-
1
-
-
84893859636
-
The global map for traumatic spinal cord injury epidemiology: update 2011, global incidence rate
-
Lee BB, Cripps RA, Fitzharris M, Wing PC. The global map for traumatic spinal cord injury epidemiology: update 2011, global incidence rate. Spinal Cord 2014, 52:110-116.
-
(2014)
Spinal Cord
, vol.52
, pp. 110-116
-
-
Lee, B.B.1
Cripps, R.A.2
Fitzharris, M.3
Wing, P.C.4
-
2
-
-
84896390606
-
From basics to clinical: a comprehensive review on spinal cord injury
-
Silva NA, Sousa N, Reis RL, Salgado AJ. From basics to clinical: a comprehensive review on spinal cord injury. Prog Neurobiol 2014, 114:25-57.
-
(2014)
Prog Neurobiol
, vol.114
, pp. 25-57
-
-
Silva, N.A.1
Sousa, N.2
Reis, R.L.3
Salgado, A.J.4
-
3
-
-
0036218099
-
Promoting axonal regeneration in the central nervous system by enhancing the cell body response to axotomy
-
Plunet W, Kwon BK, Tetzlaff W. Promoting axonal regeneration in the central nervous system by enhancing the cell body response to axotomy. J Neurosci Res 2002, 68:1-6.
-
(2002)
J Neurosci Res
, vol.68
, pp. 1-6
-
-
Plunet, W.1
Kwon, B.K.2
Tetzlaff, W.3
-
4
-
-
33646577436
-
Degenerative and spontaneous regenerative processes after spinal cord injury
-
Hagg T, Oudega M. Degenerative and spontaneous regenerative processes after spinal cord injury. J Neurotrauma 2006, 23:264-280.
-
(2006)
J Neurotrauma
, vol.23
, pp. 264-280
-
-
Hagg, T.1
Oudega, M.2
-
5
-
-
84923535682
-
Potential role of growth factors in the management of spinal cord injury
-
doi: 10.1016/j.wneu.2013.01.042.
-
Awad BI, Carmody MA, Steinmetz MP. Potential role of growth factors in the management of spinal cord injury. World Neurosurg 2013. doi: 10.1016/j.wneu.2013.01.042.
-
(2013)
World Neurosurg
-
-
Awad, B.I.1
Carmody, M.A.2
Steinmetz, M.P.3
-
6
-
-
33746308062
-
Glial inhibition of CNS axon regeneration
-
Yiu G, He Z. Glial inhibition of CNS axon regeneration. Nat Rev Neurosci 2006, 7:617-627.
-
(2006)
Nat Rev Neurosci
, vol.7
, pp. 617-627
-
-
Yiu, G.1
He, Z.2
-
7
-
-
70849085134
-
Central nervous system regeneration inhibitors and their intracellular substrates
-
Nash M, Pribiag H, Fournier AE, Jacobson C. Central nervous system regeneration inhibitors and their intracellular substrates. Mol Neurobiol 2009, 40:224-235.
-
(2009)
Mol Neurobiol
, vol.40
, pp. 224-235
-
-
Nash, M.1
Pribiag, H.2
Fournier, A.E.3
Jacobson, C.4
-
8
-
-
0742288565
-
Regeneration beyond the glial scar
-
Silver J, Miller JH. Regeneration beyond the glial scar. Nat Rev Neurosci 2004, 5:146-156.
-
(2004)
Nat Rev Neurosci
, vol.5
, pp. 146-156
-
-
Silver, J.1
Miller, J.H.2
-
9
-
-
13844275355
-
Chondroitin sulfate proteoglycans in neural development and regeneration
-
Carulli D, Laabs T, Geller HM, Fawcett JW. Chondroitin sulfate proteoglycans in neural development and regeneration. Curr Opin Neurobiol 2005, 15:116-120.
-
(2005)
Curr Opin Neurobiol
, vol.15
, pp. 116-120
-
-
Carulli, D.1
Laabs, T.2
Geller, H.M.3
Fawcett, J.W.4
-
10
-
-
84892850576
-
Functional regeneration beyond the glial scar
-
Cregg JM, DePaul MA, Filous AR, Lang BT, Tran A, Silver J. Functional regeneration beyond the glial scar. Exp Neurol 2014, 253:197-207.
-
(2014)
Exp Neurol
, vol.253
, pp. 197-207
-
-
Cregg, J.M.1
DePaul, M.A.2
Filous, A.R.3
Lang, B.T.4
Tran, A.5
Silver, J.6
-
11
-
-
84881136066
-
The glial scar in spinal cord injury and repair
-
Yuan YM, He C. The glial scar in spinal cord injury and repair. Neurosci Bull 2013, 29:421-435.
