-
1
-
-
85014561619
-
A fast iterative shrinkage-thresholding algorithm for linear inverse problems
-
A. Beck and M. Teboulle (2009). A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183-202.
-
(2009)
SIAM Journal on Imaging Sciences
, vol.2
, Issue.1
, pp. 183-202
-
-
Beck, A.1
Teboulle, M.2
-
2
-
-
31744440684
-
Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information
-
E. J. Candes, J. Romberg, and T. Tao (2006). Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52(2): 489-509.
-
(2006)
IEEE Transactions on Information Theory
, vol.52
, Issue.2
, pp. 489-509
-
-
Candes, E.J.1
Romberg, J.2
Tao, T.3
-
3
-
-
33947142837
-
Theoretical results Figure 5: Relative errors of MMV-ADM versus iteration numbers for different κ. on sparse representations of multiple-measurement vectors
-
J. Chen and X. Huo (2006). Theoretical results Figure 5: Relative errors of MMV-ADM versus iteration numbers for different κ. on sparse representations of multiple-measurement vectors. IEEE Transactions on Signal Processing, 54(12):4634-4643.
-
(2006)
IEEE Transactions on Signal Processing
, vol.54
, Issue.12
, pp. 4634-4643
-
-
Chen, J.1
Huo, X.2
-
4
-
-
23844477225
-
Sparse solutions to linear inverse problems with multiple measurement vectors
-
S. F. Cotter, B. D. Rao, Kjersti Engan, and K. Kreutz- Delgado (2005). Sparse solutions to linear inverse problems with multiple measurement vectors. IEEE Transactions on Signal Processing, 53(7):2477-2488.
-
(2005)
IEEE Transactions on Signal Processing
, vol.53
, Issue.7
, pp. 2477-2488
-
-
Cotter, S.F.1
Rao, B.D.2
Engan, K.3
Kreutz- Delgado, K.4
-
7
-
-
33744552752
-
For most large underdetermined systems of linear equations, the minimal l1norm solution is also the sparsest solution
-
D. L. Donoho (2006b). For most large underdetermined systems of linear equations, the minimal l1norm solution is also the sparsest solution. Commun. Pure Appl. Math., 59(7):907-934.
-
(2006)
Commun. Pure Appl. Math.
, vol.59
, Issue.7
, pp. 907-934
-
-
Donoho, D.L.1
-
9
-
-
70350743173
-
Robust recovery of signals from a structured union of subspaces
-
Y. C. Eldar and M. Mishali (2009). Robust recovery of signals from a structured union of subspaces. IEEE Transactions on Information Theory,55(11):5302-5316.
-
(2009)
IEEE Transactions on Information Theory
, vol.55
, Issue.11
, pp. 5302-5316
-
-
Eldar, Y.C.1
Mishali, M.2
-
10
-
-
77949275427
-
Applications of lagrangian-based alternating direction methods and connections to split bregman
-
E. Esser (2009). Applications of Lagrangian-Based Alternating Direction Methods and Connections to Split Bregman. CAM Report, TR09-31, UCLA.
-
(2009)
CAM Report, TR09-31, UCLA
-
-
Esser, E.1
-
13
-
-
0031102203
-
Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm
-
I. F. Gorodnitsky and B. D. Rao (1997). Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm. IEEE Transactions Signal Processing, 45(3):600-616.
-
(1997)
IEEE Transactions Signal Processing
, vol.45
, Issue.3
, pp. 600-616
-
-
Gorodnitsky, I.F.1
Rao, B.D.2
-
14
-
-
39449109476
-
An interior point method for large-scale l1-regularized least squares
-
S. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky (2007). An interior point method for large-scale l1-regularized least squares. IEEE Journal of Selected Topics in Signal Processing, 1(4):606-617.
-
(2007)
IEEE Journal of Selected Topics in Signal Processing
, vol.1
, Issue.4
, pp. 606-617
-
-
Kim, S.1
Koh, K.2
Lustig, M.3
Boyd, S.4
Gorinevsky, D.5
-
16
-
-
14944353419
-
Prox-method with rate of convergence O(1=t) for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems
-
A. Nemirovski (2005). Prox-method with rate of convergence O(1=t) for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems. SIAM Journal on Optimization, 15(1):229-251.
-
(2005)
SIAM Journal on Optimization
, vol.15
, Issue.1
, pp. 229-251
-
-
Nemirovski, A.1
-
18
-
-
68249141421
-
On the reconstruction of block-sparse signals with an optimal number of measurements
-
M. Stojnic, F. Parvaresh and B. Hassibi (2009). On the reconstruction of block-sparse signals with an optimal number of measurements. IEEE Transactions Signal Processing, 57(8):3075-3085.
-
(2009)
IEEE Transactions Signal Processing
, vol.57
, Issue.8
, pp. 3075-3085
-
-
Stojnic, M.1
Parvaresh, F.2
Hassibi, B.3
-
19
-
-
34250427726
-
The multiplier method of Hestenes and Powell applied to convex programming
-
R. T. Rockafellar (1973). The multiplier method of Hestenes and Powell applied to convex programming. J. Optimiz. Theory App., 12(6):555-562.
-
(1973)
J. Optimiz. Theory App.
, vol.12
, Issue.6
, pp. 555-562
-
-
Rockafellar, R.T.1
-
21
-
-
30844445842
-
Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit
-
J. A. Tropp, A. C. Gilbert, and M. J. Strauss (2006a). Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit. Signal Proces., 86(3):572-588.
-
(2006)
Signal Proces.
, vol.86
, Issue.3
, pp. 572-588
-
-
Tropp, J.A.1
Gilbert, A.C.2
Strauss, M.J.3
-
22
-
-
30844461481
-
Algorithms for simultaneous sparse approximation. Part II: Convex relaxation
-
J. A. Tropp (2006b). Algorithms for simultaneous sparse approximation. Part II: Convex relaxation. Signal Proces., 86(3):589-602.
-
(2006)
Signal Proces.
, vol.86
, Issue.3
, pp. 589-602
-
-
Tropp, J.A.1
-
23
-
-
84862300335
-
Efficient recovery of jointly sparse vectors
-
L. Sun, J. Liu, J. Chen, J. Ye (2009). Efficient Recovery of Jointly Sparse Vectors. In Adv. NIPS.
-
(2009)
Adv. NIPS
-
-
Sun, L.1
Liu, J.2
Chen, J.3
Ye, J.4
-
25
-
-
84862297241
-
Alternating direction algorithms for l1-problems in compressive sensing
-
J. Yang and Y. Zhang (2010). Alternating direction algorithms for l1-problems in compressive sensing. SIAM Journal on Scienctific Computing.
-
(2010)
SIAM Journal on Scienctific Computing
-
-
Yang, J.1
Zhang, Y.2
|