메뉴 건너뛰기




Volumn 17, Issue 3, 2013, Pages 935-945

Online multistep-ahead inundation depth forecasts by recurrent NARX networks

Author keywords

[No Author keywords available]

Indexed keywords

DYNAMICAL SYSTEMS; FLOOD CONTROL; FORECASTING; NEURAL NETWORKS; NONLINEAR DYNAMICAL SYSTEMS; RECURRENT NEURAL NETWORKS; SOCIAL NETWORKING (ONLINE); TIME DELAY;

EID: 84904176994     PISSN: 10275606     EISSN: 16077938     Source Type: Journal    
DOI: 10.5194/hess-17-935-2013     Document Type: Article
Times cited : (54)

References (34)
  • 2
    • 0034633240 scopus 로고    scopus 로고
    • A simple raster-based model for flood inundation simulation
    • Bates, P. D. and De Roo, A. P. J.: A simple raster-based model for flood inundation simulation, J. Hydrol., 236, 54-77, 2000.
    • (2000) J. Hydrol , vol.236 , pp. 54-77
    • Bates, P.D.1    De Roo, A.P.J.2
  • 4
    • 0037470396 scopus 로고    scopus 로고
    • Optimal use of highresolution topographic data in flood inundation models
    • Bates, P. D., Marks, K. J., and Horritt, M. S.: Optimal use of highresolution topographic data in flood inundation models, Hydrol. Process., 17, 537-557, doi:10.1002/hyp.1113, 2003.
    • (2003) Hydrol. Process , vol.17 , pp. 537-557
    • Bates, P.D.1    Marks, K.J.2    Horritt, M.S.3
  • 5
    • 33747059602 scopus 로고    scopus 로고
    • Reach scale floodplain inundation dynamics observed using airborne synthetic aperture radar imagery: Data analysis and modelling
    • Bates, P. D., Wilson, M. D., Horritt, M. S., Mason, D. C., Holden, N., and Currie, A.: Reach scale floodplain inundation dynamics observed using airborne synthetic aperture radar imagery: Data analysis and modelling, J. Hydrol., 328, 306-318, 2006.
    • (2006) J. Hydrol , vol.328 , pp. 306-318
    • Bates, P.D.1    Wilson, M.D.2    Horritt, M.S.3    Mason, D.C.4    Holden, N.5    Currie, A.6
  • 6
    • 77952241177 scopus 로고    scopus 로고
    • Advances in ungauged streamflow prediction using artificial neural networks
    • Besaw, L. E., Rizzo, D. M., Bierman, P. R., and Hackett,W. R.: Advances in ungauged streamflow prediction using artificial neural networks, J. Hydrol., 386, 27-37, 2010.
    • (2010) J. Hydrol , vol.386 , pp. 27-37
    • Besaw, L.E.1    Rizzo, D.M.2    Bierman, P.R.3    Hackett, W.R.4
  • 7
    • 0036697650 scopus 로고    scopus 로고
    • Neural networks and nonparametric methods for improving real-time flood forecasting through conceptual hydrological models
    • Brath, A., Montanari, A., and Toth, E.: Neural networks and nonparametric methods for improving real-time flood forecasting through conceptual hydrological models, Hydrol. Earth Syst. Sci., 6, 627-639, doi:10.5194/hess-6-627-2002, 2002.
    • (2002) Hydrol. Earth Syst. Sci , vol.6 , pp. 627-639
    • Brath, A.1    Montanari, A.2    Toth, E.3
  • 8
    • 0036719845 scopus 로고    scopus 로고
    • Real-time recurrent learning neural network for stream-flow forecasting
    • Chang, F. J., Chang, L. C., and Huang, H. L.: Real-time recurrent learning neural network for stream-flow forecasting, Hydrol. Process., 16, 2577-2588, 2002.
    • (2002) Hydrol. Process , vol.16 , pp. 2577-2588
    • Chang, F.J.1    Chang, L.C.2    Huang, H.L.3
  • 9
    • 0842349306 scopus 로고    scopus 로고
    • A two-step-ahead recurrent neural network for stream-flow forecasting
    • Chang, L. C., Chang, F. J., and Chiang, Y. M.: A two-step-ahead recurrent neural network for stream-flow forecasting, Hydrol. Process., 18, 81-92, 2004.