-
(2013)
Neurosci Bull
, vol.29
, pp. 421-435
-
-
Yuan, Y.M.1
He, C.2
-
13
-
-
38749086493
-
Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury
-
Donnelly DJ, Popovich PG. Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Exp Neurol 2008, 209:378-388.
-
(2008)
Exp Neurol
, vol.209
, pp. 378-388
-
-
Donnelly, D.J.1
Popovich, P.G.2
-
14
-
-
33845210126
-
Inflammation and spinal cord injury: infiltrating leukocytes as determinants of injury and repair processes
-
Trivedi A, Olivas AD, Noble-Haeusslein LJ. Inflammation and spinal cord injury: infiltrating leukocytes as determinants of injury and repair processes. Clin Neurosci Res 2006, 6:283-292.
-
(2006)
Clin Neurosci Res
, vol.6
, pp. 283-292
-
-
Trivedi, A.1
Olivas, A.D.2
Noble-Haeusslein, L.J.3
-
15
-
-
58149169153
-
Inflammation: beneficial or detrimental after spinal cord injury?
-
Chan CC. Inflammation: beneficial or detrimental after spinal cord injury? Recent Pat CNS Drug Discov 2008, 3:189-199.
-
(2008)
Recent Pat CNS Drug Discov
, vol.3
, pp. 189-199
-
-
Chan, C.C.1
-
16
-
-
84860375295
-
Inflammation & apoptosis in spinal cord injury
-
Zhang N, Yin Y, Xu SJ, Wu YP, Chen WS. Inflammation & apoptosis in spinal cord injury. Indian J Med Res 2012, 135:287-296.
-
(2012)
Indian J Med Res
, vol.135
, pp. 287-296
-
-
Zhang, N.1
Yin, Y.2
Xu, S.J.3
Wu, Y.P.4
Chen, W.S.5
-
17
-
-
79960764840
-
A systematic review of non-invasive pharmacologic neuroprotective treatments for acute spinal cord injury
-
Kwon BK, Okon E, Hillyer J, Mann C, Baptiste D, Weaver LC, Fehlings MG, Tetzlaff W. A systematic review of non-invasive pharmacologic neuroprotective treatments for acute spinal cord injury. J Neurotrauma 2011, 28:1545-1588.
-
(2011)
J Neurotrauma
, vol.28
, pp. 1545-1588
-
-
Kwon, B.K.1
Okon, E.2
Hillyer, J.3
Mann, C.4
Baptiste, D.5
Weaver, L.C.6
Fehlings, M.G.7
Tetzlaff, W.8
-
18
-
-
84872790998
-
Frontiers of spinal cord and spine repair: experimental approaches for repair of spinal cord injury
-
Yoon C, Tuszynski MH. Frontiers of spinal cord and spine repair: experimental approaches for repair of spinal cord injury. Adv Exp Med Biol 2012, 760:1-15.
-
(2012)
Adv Exp Med Biol
, vol.760
, pp. 1-15
-
-
Yoon, C.1
Tuszynski, M.H.2
-
19
-
-
84873901699
-
Current options for drug delivery to the spinal cord
-
Rossi F, Perale G, Papa S, Forloni G, Veglianese P. Current options for drug delivery to the spinal cord. Expert Opin Drug Deliv 2013, 10:385-396.
-
(2013)
Expert Opin Drug Deliv
, vol.10
, pp. 385-396
-
-
Rossi, F.1
Perale, G.2
Papa, S.3
Forloni, G.4
Veglianese, P.5
-
22
-
-
70249091482
-
Hydrogels in regenerative medicine
-
Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA. Hydrogels in regenerative medicine. Adv Mater 2009, 21:3307-3329.
-
(2009)
Adv Mater
, vol.21
, pp. 3307-3329
-
-
Slaughter, B.V.1
Khurshid, S.S.2
Fisher, O.Z.3
Khademhosseini, A.4
Peppas, N.A.5
-
23
-
-
84861094603
-
Multiple drug delivery hydrogel system for spinal cord injury repair strategies
-
Perale G, Rossi F, Santoro M, Peviani M, Papa S, Llupi D, Torriani P, Micotti E, Previdi S, Cervo L, et al. Multiple drug delivery hydrogel system for spinal cord injury repair strategies. J Control Release 2012, 159:271-280.
-
(2012)
J Control Release
, vol.159
, pp. 271-280
-
-
Perale, G.1
Rossi, F.2
Santoro, M.3
Peviani, M.4
Papa, S.5
Llupi, D.6
Torriani, P.7
Micotti, E.8
Previdi, S.9
Cervo, L.10
-
24
-
-
79959691162
-
Hydrogels in spinal cord injury repair strategies
-
Perale G, Rossi F, Sundstrom E, Bacchiega S, Masi M, Forloni G, Veglianese P. Hydrogels in spinal cord injury repair strategies. ACS Chem Neurosci 2011, 2:336-345.
