메뉴 건너뛰기




Volumn 22, Issue 12, 2008, Pages 1831-1845

A nonlinear data-driven model for synthetic generation of annual streamflows

Author keywords

Data driven models; Moving block bootstrap; Non linear hybrid; Radial basis function neural network; Stream flow generation

Indexed keywords

AUTOMATIC TRAIN CONTROL; BLENDING; DROUGHT; EIGENVALUES AND EIGENFUNCTIONS; FEEDFORWARD NEURAL NETWORKS; FOOD PRESERVATION; HYBRID SENSORS; IMAGE CLASSIFICATION; MATHEMATICAL MODELS; NEURAL NETWORKS; RADIAL BASIS FUNCTION NETWORKS; REAL TIME SYSTEMS; STREAM FLOW;

EID: 47249103851     PISSN: 08856087     EISSN: 10991085     Source Type: Journal    
DOI: 10.1002/hyp.6764     Document Type: Article
Times cited : (23)

References (45)
  • 1
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology - I: Preliminary concepts
    • ASCE Task Committee
    • ASCE Task Committee. 2000a. Artificial neural networks in hydrology - I: preliminary concepts. Journal of Hydrologic Engineering, ASCE 5: 115-123.
    • (2000) Journal of Hydrologic Engineering, ASCE , vol.5 , pp. 115-123
  • 2
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology - II: Hydrologic applications
    • ASCE Task Committee
    • ASCE Task Committee. 2000b. Artificial neural networks in hydrology - II: hydrologic applications. Journal of Hydrologic Engineering, ASCE 5: 124-137.
    • (2000) Journal of Hydrologic Engineering, ASCE , vol.5 , pp. 124-137
  • 5
    • 0034223894 scopus 로고    scopus 로고
    • Feedforward networks in financial predictions: The future that modifies the present
    • Buscema M, Sacco PL. 2000. Feedforward networks in financial predictions: the future that modifies the present. Expert Systems 17: 149-169.
    • (2000) Expert Systems , vol.17 , pp. 149-169
    • Buscema, M.1    Sacco, P.L.2
  • 7
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function networks
    • Chen S, Cowan CFN, Grant PM. 1991. Orthogonal least squares learning algorithm for radial basis function networks. IEEE Transactions on Neural Networks 2: 302-309.
    • (1991) IEEE Transactions on Neural Networks , vol.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 8
    • 0000436568 scopus 로고
    • Neural networks - applications in hydrology and water resources engineering
    • Institution of Engineers, Perth, Australia
    • Daniel TM. 1991. Neural networks - applications in hydrology and water resources engineering. In Proceedings, International Hydrology and Water Resources Symposium, Institution of Engineers, Perth, Australia.
    • (1991) Proceedings, International Hydrology and Water Resources Symposium
    • Daniel, T.M.1
  • 10
    • 0032005702 scopus 로고    scopus 로고
    • An artificial neural network approach to rainfall-runoff modeling
    • Dawson DW, Wilby R. 1998. An artificial neural network approach to rainfall-runoff modeling Hydrological Sciences Journal 43: 47-65.
    • (1998) Hydrological Sciences Journal , vol.43 , pp. 47-65
    • Dawson, D.W.1    Wilby, R.2
  • 11
    • 0034749335 scopus 로고    scopus 로고
    • Hydrological modeling using artificial neural networks
    • Dawson CW, Wilby RL. 2001. Hydrological modeling using artificial neural networks. Progress in Physical Geography 25: 80-108.
    • (2001) Progress in Physical Geography , vol.25 , pp. 80-108
    • Dawson, C.W.1    Wilby, R.L.2
  • 12
    • 0024685047 scopus 로고
    • Neural networks: An artificial intelligence approach to the analysis of clinical data
    • DeRoach JN. 1989. Neural networks: an artificial intelligence approach to the analysis of clinical data. Australasian Physical & Engineering Science in Medicine 12: 100-106.
    • (1989) Australasian Physical & Engineering Science in Medicine , vol.12 , pp. 100-106
