메뉴 건너뛰기




Volumn 56, Issue 7, 2011, Pages 1118-1128

Improving long-range hydrological forecasts with extended Kalman filters;Amélioration des prévisions hydrologiques à longue échéance par filtres de Kalman étendus

Author keywords

Extended Kalman filter; Hydrological forecast; Recurrent multilayer perceptron; Streamflow

Indexed keywords

COMPLEX DYNAMICS; DIAGNOSTIC MEASURES; ENVIRONMENTAL PROBLEMS; HYDROLOGICAL FORECAST; HYDROLOGICAL PROCESS; LAKE WATER LEVEL; MLP MODEL; MODELLING FRAMEWORK; MULTI LAYER PERCEPTRON; RECURRENT MULTILAYER PERCEPTRON;

EID: 80054780529     PISSN: 02626667     EISSN: 21503435     Source Type: Journal    
DOI: 10.1080/02626667.2011.608068     Document Type: Article
Times cited : (15)

References (22)
  • 1
    • 34249794005 scopus 로고    scopus 로고
    • Timing error correction procedure applied to neural network rainfall-runoff modelling
    • Abrahart, R.J., Heppenstall, A.J. and See, L.M., 2007. Timing error correction procedure applied to neural network rainfall-runoff modelling. Hydrological Sciences Journal, 52 (3), 414-431.
    • (2007) Hydrological Sciences Journal , vol.52 , Issue.3 , pp. 414-431
    • Abrahart, R.J.1    Heppenstall, A.J.2    See, L.M.3
  • 2
    • 41949086697 scopus 로고    scopus 로고
    • Development of a short-term river flood forecasting method for snowmelt driven floods based on wavelet and cross-wavelet analysis
    • Adamowski, J.F., 2008. Development of a short-term river flood forecasting method for snowmelt driven floods based on wavelet and cross-wavelet analysis. Journal of Hydrology, 353, 247-266.
    • (2008) Journal of Hydrology , vol.353 , pp. 247-266
    • Adamowski, J.F.1
  • 3
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural network in hydrology. I: Preliminary concepts
    • ASCE Task Committee on Application of Artificial Neural Network in Hydrology
    • ASCE Task Committee on Application of Artificial Neural Network in Hydrology, 2000a. Artificial neural network in hydrology. I: Preliminary concepts. Journal of Hydrological Engineering, 5, 115-123.
    • (2000) Journal of Hydrological Engineering , vol.5 , pp. 115-123
  • 4
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural network in hydrology. II: Hydrologic applications
    • ASCE Task Committee on Application of Artificial Neural Network in Hydrology
    • ASCE Task Committee on Application of Artificial Neural Network in Hydrology, 2000b. Artificial neural network in hydrology. II: Hydrologic applications. Journal of Hydrological Engineering, 5, 124-137.
    • (2000) Journal of Hydrological Engineering , vol.5 , pp. 124-137
  • 5
    • 84954358683 scopus 로고    scopus 로고
    • Jordan recurrent neural network versus IHACRES in modeling daily streamflows
    • Carcano, E.C., Bartolini, P., Muselli, M. and Piroddi, L., 2008. Jordan recurrent neural network versus IHACRES in modeling daily streamflows. Journal of Hydrology, 362 (3-4), 291-307.
    • (2008) Journal of Hydrology , vol.362 , Issue.3-4 , pp. 291-307
    • Carcano, E.C.1    Bartolini, P.2    Muselli, M.3    Piroddi, L.4
  • 6
    • 0842349306 scopus 로고    scopus 로고
    • A two-stepahead recurrent neural network for stream-flow forecasting
    • Chang, L.C., Chang, F.J. and Chiang, Y.M., 2004. A two-stepahead recurrent neural network for stream-flow forecasting. Hydrological Processes, 18, 81-92.
    • (2004) Hydrological Processes , vol.18 , pp. 81-92
    • Chang, L.C.1    Chang, F.J.2    Chiang, Y.M.3
  • 7
    • 23844536275 scopus 로고    scopus 로고
    • Online state-space modeling using recurrent multilayer perceptrons with unscented Kalman filter
    • doi:10.1007/s11063-005-2157-2
    • Choi, J., Yeap, T. H. and Bouchard, M., 2005. Online state-space modeling using recurrent multilayer perceptrons with unscented Kalman filter. Neural Processing Letters 22, 69-84, doi:10.1007/s11063-005-2157-2.
    • (2005) Neural Processing Letters , vol.22 , pp. 69-84
    • Choi, J.1    Yeap, T.H.2    Bouchard, M.3
  • 8
    • 73649127943 scopus 로고    scopus 로고
    • Reservoir computing approach to Great Lakes water level forecasting
    • Coulibaly, P., 2010. Reservoir computing approach to Great Lakes water level forecasting. Journal of Hydrology, 381, 76-88.
    • (2010) Journal of Hydrology , vol.381 , pp. 76-88
    • Coulibaly, P.1
  • 9
    • 20844456071 scopus 로고    scopus 로고
    • Improving generalization of artificial neural networks in rainfall-runoff modelling
    • Giustolisi, O. and Laucelli, D., 2005. Improving generalization of artificial neural networks in rainfall-runoff modelling. Hydrological Sciences Journal, 50 (3), 439-457.