-
(2011)
ACS Chem Neurosci
, vol.2
, pp. 336-345
-
-
Perale, G.1
Rossi, F.2
Sundstrom, E.3
Bacchiega, S.4
Masi, M.5
Forloni, G.6
Veglianese, P.7
-
25
-
-
84856489292
-
Injectable hydrogel materials for spinal cord regeneration: a review
-
Macaya D, Spector M. Injectable hydrogel materials for spinal cord regeneration: a review. Biomed Mater 2012, 7:012001.
-
(2012)
Biomed Mater
, vol.7
, pp. 012001
-
-
Macaya, D.1
Spector, M.2
-
26
-
-
84881132549
-
Biomaterials for spinal cord repair
-
Haggerty AE, Oudega M. Biomaterials for spinal cord repair. Neurosci Bull 2013, 29:445-459.
-
(2013)
Neurosci Bull
, vol.29
, pp. 445-459
-
-
Haggerty, A.E.1
Oudega, M.2
-
28
-
-
33748430801
-
An injectable, biodegradable hydrogel for trophic factor delivery enhances axonal rewiring and improves performance after spinal cord injury
-
Piantino J, Burdick JA, Goldberg D, Langer R, Benowitz LI. An injectable, biodegradable hydrogel for trophic factor delivery enhances axonal rewiring and improves performance after spinal cord injury. Exp Neurol 2006, 201:359-367.
-
(2006)
Exp Neurol
, vol.201
, pp. 359-367
-
-
Piantino, J.1
Burdick, J.A.2
Goldberg, D.3
Langer, R.4
Benowitz, L.I.5
-
29
-
-
77649241357
-
Sustained delivery of thermostabilized chABC enhances axonal sprouting and functional recovery after spinal cord injury
-
Lee H, McKeon RJ, Bellamkonda RV. Sustained delivery of thermostabilized chABC enhances axonal sprouting and functional recovery after spinal cord injury. Proc Natl Acad Sci U S A 2010, 107:3340-3345.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 3340-3345
-
-
Lee, H.1
McKeon, R.J.2
Bellamkonda, R.V.3
-
30
-
-
84883859932
-
Injectable alginate hydrogel loaded with GDNF promotes functional recovery in a hemisection model of spinal cord injury
-
Ansorena E, De Berdt P, Ucakar B, Simon-Yarza T, Jacobs D, Schakman O, Jankovski A, Deumens R, Blanco-Prieto MJ, Preat V, et al. Injectable alginate hydrogel loaded with GDNF promotes functional recovery in a hemisection model of spinal cord injury. Int J Pharm 2013, 455:148-158.
-
(2013)
Int J Pharm
, vol.455
, pp. 148-158
-
-
Ansorena, E.1
De Berdt, P.2
Ucakar, B.3
Simon-Yarza, T.4
Jacobs, D.5
Schakman, O.6
Jankovski, A.7
Deumens, R.8
Blanco-Prieto, M.J.9
Preat, V.10
-
31
-
-
84871063912
-
Localized and sustained delivery of fibroblast growth factor-2 from a nanoparticle-hydrogel composite for treatment of spinal cord injury
-
Kang CE, Baumann MD, Tator CH, Shoichet MS. Localized and sustained delivery of fibroblast growth factor-2 from a nanoparticle-hydrogel composite for treatment of spinal cord injury. Cells Tissues Organs 2013, 197:55-63.
-
(2013)
Cells Tissues Organs
, vol.197
, pp. 55-63
-
-
Kang, C.E.1
Baumann, M.D.2
Tator, C.H.3
Shoichet, M.S.4
-
32
-
-
79551573105
-
Sustained delivery of activated Rho GTPases and BDNF promotes axon growth in CSPG-rich regions following spinal cord injury
-
Jain A, McKeon RJ, Brady-Kalnay SM, Bellamkonda RV. Sustained delivery of activated Rho GTPases and BDNF promotes axon growth in CSPG-rich regions following spinal cord injury. PLoS One 2011, 6:e16135.
-
(2011)
PLoS One
, vol.6
-
-
Jain, A.1
McKeon, R.J.2
Brady-Kalnay, S.M.3
Bellamkonda, R.V.4
-
33
-
-
34648860537
-
Bone marrow-derived mesenchymal stromal cells for the repair of central nervous system injury
-
Parr AM, Tator CH, Keating A. Bone marrow-derived mesenchymal stromal cells for the repair of central nervous system injury. Bone Marrow Transplant 2007, 40:609-619.
-
(2007)
Bone Marrow Transplant
, vol.40
, pp. 609-619
-
-
Parr, A.M.1
Tator, C.H.2
Keating, A.3
-
34
-
-
84872823325
-
Stem cell based strategies for spinal cord injury repair
-
Reeves A, Keirstead HS. Stem cell based strategies for spinal cord injury repair. Adv Exp Med Biol 2012, 760:16-24.
