메뉴 건너뛰기




Volumn 15, Issue , 2011, Pages 461-469

A fast algorithm for recovery of jointly sparse vectors based on the alternating direction methods

Author keywords

[No Author keywords available]

Indexed keywords

ALTERNATING DIRECTION METHODS; COMPRESSIVE SENSING; FAST ALGORITHMS; L1 NORM; LAGRANGIAN MULTIPLIERS; MINIMIZATION PROBLEMS; MULTIPLE MEASUREMENT VECTORS; RECOVERED SIGNALS; SIGNAL MEASUREMENT; SMV MODEL; SPARSE SIGNALS; SPARSE VECTORS; STATE-OF-THE-ART METHODS; VECTOR MULTIPLICATION;

EID: 84862270751     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Conference Paper
Times cited : (45)

References (26)
  • 1
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • A. Beck and M. Teboulle (2009). A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183-202.
    • (2009) SIAM Journal on Imaging Sciences , vol.2 , Issue.1 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 2
    • 31744440684 scopus 로고    scopus 로고
    • Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information
    • E. J. Candes, J. Romberg, and T. Tao (2006). Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52(2): 489-509.
    • (2006) IEEE Transactions on Information Theory , vol.52 , Issue.2 , pp. 489-509
    • Candes, E.J.1    Romberg, J.2    Tao, T.3
  • 3
    • 33947142837 scopus 로고    scopus 로고
    • Theoretical results Figure 5: Relative errors of MMV-ADM versus iteration numbers for different κ. on sparse representations of multiple-measurement vectors
    • J. Chen and X. Huo (2006). Theoretical results Figure 5: Relative errors of MMV-ADM versus iteration numbers for different κ. on sparse representations of multiple-measurement vectors. IEEE Transactions on Signal Processing, 54(12):4634-4643.
    • (2006) IEEE Transactions on Signal Processing , vol.54 , Issue.12 , pp. 4634-4643
    • Chen, J.1    Huo, X.2
  • 7
    • 33744552752 scopus 로고    scopus 로고
    • For most large underdetermined systems of linear equations, the minimal l1norm solution is also the sparsest solution
    • D. L. Donoho (2006b). For most large underdetermined systems of linear equations, the minimal l1norm solution is also the sparsest solution. Commun. Pure Appl. Math., 59(7):907-934.
    • (2006) Commun. Pure Appl. Math. , vol.59 , Issue.7 , pp. 907-934
    • Donoho, D.L.1
  • 9
    • 70350743173 scopus 로고    scopus 로고
    • Robust recovery of signals from a structured union of subspaces
    • Y. C. Eldar and M. Mishali (2009). Robust recovery of signals from a structured union of subspaces. IEEE Transactions on Information Theory,55(11):5302-5316.
    • (2009) IEEE Transactions on Information Theory , vol.55 , Issue.11 , pp. 5302-5316
    • Eldar, Y.C.1    Mishali, M.2
  • 10
    • 77949275427 scopus 로고    scopus 로고
    • Applications of lagrangian-based alternating direction methods and connections to split bregman
    • E. Esser (2009). Applications of Lagrangian-Based Alternating Direction Methods and Connections to Split Bregman. CAM Report, TR09-31, UCLA.
    • (2009) CAM Report, TR09-31, UCLA
    • Esser, E.1
  • 13
    • 0031102203 scopus 로고    scopus 로고
    • Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm
    • I. F. Gorodnitsky and B. D. Rao (1997). Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm. IEEE Transactions Signal Processing, 45(3):600-616.
    • (1997) IEEE Transactions Signal Processing , vol.45 , Issue.3 , pp. 600-616
    • Gorodnitsky, I.F.1    Rao, B.D.2
  • 16
    • 14944353419 scopus 로고    scopus 로고
    • Prox-method with rate of convergence O(1=t) for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems
    • A. Nemirovski (2005). Prox-method with rate of convergence O(1=t) for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems. SIAM Journal on Optimization, 15(1):229-251.
    • (2005) SIAM Journal on Optimization , vol.15 , Issue.1 , pp. 229-251
    • Nemirovski, A.1
  • 18
    • 68249141421 scopus 로고    scopus 로고
    • On the reconstruction of block-sparse signals with an optimal number of measurements
    • M. Stojnic, F. Parvaresh and B. Hassibi (2009). On the reconstruction of block-sparse signals with an optimal number of measurements. IEEE Transactions Signal Processing, 57(8):3075-3085.
    • (2009) IEEE Transactions Signal Processing , vol.57 , Issue.8 , pp. 3075-3085
    • Stojnic, M.1    Parvaresh, F.2    Hassibi, B.3
  • 19
    • 34250427726 scopus 로고
    • The multiplier method of Hestenes and Powell applied to convex programming
    • R. T. Rockafellar (1973). The multiplier method of Hestenes and Powell applied to convex programming. J. Optimiz. Theory App., 12(6):555-562.
    • (1973) J. Optimiz. Theory App. , vol.12 , Issue.6 , pp. 555-562
    • Rockafellar, R.T.1
  • 21
    • 30844445842 scopus 로고    scopus 로고
    • Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit
    • J. A. Tropp, A. C. Gilbert, and M. J. Strauss (2006a). Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit. Signal Proces., 86(3):572-588.
    • (2006) Signal Proces. , vol.86 , Issue.3 , pp. 572-588
    • Tropp, J.A.1    Gilbert, A.C.2    Strauss, M.J.3
  • 22
    • 30844461481 scopus 로고    scopus 로고
    • Algorithms for simultaneous sparse approximation. Part II: Convex relaxation
    • J. A. Tropp (2006b). Algorithms for simultaneous sparse approximation. Part II: Convex relaxation. Signal Proces., 86(3):589-602.
    • (2006) Signal Proces. , vol.86 , Issue.3 , pp. 589-602
    • Tropp, J.A.1
  • 23
    • 84862300335 scopus 로고    scopus 로고
    • Efficient recovery of jointly sparse vectors
    • L. Sun, J. Liu, J. Chen, J. Ye (2009). Efficient Recovery of Jointly Sparse Vectors. In Adv. NIPS.
    • (2009) Adv. NIPS
    • Sun, L.1    Liu, J.2    Chen, J.3    Ye, J.4
  • 25
    • 84862297241 scopus 로고    scopus 로고
    • Alternating direction algorithms for l1-problems in compressive sensing
    • J. Yang and Y. Zhang (2010). Alternating direction algorithms for l1-problems in compressive sensing. SIAM Journal on Scienctific Computing.
    • (2010) SIAM Journal on Scienctific Computing
    • Yang, J.1    Zhang, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.