    • (2004) Hydrol. Process , vol.18 , pp. 81-92
    • Chang, L.C.1    Chang, F.J.2    Chiang, Y.M.3
  • 10
    • 77950860762 scopus 로고    scopus 로고
    • Clustering based hybrid inundation model for forecasting flood inundation depths
    • Chang, L. C., Shen, H. Y., Wang, Y. F., Huang, J. Y., and Lin, Y. S.: Clustering based hybrid inundation model for forecasting flood inundation depths, J. Hydrol., 385, 257-268, 2010.
    • (2010) J. Hydrol , vol.385 , pp. 257-268
    • Chang, L.C.1    Shen, H.Y.2    Wang, Y.F.3    Huang, J.Y.4    Lin, Y.S.5
  • 11
    • 84875900575 scopus 로고    scopus 로고
    • Reinforced two-stepahead weight adjustment technique for online training of recurrent neural networks
    • Chang, L. C., Chen, P. A., and Chang, F. J.: Reinforced two-stepahead weight adjustment technique for online training of recurrent neural networks, IEEE Trans. Neural Net. Learn. Syst., 23, 1269-1278, 2012.
    • (2012) IEEE Trans. Neural Net. Learn. Syst , vol.23 , pp. 1269-1278
    • Chang, L.C.1    Chen, P.A.2    Chang, F.J.3
  • 12
    • 27544472438 scopus 로고    scopus 로고
    • Comparison of several flood forecasting models in Yangtze River
    • Chau, K. W., Wu, C. L., and Li, Y. S.: Comparison of several flood forecasting models in Yangtze River, J. Hydrol. Eng., Am. Soc. Civil Eng., 10, 485-491, 2005.
    • (2005) J. Hydrol. Eng., Am. Soc. Civil Eng , vol.10 , pp. 485-491
    • Chau, K.W.1    Wu, C.L.2    Li, Y.S.3
  • 13
    • 60549091177 scopus 로고    scopus 로고
    • Evolutionary artificial neural networks for hydrological systems forecasting
    • Chen, Y. H. and Chang, F. J.: Evolutionary artificial neural networks for hydrological systems forecasting, J. Hydrol., 367, 125-137, 2009.
    • (2009) J. Hydrol , vol.367 , pp. 125-137
    • Chen, Y.H.1    Chang, F.J.2
  • 14
    • 77954724126 scopus 로고    scopus 로고
    • Dynamic neural networks for real-time water level predictions of sewerage systems-covering gauged and ungauged sites
    • Chiang, Y. M., Chang, L. C., Tsai, M. J. Wang, Y. F. and Chang, F. J.: Dynamic neural networks for real-time water level predictions of sewerage systems-covering gauged and ungauged sites, Hydrol. Earth Syst. Sci., 14, 1309-1319, doi:10.5194/hess-14-1309-2010, 2010.
    • (2010) Hydrol. Earth Syst. Sci , vol.14 , pp. 1309-1319
    • Chiang, Y.M.1    Chang, L.C.2    Tsai, M.J.3    Wang, Y.F.4    Chang, F.J.5
  • 15
    • 19744362941 scopus 로고    scopus 로고
    • Nonstationary hydrological time series forecasting using nonlinear dynamic methods
    • Coulibaly, P. and Baldwin, C. K.: Nonstationary hydrological time series forecasting using nonlinear dynamic methods, J. Hydrol., 307, 164-174, 2005.
    • (2005) J. Hydrol , vol.307 , pp. 164-174
    • Coulibaly, P.1    Baldwin, C.K.2
  • 16
    • 26444565569 scopus 로고
    • Finding structure in time
    • Elman, J. L.: Finding structure in time, Cognitive Science, 14, 179-211, 1990.
    • (1990) Cognitive Science , vol.14 , pp. 179-211
    • Elman, J.L.1
  • 18
    • 0034733524 scopus 로고    scopus 로고
    • Inundation simulation for urban drainage basin with storm sewer system
    • Hsu, M. H., Chen, S. H., and Chang T. J.: Inundation simulation for urban drainage basin with storm sewer system, J. Hydrol., 234, 21-37, 2000.
    • (2000) J. Hydrol , vol.234 , pp. 21-37
    • Hsu, M.H.1    Chen, S.H.2    Chang, T.J.3