-
(2012)
Adv Exp Med Biol
, vol.760
, pp. 16-24
-
-
Reeves, A.1
Keirstead, H.S.2
-
35
-
-
84874638739
-
Cell transplantation for spinal cord injury: a systematic review
-
Li J, Lepski G. Cell transplantation for spinal cord injury: a systematic review. Biomed Res Int 2013, 2013:786475.
-
(2013)
Biomed Res Int
, vol.2013
, pp. 786475
-
-
Li, J.1
Lepski, G.2
-
36
-
-
84892773437
-
Stem cell transplantation in traumatic spinal cord injury: a systematic review and meta-analysis of animal studies
-
Antonic A, Sena ES, Lees JS, Wills TE, Skeers P, Batchelor PE, Macleod MR, Howells DW. Stem cell transplantation in traumatic spinal cord injury: a systematic review and meta-analysis of animal studies. PLoS Biol 2013, 11:e1001738.
-
(2013)
PLoS Biol
, vol.11
-
-
Antonic, A.1
Sena, E.S.2
Lees, J.S.3
Wills, T.E.4
Skeers, P.5
Batchelor, P.E.6
Macleod, M.R.7
Howells, D.W.8
-
37
-
-
84874608911
-
Engineering an in situ crosslinkable hydrogel for enhanced remyelination
-
Li X, Liu X, Cui L, Brunson C, Zhao W, Bhat NR, Zhang N, Wen X. Engineering an in situ crosslinkable hydrogel for enhanced remyelination. FASEB J 2013, 27:1127-1136.
-
(2013)
FASEB J
, vol.27
, pp. 1127-1136
-
-
Li, X.1
Liu, X.2
Cui, L.3
Brunson, C.4
Zhao, W.5
Bhat, N.R.6
Zhang, N.7
Wen, X.8
-
38
-
-
33845549165
-
Bone marrow stem cells and polymer hydrogels-two strategies for spinal cord injury repair
-
Sykova E, Jendelova P, Urdzikova L, Lesny P, Hejcl A. Bone marrow stem cells and polymer hydrogels-two strategies for spinal cord injury repair. Cell Mol Neurobiol 2006, 26:1113-1129.
-
(2006)
Cell Mol Neurobiol
, vol.26
, pp. 1113-1129
-
-
Sykova, E.1
Jendelova, P.2
Urdzikova, L.3
Lesny, P.4
Hejcl, A.5
-
39
-
-
76349097362
-
Biomaterial design strategies for the treatment of spinal cord injuries
-
Straley KS, Foo CW, Heilshorn SC. Biomaterial design strategies for the treatment of spinal cord injuries. J Neurotrauma 2010, 27:1-19.
-
(2010)
J Neurotrauma
, vol.27
, pp. 1-19
-
-
Straley, K.S.1
Foo, C.W.2
Heilshorn, S.C.3
-
40
-
-
77949655518
-
HPMA-RGD hydrogels seeded with mesenchymal stem cells improve functional outcome in chronic spinal cord injury
-
Hejcl A, Sedy J, Kapcalova M, Toro DA, Amemori T, Lesny P, Likavcanova-Masinova K, Krumbholcova E, Pradny M, Michalek J, et al. HPMA-RGD hydrogels seeded with mesenchymal stem cells improve functional outcome in chronic spinal cord injury. Stem Cells Dev 2010, 19:1535-1546.
-
(2010)
Stem Cells Dev
, vol.19
, pp. 1535-1546
-
-
Hejcl, A.1
Sedy, J.2
Kapcalova, M.3
Toro, D.A.4
Amemori, T.5
Lesny, P.6
Likavcanova-Masinova, K.7
Krumbholcova, E.8
Pradny, M.9
Michalek, J.10
-
41
-
-
0035892673
-
Spinal cord reconstruction using NeuroGel implants and functional recovery after chronic injury
-
Woerly S, Doan VD, Evans-Martin F, Paramore CG, Peduzzi JD. Spinal cord reconstruction using NeuroGel implants and functional recovery after chronic injury. J Neurosci Res 2001, 66:1187-1197.
-
(2001)
J Neurosci Res
, vol.66
, pp. 1187-1197
-
-
Woerly, S.1
Doan, V.D.2
Evans-Martin, F.3
Paramore, C.G.4
Peduzzi, J.D.5
-
42
-
-
0346729694
-
Prevention of gliotic scar formation by NeuroGel allows partial endogenous repair of transected cat spinal cord
-
Woerly S, Doan VD, Sosa N, de Vellis J, Espinosa-Jeffrey A. Prevention of gliotic scar formation by NeuroGel allows partial endogenous repair of transected cat spinal cord. J Neurosci Res 2004, 75:262-272.
