메뉴 건너뛰기




Volumn 11, Issue 2, 2007, Pages 59-72

Prediction of mutagenic toxicity by combination of Recursive Partitioning and Support Vector Machines

Author keywords

Mutagenic toxicity; Prediction; Recursive Partitioning; Substructural descriptor; Support Vector Machines

Indexed keywords

AGRICULTURAL CHEMICAL;

EID: 36148963273     PISSN: 13811991     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11030-007-9057-5     Document Type: Article
Times cited : (27)

References (40)
  • 1
    • 20044383057 scopus 로고    scopus 로고
    • Structure-activity relationship studies of chemical mutagens and carcinogens: Mechanistic investigations and prediction approaches
    • Benigni R. (2005) Structure-activity relationship studies of chemical mutagens and carcinogens: mechanistic investigations and prediction approaches. Chem Rev 105:1767-1800
    • (2005) Chem Rev , vol.105 , pp. 1767-1800
    • Benigni, R.1
  • 2
    • 85040804816 scopus 로고
    • Guide to short-term tests for detecting mutagenic and carcinogenic chemicals
    • World Health Organization (WHO)
    • World Health Organization (WHO) (1985) Guide to short-term tests for detecting mutagenic and carcinogenic chemicals. Environmental Health Criteria 51:100-114
    • (1985) Environ Health Criteria , vol.51 , pp. 100-114
  • 3
    • 0000973407 scopus 로고
    • Definitive relationships among chemical structure, carcinogenicity and mutagenicity for 301 chemicals tested by the U.S. NTP
    • Ashby J, Tennant RW (1991) Definitive relationships among chemical structure, carcinogenicity and mutagenicity for 301 chemicals tested by the U.S. NTP. Mutat Res 257:229-306
    • (1991) Mutat Res , vol.257 , pp. 229-306
    • Ashby, J.1    Tennant, R.W.2
  • 4
    • 0026729742 scopus 로고
    • Testing by artificial intelligence: Computational alternatives to the determination of mutagenicity
    • Klopman G, Rosenkranz HS (1992) Testing by artificial intelligence: Computational alternatives to the determination of mutagenicity. Mutat Res 272:59-71
    • (1992) Mutat Res , vol.272 , pp. 59-71
    • Klopman, G.1    Rosenkranz, H.S.2
  • 7
    • 0027954402 scopus 로고
    • Use of SAR in computer-assited prediction of carcinogenicity and mutagenicity of chemicals by the TOPKAT program
    • Enslein K, Gombar VK, Blake BW (1994) Use of SAR in computer-assited prediction of carcinogenicity and mutagenicity of chemicals by the TOPKAT program. Mutat Res 305:47-61
    • (1994) Mutat Res , vol.305 , pp. 47-61
    • Enslein, K.1    Gombar, V.K.2    Blake, B.W.3
  • 9
    • 0036708529 scopus 로고    scopus 로고
    • Rule extraction from a mutagenicity data set using adaptively grown phylogenetic-like trees
    • Bacha PA, Gruver HS, Den Hartog BK, Tamura SY, Nutt RF (2002) Rule extraction from a mutagenicity data set using adaptively grown phylogenetic-like trees. J Chem Inf Comput Sci 42:1104-1111
    • (2002) J Chem Inf Comput Sci , vol.42 , pp. 1104-1111
    • Bacha, P.A.1    Gruver, H.S.2    Den Hartog, B.K.3    Tamura, S.Y.4    Nutt, R.F.5
  • 10
    • 12144257810 scopus 로고    scopus 로고
    • Derivation and validation of toxicophores for mutagenicity prediction
    • (a) Kazius J, McGuire R, Bursi R Derivation and validation of toxicophores for mutagenicity prediction, J Med Chem 48 312-320
    • J Med Chem , vol.48 , pp. 312-320
    • Kazius, J.1    McGuire, R.2    Bursi, R.3
  • 11
    • 36148966250 scopus 로고    scopus 로고
    • Data from