  • 19
    • 79960718974 scopus 로고    scopus 로고
    • Sunspot forecasting by using Chaotic timeseries analysis and NARX network
    • Jiang, C. and Song, F.: Sunspot forecasting by using Chaotic timeseries analysis and NARX network, J. Chem. Phys., 6, 1424-1429, 2011.
    • (2011) J. Chem. Phys , vol.6 , pp. 1424-1429
    • Jiang, C.1    Song, F.2
  • 20
    • 65949105282 scopus 로고    scopus 로고
    • The application of integrated urban inundation model in Republic of Korea
    • Kang, S. H.: The application of integrated urban inundation model in Republic of Korea, Hydrol. Process., 23, 1642-1649, 2009.
    • (2009) Hydrol. Process , vol.23 , pp. 1642-1649
    • Kang, S.H.1
  • 21
    • 0032580952 scopus 로고    scopus 로고
    • Hydraulic modelling in hydrology and geomorphology: A review of high resolution approaches
    • Lane, S. N.: Hydraulic modelling in hydrology and geomorphology: a review of high resolution approaches, Hydrol. Process., 12, 1131-1150, 1998.
    • (1998) Hydrol. Process , vol.12 , pp. 1131-1150
    • Lane, S.N.1
  • 22
    • 77956096209 scopus 로고    scopus 로고
    • Visualization approaches for communicating real-time forecasting level and inundation information
    • Leedal, D., Neal, J., Beven, P., Young, P., and Bates, P.: Visualization approaches for communicating real-time forecasting level and inundation information, J. Flood Risk Manage., 3, 140-150, 2010.
    • (2010) J. Flood Risk Manage , vol.3 , pp. 140-150
    • Leedal, D.1    Neal, J.2    Beven, P.3    Young, P.4    Bates, P.5
  • 23
    • 33746830757 scopus 로고    scopus 로고
    • Using support vector machines for long-term discharge prediction
    • Lin, J. Y., Cheng, C. T., and Chau, K. W.: Using support vector machines for long-term discharge prediction, Hydrol. Sci. J., 51, 599-612, 2006.
    • (2006) Hydrol. Sci. J , vol.51 , pp. 599-612
    • Lin, J.Y.1    Cheng, C.T.2    Chau, K.W.3
  • 24
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modeling issues and applications
    • Maier, H. R. and Dandy, G. C.: Neural networks for the prediction and forecasting of water resources variables: A review of modeling issues and applications, Environ. Modell. Softw., 15, 101-104, 2000.
    • (2000) Environ. Modell. Softw , vol.15 , pp. 101-104
    • Maier, H.R.1    Dandy, G.C.2
  • 25
    • 0034254186 scopus 로고    scopus 로고
    • Integration of high-resolution topographic data with floodplain flow models
    • Marks, K. and Bates, P.: Integration of high-resolution topographic data with floodplain flow models, Hydrol. Process., 14, 2109-2122, 2000.
    • (2000) Hydrol. Process , vol.14 , pp. 2109-2122
    • Marks, K.1    Bates, P.2
  • 26
    • 36348999337 scopus 로고    scopus 로고
    • Improving river flood extent delineation from Synthetic Aperture Radar using airborne laser altimetry
    • Mason, D. C., Horritt, M. S., Dall'Amico, J. T., Scott, T. R., and Bates, P. D.: Improving river flood extent delineation from Synthetic Aperture Radar using airborne laser altimetry, IEEE Trans. Geosci. Remote Sens., 45, 3932-3943, 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens , vol.45 , pp. 3932-3943
    • Mason, D.C.1    Horritt, M.S.2    Dall'Amico, J.T.3    Scott, T.R.4    Bates, P.D.5
  • 27
    • 56549090156 scopus 로고    scopus 로고
    • Long-term time series prediction with the NARX network: An empirical evaluation