-
(2004)
J Neurosci Res
, vol.75
, pp. 262-272
-
-
Woerly, S.1
Doan, V.D.2
Sosa, N.3
de Vellis, J.4
Espinosa-Jeffrey, A.5
-
43
-
-
55349132722
-
Repairing the damaged spinal cord and brain with nanomedicine
-
Cho Y, Shi R, Borgens RB, Ivanisevic A. Repairing the damaged spinal cord and brain with nanomedicine. Small 2008, 4:1676-1681.
-
(2008)
Small
, vol.4
, pp. 1676-1681
-
-
Cho, Y.1
Shi, R.2
Borgens, R.B.3
Ivanisevic, A.4
-
44
-
-
33846928678
-
Microparticles and nanoparticles for drug delivery
-
Kohane DS. Microparticles and nanoparticles for drug delivery. Biotechnol Bioeng 2007, 96:203-209.
-
(2007)
Biotechnol Bioeng
, vol.96
, pp. 203-209
-
-
Kohane, D.S.1
-
45
-
-
84858626874
-
Surface functionalization of nanoparticles for nanomedicine
-
Mout R, Moyano DF, Rana S, Rotello VM. Surface functionalization of nanoparticles for nanomedicine. Chem Soc Rev 2012, 41:2539-2544.
-
(2012)
Chem Soc Rev
, vol.41
, pp. 2539-2544
-
-
Mout, R.1
Moyano, D.F.2
Rana, S.3
Rotello, V.M.4
-
46
-
-
77953259592
-
Novel multifunctional polyethylene glycol-transactivating-transduction protein-modified liposomes cross the blood-barrier after spinal cord spinal cord injury
-
Liu Y, Wang CY, Kong XH, Wang HJ, Chang J, Zhang DP, Ban DX, Feng SQ. Novel multifunctional polyethylene glycol-transactivating-transduction protein-modified liposomes cross the blood-barrier after spinal cord spinal cord injury. J Drug Target 2010, 18:420-429.
-
(2010)
J Drug Target
, vol.18
, pp. 420-429
-
-
Liu, Y.1
Wang, C.Y.2
Kong, X.H.3
Wang, H.J.4
Chang, J.5
Zhang, D.P.6
Ban, D.X.7
Feng, S.Q.8
-
47
-
-
77954937488
-
Polymer particles that switch shape in response to a stimulus
-
Yoo JW, Mitragotri S. Polymer particles that switch shape in response to a stimulus. Proc Natl Acad Sci U S A 2010, 107:11205-11210.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 11205-11210
-
-
Yoo, J.W.1
Mitragotri, S.2
-
48
-
-
84888196375
-
Polymeric nanoparticle system to target activated microglia/macrophages in spinal cord injury
-
Papa S, Ferrari R, De Paola M, Rossi F, Mariani A, Caron I, Sammali E, Peviani M, Dell'oro V, Colombo C, et al. Polymeric nanoparticle system to target activated microglia/macrophages in spinal cord injury. J Control Release 2013, 174C:15-26.
-
(2013)
J Control Release
, vol.174 C
, pp. 15-26
-
-
Papa, S.1
Ferrari, R.2
De Paola, M.3
Rossi, F.4
Mariani, A.5
Caron, I.6
Sammali, E.7
Peviani, M.8
Dell'oro, V.9
Colombo, C.10
-
49
-
-
84888875007
-
Selective nanovector mediated treatment of activated proinflammatory microglia/macrophages in spinal cord injury
-
Papa S, Rossi F, Ferrari R, Mariani A, De Paola M, Caron I, Fiordaliso F, Bisighini C, Sammali E, Colombo C, et al. Selective nanovector mediated treatment of activated proinflammatory microglia/macrophages in spinal cord injury. ACS Nano 2013, 7:9881-9895.
-
(2013)
ACS Nano
, vol.7
, pp. 9881-9895
-
-
Papa, S.1
Rossi, F.2
Ferrari, R.3
Mariani, A.4
De Paola, M.5
Caron, I.6
Fiordaliso, F.7
Bisighini, C.8
Sammali, E.9
Colombo, C.10
-
50
-
-
84884227350
-
Nanomedicine for treating spinal cord injury
-
Tyler JY, Xu XM, Cheng JX. Nanomedicine for treating spinal cord injury. Nanoscale 2013, 5:8821-8836.
-
(2013)
Nanoscale
, vol.5
, pp. 8821-8836
-
-
Tyler, J.Y.1
Xu, X.M.2
Cheng, J.X.3
-
51
-
-
84891372059
-
Neuroprotective ferulic acid (FA)-glycol chitosan (GC) nanoparticles for functional restoration of traumatically injured spinal cord
-
Wu W, Lee SY, Wu X, Tyler JY, Wang H, Ouyang Z, Park K, Xu XM, Cheng JX. Neuroprotective ferulic acid (FA)-glycol chitosan (GC) nanoparticles for functional restoration of traumatically injured spinal cord. Biomaterials 2014, 35:2355-2364.