    • (2005) Hydrological Sciences Journal , vol.50 , Issue.3 , pp. 439-457
    • Giustolisi, O.1    Laucelli, D.2
  • 13
    • 57049168146 scopus 로고    scopus 로고
    • Modelling daily suspended sediment of rivers in Turkey using several data-driven techniques
    • Kisi, O., Yuksel, I. and Dogan, E., 2008. Modelling daily suspended sediment of rivers in Turkey using several data-driven techniques. Hydrological Sciences Journal, 53 (6), 1270-1285.
    • (2008) Hydrological Sciences Journal , vol.53 , Issue.6 , pp. 1270-1285
    • Kisi, O.1    Yuksel, I.2    Dogan, E.3
  • 14
    • 40349116048 scopus 로고    scopus 로고
    • Mediumrange flow prediction for the Nile: A comparison of stochastic and deterministic methods
    • Koutsoyiannis, D., Yao, H. and Georgakakos, A., 2008. Mediumrange flow prediction for the Nile: a comparison of stochastic and deterministic methods. Hydrological Sciences Journal, 53 (1), 142-164.
    • (2008) Hydrological Sciences Journal , vol.53 , Issue.1 , pp. 142-164
    • Koutsoyiannis, D.1    Yao, H.2    Georgakakos, A.3
  • 15
    • 78650509451 scopus 로고    scopus 로고
    • Comparison of data-driven modelling techniques for river flow forecasting
    • Londhe, S. and Charhate, S., 2010. Comparison of data-driven modelling techniques for river flow forecasting. Hydrological Sciences Journal, 55 (7), 1163-1174.
    • (2010) Hydrological Sciences Journal , vol.55 , Issue.7 , pp. 1163-1174
    • Londhe, S.1    Charhate, S.2
  • 16
    • 34249787892 scopus 로고    scopus 로고
    • Seasonal reservoir inflow forecasting with low frequency climatic indices: A comparison of data-driven methods
    • Muluye, G.Y. and Coulibaly, P., 2007. Seasonal reservoir inflow forecasting with low frequency climatic indices: a comparison of data-driven methods. Hydrological Sciences Journal, 52 (3), 508-522.
    • (2007) Hydrological Sciences Journal , vol.52 , Issue.3 , pp. 508-522
    • Muluye, G.Y.1    Coulibaly, P.2
  • 17
    • 80054779413 scopus 로고    scopus 로고
    • Application of an extended Kalman Filter for on-line identification with recurrent neural networks
    • Madrid, Spain
    • Palma, L., et al., 2001. Application of an extended Kalman Filter for on-line identification with recurrent neural networks. Proceedings of the Seventh Jornadas Hispano-Lusas de Ingenieria Electrica. Madrid, Spain.
    • (2001) Proceedings of the Seventh Jornadas Hispano-Lusas de Ingenieria Electrica
    • Palma, L.1
  • 18
    • 28944448665 scopus 로고    scopus 로고
    • Using recurrent neural networks to construct rainfall-runoff processes
    • Pan, T.Y. and Wang, R.Y., 2005. Using recurrent neural networks to construct rainfall-runoff processes. Hydrological Processes, 19 (18), 3603-3619.
    • (2005) Hydrological Processes , vol.19 , Issue.18 , pp. 3603-3619
    • Pan, T.Y.1    Wang, R.Y.2
  • 19
    • 69949143939 scopus 로고    scopus 로고
    • Application of neural network and adaptive neuro-fuzzy inference systems for river flow prediction
    • Pramanik, N. and Panda, R.K., 2009. Application of neural network and adaptive neuro-fuzzy inference systems for river flow prediction. Hydrological Sciences Journal, 54 (2), 247-260.
    • (2009) Hydrological Sciences Journal , vol.54 , Issue.2 , pp. 247-260
    • Pramanik, N.1    Panda, R.K.2
  • 20
    • 0028401031 scopus 로고
    • Neurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks
    • Puskorius, G.V. and Feldkamp, L.A., 1994. Neurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks. IEEE Transactions on Neural Networks 5 (2), 279-297.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.2 , pp. 279-297
    • Puskorius, G.V.1    Feldkamp, L.A.2
  • 21
    • 80054781509 scopus 로고    scopus 로고
    • Running out of steam? Oil sands development and water use in the Athabasca River-Watershed: Science and market based solutions. Section 1: Future water flows and human withdrawals in the Athabasca River
    • Canada: University of Alberta
    • Schindler, D.W., Donahue, W.F. and Thompson, J.P., 2007. Running out of steam? Oil sands development and water use in the Athabasca River-Watershed: science and market based solutions. Section 1: Future water flows and human withdrawals in the Athabasca River. Environmental Research and Studies Centre. Canada: University of Alberta.
    • (2007) Environmental Research and Studies Centre
    • Schindler, D.W.1    Donahue, W.F.2    Thompson, J.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.