    • Menezes Jr., J. M. P. and Barreto, G. A.: Long-term time series prediction with the NARX network: an empirical evaluation, Neurocomputing, 71, 3335-3343, 2008.
    • (2008) Neurocomputing , vol.71 , pp. 3335-3343
    • Menezes, J.M.P.1    Barreto, G.A.2
  • 28
    • 79952660197 scopus 로고    scopus 로고
    • Hybrid neural networks in rainfall-inundation forecasting based on a synthetic potential inundation database
    • Pan, T.-Y., Lai, J.-S., Chang, T.-J., Chang, H.-K., Chang, K.-C., and Tan, Y.-C.: Hybrid neural networks in rainfall-inundation forecasting based on a synthetic potential inundation database, Nat. Hazards Earth Syst. Sci., 11, 771-787, doi:10.5194/nhess-11-771-2011, 2011.
    • (2011) Nat. Hazards Earth Syst. Sci , vol.11 , pp. 771-787
    • Pan, T.-Y.1    Lai, J.-S.2    Chang, T.-J.3    Chang, H.-K.4    Chang, K.-C.5    Tan, Y.-C.6
  • 29
    • 0034269158 scopus 로고    scopus 로고
    • Multi-step-ahead prediction using dynamic recurrent neural networks
    • Parlos, A. G., Rais, O. T., and Atiya, A. F.: Multi-step-ahead prediction using dynamic recurrent neural networks, Neural Networks, 13, 765-786, 2000.
    • (2000) Neural Networks , vol.13 , pp. 765-786
    • Parlos, A.G.1    Rais, O.T.2    Atiya, A.F.3
  • 30
    • 37549066943 scopus 로고    scopus 로고
    • Multistep ahead streamflow forecasting: Role of calibration data in conceptual and neural network modeling
    • Toth, E. and Brath, A.: Multistep ahead streamflow forecasting: Role of calibration data in conceptual and neural network modeling, Water Resour. Res., 43, W11405, doi:10.1029/2006WR005383, 2007.
    • (2007) Water Resour. Res , vol.43
    • Toth, E.1    Brath, A.2
  • 31
    • 70349532926 scopus 로고    scopus 로고
    • Flood simulation using different sources of rainfall in the Huong River, Vietnam
    • Valeriano, O. C. S., Koike, T., Dawen, Y., Cho, T., Van Khanh, D., and Nguyen, L.: Flood simulation using different sources of rainfall in the Huong River, Vietnam, Hydrol. Sci. J., 54, 909-917, 2009.
    • (2009) Hydrol. Sci. J , vol.54 , pp. 909-917
    • Valeriano, O.C.S.1    Koike, T.2    Dawen, Y.3    Cho, T.4    Van Khanh, D.5    Nguyen, L.6
  • 32
    • 0037099647 scopus 로고    scopus 로고
    • Progress in and prospects for fluvial flood modelling
    • Wheater, H. S.: Progress in and prospects for fluvial flood modelling, Phil. Trans. R. Soc. Lond. A, 360, 1409-1431, 2002.
    • (2002) Phil. Trans. R. Soc. Lond. A , vol.360 , pp. 1409-1431
    • Wheater, H.S.1
  • 33
    • 70349777454 scopus 로고    scopus 로고
    • Predicting monthly streamflow using data-driven models coupled with datapreprocessing techniques
    • Wu, C. L., Chau, K. W., and Li, Y. S.: Predicting monthly streamflow using data-driven models coupled with datapreprocessing techniques, Water Resour. Res., 45, W08432, doi:10.1029/2007WR006737, 2009.
    • (2009) Water Resour. Res , vol.45
    • Wu, C.L.1    Chau, K.W.2    Li, Y.S.3
  • 34
    • 71549128235 scopus 로고    scopus 로고
    • Improved estimation of flood parameters by combining space based SAR data with very high resolution digital elevation data
    • Zwenzner, H. and Voigt, S.: Improved estimation of flood parameters by combining space based SAR data with very high resolution digital elevation data, Hydrol. Earth Syst. Sci., 13, 567-576, doi:10.5194/hess-13-567-2009, 2009.
    • (2009) Hydrol. Earth Syst. Sci , vol.13 , pp. 567-576
    • Zwenzner, H.1    Voigt, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.