-
(2014)
Biomaterials
, vol.35
, pp. 2355-2364
-
-
Wu, W.1
Lee, S.Y.2
Wu, X.3
Tyler, J.Y.4
Wang, H.5
Ouyang, Z.6
Park, K.7
Xu, X.M.8
Cheng, J.X.9
-
52
-
-
78649313812
-
Nano PGE1 promoted the recovery from spinal cord injury-induced motor dysfunction through its accumulation and sustained release
-
Takenaga M, Ishihara T, Ohta Y, Tokura Y, Hamaguchi A, Igarashi R, Mizushima T. Nano PGE1 promoted the recovery from spinal cord injury-induced motor dysfunction through its accumulation and sustained release. J Control Release 2010, 148:249-254.
-
(2010)
J Control Release
, vol.148
, pp. 249-254
-
-
Takenaga, M.1
Ishihara, T.2
Ohta, Y.3
Tokura, Y.4
Hamaguchi, A.5
Igarashi, R.6
Mizushima, T.7
-
53
-
-
52049108266
-
Sustained intraspinal delivery of neurotrophic factor encapsulated in biodegradable nanoparticles following contusive spinal cord injury
-
Wang YC, Wu YT, Huang HY, Lin HI, Lo LW, Tzeng SF, Yang CS. Sustained intraspinal delivery of neurotrophic factor encapsulated in biodegradable nanoparticles following contusive spinal cord injury. Biomaterials 2008, 29:4546-4553.
-
(2008)
Biomaterials
, vol.29
, pp. 4546-4553
-
-
Wang, Y.C.1
Wu, Y.T.2
Huang, H.Y.3
Lin, H.I.4
Lo, L.W.5
Tzeng, S.F.6
Yang, C.S.7
-
54
-
-
61349091026
-
Nanoparticle-mediated local delivery of methylprednisolone after spinal cord injury
-
Kim YT, Caldwell JM, Bellamkonda RV. Nanoparticle-mediated local delivery of methylprednisolone after spinal cord injury. Biomaterials 2009, 30:2582-2590.
-
(2009)
Biomaterials
, vol.30
, pp. 2582-2590
-
-
Kim, Y.T.1
Caldwell, J.M.2
Bellamkonda, R.V.3
-
55
-
-
38049139283
-
Bioavailability effect of methylprednisolone by polymeric micelles
-
Chen CL, Chang SF, Lee D, Yang LY, Lee YH, Hsu CY, Lin SJ, Liaw J. Bioavailability effect of methylprednisolone by polymeric micelles. Pharm Res 2008, 25:39-47.
-
(2008)
Pharm Res
, vol.25
, pp. 39-47
-
-
Chen, C.L.1
Chang, S.F.2
Lee, D.3
Yang, L.Y.4
Lee, Y.H.5
Hsu, C.Y.6
Lin, S.J.7
Liaw, J.8
-
56
-
-
84860342265
-
Cerebrolysin, a mixture of neurotrophic factors induces marked neuroprotection in spinal cord injury following intoxication of engineered nanoparticles from metals
-
Menon PK, Muresanu DF, Sharma A, Mossler H, Sharma HS. Cerebrolysin, a mixture of neurotrophic factors induces marked neuroprotection in spinal cord injury following intoxication of engineered nanoparticles from metals. CNS Neurol Disord Drug Targets 2012, 11:40-49.
-
(2012)
CNS Neurol Disord Drug Targets
, vol.11
, pp. 40-49
-
-
Menon, P.K.1
Muresanu, D.F.2
Sharma, A.3
Mossler, H.4
Sharma, H.S.5
-
58
-
-
68549086893
-
An injectable drug delivery platform for sustained combination therapy
-
Baumann MD, Kang CE, Stanwick JC, Wang Y, Kim H, Lapitsky Y, Shoichet MS. An injectable drug delivery platform for sustained combination therapy. J Control Release 2009, 138:205-213.
-
(2009)
J Control Release
, vol.138
, pp. 205-213
-
-
Baumann, M.D.1
Kang, C.E.2
Stanwick, J.C.3
Wang, Y.4
Kim, H.5
Lapitsky, Y.6
Shoichet, M.S.7
-
59
-
-
84857785798
-
In vitro sustained release of bioactive anti-NogoA, a molecule in clinical development for treatment of spinal cord injury
-
Stanwick JC, Baumann MD, Shoichet MS. In vitro sustained release of bioactive anti-NogoA, a molecule in clinical development for treatment of spinal cord injury. Int J Pharm 2012, 426:284-290.
-
(2012)
Int J Pharm
, vol.426
, pp. 284-290
-
-
Stanwick, J.C.1
Baumann, M.D.2
Shoichet, M.S.3
-
60
-
-
77955769763
-
Intrathecal delivery of a polymeric nanocomposite hydrogel after spinal cord injury
-
Baumann MD, Kang CE, Tator CH, Shoichet MS. Intrathecal delivery of a polymeric nanocomposite hydrogel after spinal cord injury. Biomaterials 2010, 31:7631-7639.