    • (b) Data from http://www.cheminformatics.org/
  • 12
    • 4043167653 scopus 로고    scopus 로고
    • Data mining and machine learning techniques for the identification of mutagenicity: Inducing substructures and structure activity relationships of noncongeneric compounds
    • (a) Helma C, Cramer T, Kramer S, Raedt L (2004) Data mining and machine learning techniques for the identification of mutagenicity: inducing substructures and structure activity relationships of noncongeneric compounds, J Chem Inf Comput Sci 44 1402-1411,
    • (2004) J Chem Inf Comput Sci , vol.44 , pp. 1402-1411
    • Helma, C.1    Cramer, T.2    Kramer, S.3    Raedt, L.4
  • 13
    • 36148946132 scopus 로고    scopus 로고
    • Data from
    • (b) Data from http://www.predictive-toxicology.org/data/cpdb_mutagens/
  • 15
    • 36148982739 scopus 로고    scopus 로고
    • Data from
    • (b) Data from http://www.niss.org/publications.html
  • 19
    • 0344982237 scopus 로고    scopus 로고
    • Induction of decision trees using fuzzy partitions
    • Myles AJ, Brown SD (2003) Induction of decision trees using fuzzy partitions. J Chemomet 17:531-536
    • (2003) J Chemomet , vol.17 , pp. 531-536
    • Myles, A.J.1    Brown, S.D.2
  • 22
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machine for pattern recognition
    • Burges CJC (1998) A tutorial on support vector machine for pattern recognition. Data Min. Knowl. Disc 2:121-167
    • (1998) Data Min Knowl Disc , vol.2 , pp. 121-167
    • Burges, C.J.C.1
  • 23
    • 36148985809 scopus 로고    scopus 로고
    • http://www.mdli.com/products/predictive/toxicity/
  • 24
    • 36148962089 scopus 로고    scopus 로고
    • http://www.mdli.com/products/knowledge/medicinal_chem/
  • 25
    • 36148943627 scopus 로고    scopus 로고
    • http://www.nature.com/nrg/journal/v5/n4/glossary/nrg 1317_glossary.html
  • 26
    • 0033217466 scopus 로고    scopus 로고
    • Analysis of a large structure/biological activity data set using Recursive Partitioning
    • Rusinko A, Farmen MW, Lambert CG, Brown PL, Young SS (1999) Analysis of a large structure/biological activity data set using Recursive Partitioning. J Chem Inf Comput Sci 39:1017-1026
    • (1999) J Chem Inf Comput Sci , vol.39 , pp. 1017-1026
    • Rusinko, A.1    Farmen, M.W.2    Lambert, C.G.3    Brown, P.L.4    Young, S.S.5
  • 27
    • 0036489458 scopus 로고    scopus 로고
    • On combining Recursive Partitioning and Simulated Annealing to detect groups of biologically active compounds
    • Blower P, Fligner M, Verducci J, Bjoraker J (2002) On combining Recursive Partitioning and Simulated Annealing to detect groups of biologically active compounds. J Chem Inf Comput Sci 42:393-404
    • (2002) J Chem Inf Comput Sci , vol.42 , pp. 393-404
    • Blower, P.1    Fligner, M.2    Verducci, J.3    Bjoraker, J.4
  • 28
    • 0037365123 scopus 로고    scopus 로고
    • Decision forest: Combining the predictions of multiple independent decision tree models
    • Tong W, Hong H, Fang H, Xie Q, Perkins R (2003) Decision forest: combining the predictions of multiple independent decision tree models. J Chem Inf Comput Sci 43:525-531
    • (2003) J Chem Inf Comput Sci , vol.43 , pp. 525-531
    • Tong, W.1    Hong, H.2    Fang, H.3    Xie, Q.4    Perkins, R.5
  • 30
    • 2942737435 scopus 로고    scopus 로고
    • Induction of decision trees via evolutionary programming
    • DeLisle RK, Dixon SL (2004) Induction of Decision Trees via Evolutionary Programming. J Chem Inf Comput Sci 44:862-870