    • DeRoach, J.N.1
  • 13
    • 0002344794 scopus 로고
    • Bootstrap methods: Another look at the jackknife
    • Efron B. 1979. Bootstrap methods: another look at the jackknife. Annals of Statistics 7: 1-26.
    • (1979) Annals of Statistics , vol.7 , pp. 1-26
    • Efron, B.1
  • 17
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • Hsu K, Gupta VH, Sorooshian S. 1995. Artificial neural network modeling of the rainfall-runoff process. Water Resources Research 31: 2517-2530.
    • (1995) Water Resources Research , vol.31 , pp. 2517-2530
    • Hsu, K.1    Gupta, V.H.2    Sorooshian, S.3
  • 18
    • 2442639370 scopus 로고    scopus 로고
    • Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded genetic algorithms, and artificial neural network techniques
    • DOI: 10-1029/2003WR002355
    • Jain A, Srinivasulu S. 2004. Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded genetic algorithms, and artificial neural network techniques. Water Resources Research 40: W04302. DOI: 10-1029/2003WR002355.
    • (2004) Water Resources Research , vol.40
    • Jain, A.1    Srinivasulu, S.2
  • 19
    • 0033840880 scopus 로고    scopus 로고
    • Multisite disaggregation of monthly to daily strearnflow
    • Kumar DN, Lall U, Petersen MR. 2000. Multisite disaggregation of monthly to daily strearnflow. Water Resources Research 36: 1823-1833.
    • (2000) Water Resources Research , vol.36 , pp. 1823-1833
    • Kumar, D.N.1    Lall, U.2    Petersen, M.R.3
  • 20
    • 0000181737 scopus 로고
    • The jackknife and the bootstrap for general stationary observations
    • Künsch HR. 1989. The jackknife and the bootstrap for general stationary observations. Annals of Statistics 17: 1217-1241.
    • (1989) Annals of Statistics , vol.17 , pp. 1217-1241
    • Künsch, H.R.1
  • 21
    • 38249000085 scopus 로고
    • On the moving block bootstrap under long range dependence
    • Lahiri SN. 1993. On the moving block bootstrap under long range dependence. Statistics and Probability Letters 18: 405-413.
    • (1993) Statistics and Probability Letters , vol.18 , pp. 405-413
    • Lahiri, S.N.1
  • 22
    • 0000470953 scopus 로고    scopus 로고
    • Lall U. 1995. Recent advances in nonparametric function estimation: hydraulic applications, U. S. National Report to International Union of Geodesy and Geophysics 1991-1994. Reviews of Geophysics 33: 1093-1102.
    • Lall U. 1995. Recent advances in nonparametric function estimation: hydraulic applications, U. S. National Report to International Union of Geodesy and Geophysics 1991-1994. Reviews of Geophysics 33: 1093-1102.
  • 23
    • 0029663871 scopus 로고    scopus 로고
    • A nearest neighbor bootstrap for resampling hydrologic time series
    • Lall U, Sharma A. 1996. A nearest neighbor bootstrap for resampling hydrologic time series. Water Resources Research 32: 679-693.
    • (1996) Water Resources Research , vol.32 , pp. 679-693
    • Lall, U.1    Sharma, A.2
  • 26
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modeling issues and application
    • Maier HR, Dandy GC. 2000. Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and application. Environmental Modeling and Software 15: 101-124.
    • (2000) Environmental Modeling and Software , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 27
    • 0000672424 scopus 로고
    • Fast learning in networks of locally tuned processing units
    • Moody J, Darken C. 1989. Fast learning in networks of locally tuned processing units. Neural Computation 1: 281-294.
    • (1989) Neural Computation , vol.1 , pp. 281-294
    • Moody, J.1    Darken, C.2
  • 30
    • 0032848078 scopus 로고    scopus 로고
    • A k-nearest neighbor simulator for daily precipitation and other weather variables