-
(2010)
Biomaterials
, vol.31
, pp. 7631-7639
-
-
Baumann, M.D.1
Kang, C.E.2
Tator, C.H.3
Shoichet, M.S.4
-
61
-
-
39749107214
-
Spatial distribution and acute anti-inflammatory effects of methylprednisolone after sustained local delivery to the contused spinal cord
-
Chvatal SA, Kim YT, Bratt-Leal AM, Lee H, Bellamkonda RV. Spatial distribution and acute anti-inflammatory effects of methylprednisolone after sustained local delivery to the contused spinal cord. Biomaterials 2008, 29:1967-1975.
-
(2008)
Biomaterials
, vol.29
, pp. 1967-1975
-
-
Chvatal, S.A.1
Kim, Y.T.2
Bratt-Leal, A.M.3
Lee, H.4
Bellamkonda, R.V.5
-
62
-
-
84856209675
-
Polymer and nano-technology applications for repair and reconstruction of the central nervous system
-
Cho Y, Borgens RB. Polymer and nano-technology applications for repair and reconstruction of the central nervous system. Exp Neurol 2012, 233:126-144.
-
(2012)
Exp Neurol
, vol.233
, pp. 126-144
-
-
Cho, Y.1
Borgens, R.B.2
-
63
-
-
73849107791
-
Effective repair of traumatically injured spinal cord by nanoscale block copolymer micelles
-
Shi Y, Kim S, Huff TB, Borgens RB, Park K, Shi R, Cheng JX. Effective repair of traumatically injured spinal cord by nanoscale block copolymer micelles. Nat Nanotechnol 2010, 5:80-87.
-
(2010)
Nat Nanotechnol
, vol.5
, pp. 80-87
-
-
Shi, Y.1
Kim, S.2
Huff, T.B.3
Borgens, R.B.4
Park, K.5
Shi, R.6
Cheng, J.X.7
-
64
-
-
0036339116
-
Behavioral recovery from spinal cord injury following delayed application of polyethylene glycol
-
Borgens RB, Shi R, Bohnert D. Behavioral recovery from spinal cord injury following delayed application of polyethylene glycol. J Exp Biol 2002, 205:1-12.
-
(2002)
J Exp Biol
, vol.205
, pp. 1-12
-
-
Borgens, R.B.1
Shi, R.2
Bohnert, D.3
-
65
-
-
0032981949
-
Acute repair of crushed guinea pig spinal cord by polyethylene glycol
-
Shi R, Borgens RB. Acute repair of crushed guinea pig spinal cord by polyethylene glycol. J Neurophysiol 1999, 81:2406-2414.
-
(1999)
J Neurophysiol
, vol.81
, pp. 2406-2414
-
-
Shi, R.1
Borgens, R.B.2
-
66
-
-
84860322226
-
Nanowired drug delivery to enhance neuroprotection in spinal cord injury
-
Tian ZR, Sharma A, Nozari A, Subramaniam R, Lundstedt T, Sharma HS. Nanowired drug delivery to enhance neuroprotection in spinal cord injury. CNS Neurol Disord Drug Targets 2012, 11:86-95.
-
(2012)
CNS Neurol Disord Drug Targets
, vol.11
, pp. 86-95
-
-
Tian, Z.R.1
Sharma, A.2
Nozari, A.3
Subramaniam, R.4
Lundstedt, T.5
Sharma, H.S.6
-
67
-
-
79952925915
-
Differential uptake of functionalized polystyrene nanoparticles by human macrophages and a monocytic cell line
-
Lunov O, Syrovets T, Loos C, Beil J, Delacher M, Tron K, Nienhaus GU, Musyanovych A, Mailander V, Landfester K, et al. Differential uptake of functionalized polystyrene nanoparticles by human macrophages and a monocytic cell line. ACS Nano 2011, 5:1657-1669.
-
(2011)
ACS Nano
, vol.5
, pp. 1657-1669
-
-
Lunov, O.1
Syrovets, T.2
Loos, C.3
Beil, J.4
Delacher, M.5
Tron, K.6
Nienhaus, G.U.7
Musyanovych, A.8
Mailander, V.9
Landfester, K.10
-
68
-
-
84860620176
-
Multifunctionalized CMCht/PAMAM dendrimer nanoparticles modulate the cellular uptake by astrocytes and oligodendrocytes in primary cultures of glial cells
-
Cerqueira SR, Silva BL, Oliveira JM, Mano JF, Sousa N, Salgado AJ, Reis RL. Multifunctionalized CMCht/PAMAM dendrimer nanoparticles modulate the cellular uptake by astrocytes and oligodendrocytes in primary cultures of glial cells. Macromol Biosci 2012, 12:591-597.