    • (2004) J Chem Inf Comput Sci , vol.44 , pp. 862-870
    • Delisle, R.K.1    Dixon, S.L.2
  • 32
    • 0031139832 scopus 로고    scopus 로고
    • Pruning algorithms for rule learning
    • Furnkranz J (1997) Pruning algorithms for rule learning. Mach Learn 27:139-172
    • (1997) Mach Learn , vol.27 , pp. 139-172
    • Furnkranz, J.1
  • 33
    • 0034740222 scopus 로고    scopus 로고
    • Drug design by machine learning: Support Vector Machines for pharmaceutical data analysis
    • Burbidge R, Trotter M, Buxton B, Holden S (2001) Drug design by machine learning: Support Vector Machines for pharmaceutical data analysis. Comput Chem 26:5-14
    • (2001) Comput Chem , vol.26 , pp. 5-14
    • Burbidge, R.1    Trotter, M.2    Buxton, B.3    Holden, S.4
  • 34
    • 0036827078 scopus 로고    scopus 로고
    • Prediction of protein retention times in anion-exchange chromatography systems using Support Vector Regression
    • Song M, Breneman CM, Bi J, Sukumar N, Bennett KP, Cramer S, Tugcu N (2002) Prediction of protein retention times in anion-exchange chromatography systems using Support Vector Regression. J Chem Inf Comput Sci 42:1347-1357
    • (2002) J Chem Inf Comput Sci , vol.42 , pp. 1347-1357
    • Song, M.1    Breneman, C.M.2    Bi, J.3    Sukumar, N.4    Bennett, K.P.5    Cramer, S.6    Tugcu, N.7
  • 35
    • 0036632452 scopus 로고    scopus 로고
    • Fragment generation and Support Vector Machines for inducing SARs
    • Kramer S, Frank E, Helma C (2002) Fragment generation and Support Vector Machines for inducing SARs. SAR QSAR Environ Res 13:509-523
    • (2002) SAR QSAR Environ Res , vol.13 , pp. 509-523
    • Kramer, S.1    Frank, E.2    Helma, C.3
  • 36
    • 0344254815 scopus 로고    scopus 로고
    • Drug discovery using Support Vector Machines. the case studies of drug-likeness, agrochemical-likeness, and enzyme inhibition predictions
    • Zernov VV, Balakin KV, Ivaschenko AA, Savchuk NP, Pletnev IV (2003) Drug discovery using Support Vector Machines. The case studies of drug-likeness, agrochemical-likeness, and enzyme inhibition predictions. J Chem Inf Comput Sci 43:2048-2056
    • (2003) J Chem Inf Comput Sci , vol.43 , pp. 2048-2056
    • Zernov, V.V.1    Balakin, K.V.2    Ivaschenko, A.A.3    Savchuk, N.P.4    Pletnev, I.V.5
  • 37
    • 13844270855 scopus 로고    scopus 로고
    • Classification of the carcinogenicity of N-Nitroso compounds based on Support Vector Machines and Linear Discriminant Analysis
    • Luan F, Zhang RS, Zhao CY, Yao XJ, Liu MC, Hu ZD, Fan BT (2005) Classification of the carcinogenicity of N-Nitroso compounds based on Support Vector Machines and Linear Discriminant Analysis. Chem Res Toxicol 18:198-203
    • (2005) Chem Res Toxicol , vol.18 , pp. 198-203
    • Luan, F.1    Zhang, R.S.2    Zhao, C.Y.3    Yao, X.J.4    Liu, M.C.5    Hu, Z.D.6    Fan, B.T.7
  • 38
    • 0345548661 scopus 로고    scopus 로고
    • Comparison of Support Vector Machine and Artificial Neural Network systems for drug/nondrug classification
    • Byvatov E, Fechner U, Sadowski J, Schneider G (2003) Comparison of Support Vector Machine and Artificial Neural Network systems for drug/nondrug classification. J Chem Inf Comput Sci 43:1882-1889
    • (2003) J Chem Inf Comput Sci , vol.43 , pp. 1882-1889
    • Byvatov, E.1    Fechner, U.2    Sadowski, J.3    Schneider, G.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.