    • Rajagopalan B, Lall U. 1999. A k-nearest neighbor simulator for daily precipitation and other weather variables. Water Resources Research 35: 3089-3101.
    • (1999) Water Resources Research , vol.35 , pp. 3089-3101
    • Rajagopalan, B.1    Lall, U.2
  • 32
    • 0036698116 scopus 로고    scopus 로고
    • Multivariate synthetic streamflow generation using a hybrid model based on artificial neural networks
    • Rivera RJCO, Bartual G, Andreu. J. 2002. Multivariate synthetic streamflow generation using a hybrid model based on artificial neural networks. Hydrology and Earth System Sciences 6: 641-654.
    • (2002) Hydrology and Earth System Sciences , vol.6 , pp. 641-654
    • Rivera, R.J.C.O.1    Bartual, G.2    Andreu, J.3
  • 34
    • 0026359850 scopus 로고
    • On the probability of the longest run length in an independent series
    • Sen Z. 1991. On the probability of the longest run length in an independent series. Journal of Hydrology, 125: 37-46.
    • (1991) Journal of Hydrology , vol.125 , pp. 37-46
    • Sen, Z.1
  • 35
    • 0001665758 scopus 로고    scopus 로고
    • A norparametric approach for daily rainfall simulation
    • Sharma A, Lall U. 1999. A norparametric approach for daily rainfall simulation. Moths and Computers in Simulation 48: 361-371.
    • (1999) Moths and Computers in Simulation , vol.48 , pp. 361-371
    • Sharma, A.1    Lall, U.2
  • 37
    • 0034724717 scopus 로고    scopus 로고
    • Post-blackening approach for modeling dependent annual streamflows
    • Srinivas VV, Srinivasan K. 2000. Post-blackening approach for modeling dependent annual streamflows. Journal of Hydrology 230: 86-126.
    • (2000) Journal of Hydrology , vol.230 , pp. 86-126
    • Srinivas, V.V.1    Srinivasan, K.2
  • 38
    • 0035977695 scopus 로고    scopus 로고
    • Post-blackening approach for modeling periodic streamflows
    • Srinivas VV, Srinivasan K. 2001. Post-blackening approach for modeling periodic streamflows. Journal of Hydrology 241: 221-269.
    • (2001) Journal of Hydrology , vol.241 , pp. 221-269
    • Srinivas, V.V.1    Srinivasan, K.2
  • 39
    • 0019902426 scopus 로고
    • Synthetic streamflow generation, 1. Model verification and validation
    • Stedinger JR, Taylor MR. 1982. Synthetic streamflow generation, 1. Model verification and validation. Water Resources Research 18: 909-918.
    • (1982) Water Resources Research , vol.18 , pp. 909-918
    • Stedinger, J.R.1    Taylor, M.R.2
  • 40
    • 0038105929 scopus 로고    scopus 로고
    • Radial basis function neural networks for modeling stage discharge relationship
    • Sudheer KP, Jain SK. 2003. Radial basis function neural networks for modeling stage discharge relationship. Journal of Hydrologic Engineering, ASCE 8: 161-164.
    • (2003) Journal of Hydrologic Engineering, ASCE , vol.8 , pp. 161-164
    • Sudheer, K.P.1    Jain, S.K.2
  • 42
    • 0037470339 scopus 로고    scopus 로고
    • Improving peak flow estimates in artificial neural network river flow models
    • Sudheer KP, Nayak PC, Ramasastri KS. 2003. Improving peak flow estimates in artificial neural network river flow models. Hydrological Processes 17: 677-686.
    • (2003) Hydrological Processes , vol.17 , pp. 677-686
    • Sudheer, K.P.1    Nayak, P.C.2    Ramasastri, K.S.3
  • 43
    • 0031982615 scopus 로고    scopus 로고
    • Disaggregation procedures for stochastic hydrology based on nonparametric density estimation
    • Tarboton DG, Sharma A, Lall U. 1998. Disaggregation procedures for stochastic hydrology based on nonparametric density estimation. Water Resources Research 34: 107-119.
    • (1998) Water Resources Research , vol.34 , pp. 107-119
    • Tarboton, D.G.1    Sharma, A.2    Lall, U.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.