-
(2012)
Macromol Biosci
, vol.12
, pp. 591-597
-
-
Cerqueira, S.R.1
Silva, B.L.2
Oliveira, J.M.3
Mano, J.F.4
Sousa, N.5
Salgado, A.J.6
Reis, R.L.7
-
69
-
-
79959379095
-
Repertoire of microglial and macrophage responses after spinal cord injury
-
David S, Kroner A. Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci 2011, 12:388-399.
-
(2011)
Nat Rev Neurosci
, vol.12
, pp. 388-399
-
-
David, S.1
Kroner, A.2
-
70
-
-
84874681851
-
Microglia response and in vivo therapeutic potential of methylprednisolone-loaded dendrimer nanoparticles in spinal cord injury
-
Cerqueira SR, Oliveira JM, Silva NA, Leite-Almeida H, Ribeiro-Samy S, Almeida A, Mano JF, Sousa N, Salgado AJ, Reis RL. Microglia response and in vivo therapeutic potential of methylprednisolone-loaded dendrimer nanoparticles in spinal cord injury. Small 2013, 9:738-749.
-
(2013)
Small
, vol.9
, pp. 738-749
-
-
Cerqueira, S.R.1
Oliveira, J.M.2
Silva, N.A.3
Leite-Almeida, H.4
Ribeiro-Samy, S.5
Almeida, A.6
Mano, J.F.7
Sousa, N.8
Salgado, A.J.9
Reis, R.L.10
-
71
-
-
84883242816
-
Toxicity of novel nanosized formulations used in medicine
-
El-Ansary A, Al-Daihan S, Bacha AB, Kotb M. Toxicity of novel nanosized formulations used in medicine. Methods Mol Biol 2013, 1028:47-74.
-
(2013)
Methods Mol Biol
, vol.1028
, pp. 47-74
-
-
El-Ansary, A.1
Al-Daihan, S.2
Bacha, A.B.3
Kotb, M.4
-
72
-
-
84876172765
-
Spinal cord injury: a review of current therapy, future treatments, and basic science frontiers
-
Varma AK, Das A, Wallace G, Barry J, Vertegel AA, Ray SK, Banik NL. Spinal cord injury: a review of current therapy, future treatments, and basic science frontiers. Neurochem Res 2013, 38:895-905.
-
(2013)
Neurochem Res
, vol.38
, pp. 895-905
-
-
Varma, A.K.1
Das, A.2
Wallace, G.3
Barry, J.4
Vertegel, A.A.5
Ray, S.K.6
Banik, N.L.7
-
73
-
-
80555143329
-
Combination of multifaceted strategies to maximize the therapeutic benefits of neural stem cell transplantation for spinal cord repair
-
Hwang DH, Kim HM, Kang YM, Joo IS, Cho CS, Yoon BW, Kim SU, Kim BG. Combination of multifaceted strategies to maximize the therapeutic benefits of neural stem cell transplantation for spinal cord repair. Cell Transplant 2011, 20:1361-1379.
-
(2011)
Cell Transplant
, vol.20
, pp. 1361-1379
-
-
Hwang, D.H.1
Kim, H.M.2
Kang, Y.M.3
Joo, I.S.4
Cho, C.S.5
Yoon, B.W.6
Kim, S.U.7
Kim, B.G.8
-
74
-
-
84878386951
-
Treating spinal cord injury in rats with a combination of human fetal neural stem cells and hydrogels modified with serotonin
-
Ruzicka J, Romanyuk N, Hejcl A, Vetrik M, Hruby M, Cocks G, Cihlar J, Pradny M, Price J, Sykova E, et al. Treating spinal cord injury in rats with a combination of human fetal neural stem cells and hydrogels modified with serotonin. Acta Neurobiol Exp (Wars) 2013, 73:102-115.
-
(2013)
Acta Neurobiol Exp (Wars)
, vol.73
, pp. 102-115
-
-
Ruzicka, J.1
Romanyuk, N.2
Hejcl, A.3
Vetrik, M.4
Hruby, M.5
Cocks, G.6
Cihlar, J.7
Pradny, M.8
Price, J.9
Sykova, E.10
-
75
-
-
84874961147
-
Repair of the injured spinal cord by transplantation of neural stem cells in a hyaluronan-based hydrogel
-
Mothe AJ, Tam RY, Zahir T, Tator CH, Shoichet MS. Repair of the injured spinal cord by transplantation of neural stem cells in a hyaluronan-based hydrogel. Biomaterials 2013, 34:3775-3783.
-
(2013)
Biomaterials
, vol.34
, pp. 3775-3783
-
-
Mothe, A.J.1
Tam, R.Y.2
Zahir, T.3
Tator, C.H.4
Shoichet, M.S.5
|