pp. 3973-3985
    • Chen, Y.1    Nasrabadi, N.2    Tran, T.3
  • 42
    • 85007101657 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • R. Tibshirani, "Regression shrinkage and selection via the lasso," J. R. Stat. Soc. B, Methodol., vol. 58, no. 1, pp. 267-288, 1996.
    • (1996) J. R. Stat. Soc. B, Methodol. , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 43
    • 0037313218 scopus 로고    scopus 로고
    • Dictionary learning algorithms for sparse representation
    • Feb.
    • K. Kreutz-Delgado et al., "Dictionary learning algorithms for sparse representation," Neural Comput., vol. 15, no. 2, pp. 349-396, Feb. 2003.
    • (2003) Neural Comput. , vol.15 , Issue.2 , pp. 349-396
    • Kreutz-Delgado, K.1
  • 45
    • 0034215549 scopus 로고    scopus 로고
    • A new approach to variable selection in least squares problems
    • Jul.
    • M. Osborne, B. Presnell, and B. Turlach, "A new approach to variable selection in least squares problems," IMA J. Numer. Anal., vol. 20, no. 3, pp. 389-403, Jul. 2000.
    • (2000) IMA J. Numer. Anal. , vol.20 , Issue.3 , pp. 389-403
    • Osborne, M.1    Presnell, B.2    Turlach, B.3
  • 46
    • 3242708140 scopus 로고    scopus 로고
    • Least angle regression
    • B. Efron et al., "Least angle regression," Ann. Stat., vol. 32, no. 2, pp. 407-499, 2004.
    • (2004) Ann. Stat. , vol.32 , Issue.2 , pp. 407-499
    • Efron, B.1
  • 48
    • 76749107542 scopus 로고    scopus 로고
    • Online learning for matrix factorization and sparse coding
    • Mar.
    • J. Mairal, F. Bach, J. Ponce, and G. Sapiro, "Online learning for matrix factorization and sparse coding," J. Mach. Learn. Res., vol. 11, pp. 19-60, Mar. 2010.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 19-60
    • Mairal, J.1    Bach, F.2    Ponce, J.3    Sapiro, G.4
  • 50
    • 0032627073 scopus 로고    scopus 로고
    • Method of optimal directions for frame design
    • K. Engan, S. Aase, and J. H. Husoy, "Method of optimal directions for frame design," in Proc. IEEE ICASSP, 1999, vol. 5, pp. 2443-2446.
    • (1999) Proc. IEEE ICASSP , vol.5 , pp. 2443-2446
    • Engan, K.1    Aase, S.2    Husoy, J.H.3
  • 52
    • 30844461481 scopus 로고    scopus 로고
    • Algorithms for simultaneous sparse approximation. Part II: Convex relaxation
    • Mar.
    • J. Tropp, "Algorithms for simultaneous sparse approximation. Part II: Convex relaxation," Signal Process., vol. 86, no. 3, pp. 589-602, Mar. 2006.
    • (2006) Signal Process , vol.86 , Issue.3 , pp. 589-602
    • Tropp, J.1
  • 53
    • 23844477225 scopus 로고    scopus 로고
    • Sparse solutions to linear inverse problems with multiple measurement vectors
    • Jul.
    • S. Cotter, B. Rao, K. Engan, and K. Kreutz-Delgado, "Sparse solutions to linear inverse problems with multiple measurement vectors," IEEE Trans. Signal Process., vol. 53, no. 7, pp. 2477-2488, Jul. 2005.
    • (2005) IEEE Trans. Signal Process. , vol.53 , Issue.7 , pp. 2477-2488
    • Cotter, S.1    Rao, B.2    Engan, K.3    Kreutz-Delgado, K.4
  • 54
    • 25444450079 scopus 로고    scopus 로고
    • A sparse signal reconstruction perspective for source localization with sensor arrays
    • Aug.
    • D. Malioutov, M. Cetin, and A. Willsky, "A sparse signal reconstruction perspective for source localization with sensor arrays," IEEE Trans. Signal Process., vol. 53, no. 8, pp. 3010-3022, Aug. 2005.
    • (2005) IEEE Trans. Signal Process. , vol.53 , Issue.8 , pp. 3010-3022
    • Malioutov, D.1    Cetin, M.2    Willsky, A.3
  • 55
    • 84862270751 scopus 로고    scopus 로고
    • A fast algorithm for recovery of jointly sparse vectors based on the alternating direction methods
    • H. Lu, X. Long, and J. Lv, "A fast algorithm for recovery of jointly sparse vectors based on the alternating direction methods," J. Mach. Learn. Res., vol. 15, pp. 461-469, 2011.
    • (2011) J. Mach. Learn. Res. , vol.15 , pp. 461-469
    • Lu, H.1    Long, X.2    Lv, J.3
  • 56
    • 79952039898 scopus 로고    scopus 로고
    • Surveying and comparing simultaneous sparse approximation (or group-lasso) algorithms
    • Jul.
    • A. Rakotomamonjy, "Surveying and comparing simultaneous sparse approximation (or group-lasso) algorithms," Signal Process., vol. 91, no. 7, pp. 1505-1526, Jul. 2011.
    • (2011) Signal Process , vol.91 , Issue.7 , pp. 1505-1526
    • Rakotomamonjy, A.1
  • 57
    • 79952307213 scopus 로고    scopus 로고
    • Alternating direction algorithms for-1-problems in compressive sensing
    • J. Yang and Y. Zhang, "Alternating direction algorithms for-1-problems in compressive sensing," SIAM J. Sci. Comput., vol. 33, no. 1, pp. 250-278, 2011.
    • (2011) SIAM J. Sci. Comput. , vol.33 , Issue.1 , pp. 250-278
    • Yang, J.1    Zhang, Y.2
  • 58
    • 67949115614 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques
    • Aug.
    • Y. Tarabalka, J. Benediktsson, and J. Chanussot, "Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 8, pp. 2973-2987, Aug. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.8 , pp. 2973-2987
    • Tarabalka, Y.1    Benediktsson, J.2    Chanussot, J.3
  • 61
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: A library for support vector machines
    • Apr.
    • C. Chih-Chung and L. Chih-Jen, "LIBSVM: A library for support vector machines," ACMTrans. Intell. Syst. Technol., vol. 2, no. 3, pp. 271-2727, Apr. 2011.
    • (2011) ACMTrans. Intell. Syst. Technol. , vol.2 , Issue.3 , pp. 271-2727
    • Chih-Chung, C.1    Chih-Jen, L.2
  • 62
    • 80051717047 scopus 로고    scopus 로고
    • Mar. [Online]. Available
    • The Benefits of the 8-Spectral Bands of Worldview-2, Mar. 2010. [Online]. Available: http://www.digitalglobe.com/downloads/WorldView-2-8-Band- Applications-Whitepaper.pdf
    • (2010) The Benefits of the 8-Spectral Bands of Worldview-2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.