메뉴 건너뛰기




Volumn 12, Issue 1, 2003, Pages 1-9

Simultaneous recurrent neural network trained with non-recurrent backpropagation algorithm for static optimisation

Author keywords

Artificial neural network; Backpropagation; Computational complexity; Optimisation; Recurrent network; Traveling salesman

Indexed keywords

ALGORITHMS; BACKPROPAGATION; COMPUTATIONAL COMPLEXITY; COMPUTER SIMULATION; GRADIENT METHODS; OPTIMIZATION; TRAVELING SALESMAN PROBLEM;

EID: 0141904590     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00521-003-0365-0     Document Type: Article
Times cited : (14)

References (14)
  • 2
    • 0001209372 scopus 로고
    • Accelerated back-propagation learning: Two optimization methods
    • Battiti R (1989) Accelerated back-propagation learning: Two Optimization Methods. Complex Systems, 3: 331-342
    • (1989) Complex Systems , vol.3 , pp. 331-342
    • Battiti, R.1
  • 3
    • 0003720685 scopus 로고
    • Neural network for optimisation and signal processing
    • Wiley
    • Cichocki A, Unbehauen R (1993) Neural network for optimisation and signal processing, Wiley
    • (1993)
    • Cichocki, A.1    Unbehauen, R.2
  • 4
    • 0004469897 scopus 로고
    • Neurons with graded response have collective computational properties like those of two-state neurons
    • Hopfield JJ (1984) Neurons with graded response have collective computational properties like those of two-state neurons. In: Proceedings of the National Academy of Science, USA, 81: 3088-3092
    • (1984) Proceedings of the National Academy of Science, USA , vol.81 , pp. 3088-3092
    • Hopfield, J.J.1
  • 5
    • 0021835689 scopus 로고
    • Neural computation of decision in optimisation problems
    • Hopfield JJ, Tank DW (1985) Neural computation of decision in optimisation problems, Bio. Cyber. 52: 141-152
    • (1985) Bio. Cyber. , vol.52 , pp. 141-152
    • Hopfield, J.J.1    Tank, D.W.2
  • 6
    • 0000293377 scopus 로고
    • Backpropagation learning for multi-layer feed-forward neural networks using the conjugate gradient method
    • Johansson EM, Dowla FU, Goodman DM (1991) Backpropagation learning for multi-layer feed-forward neural networks using the conjugate gradient method. Inter. J. Neural Sys. 2(4): 291-301
    • (1991) Inter. J. Neural Sys. , vol.2 , Issue.4 , pp. 291-301
    • Johansson, E.M.1    Dowla, F.U.2    Goodman, D.M.3
  • 7
    • 0010235342 scopus 로고
    • Comparison and evaluation of variants of the conjugate gradient method for efficient learning in feed-forward neural networks with backward error propagation
    • Kinsella JA (1992) Comparison and evaluation of variants of the conjugate gradient method for efficient learning in feed-forward neural networks with backward error propagation. Network 3: 27-35
    • (1992) Network , vol.3 , pp. 27-35
    • Kinsella, J.A.1
  • 8
    • 0000442791 scopus 로고
    • Generalization of back-propagation to recurrent neural networks
    • Pineda FJ (1987) Generalization of back-propagation to recurrent neural networks. Physical Rev. Lett. 59: 2229-2232
    • (1987) Physical Rev. Lett. , vol.59 , pp. 2229-2232
    • Pineda, F.J.1
  • 9
    • 21844527073 scopus 로고
    • The traveling salesman, computational solutions for tsp applications
    • Springer, Berlin Heidelberg New York
    • Reinelt G (1994) The traveling salesman, computational solutions for tsp applications, vol. 840 of Lecture Notes in Computer Science, Springer, Berlin Heidelberg New York
    • (1994) Lecture Notes in Computer Science , pp. 840
    • Reinelt, G.1
  • 10
    • 0000649941 scopus 로고    scopus 로고
    • The simultaneous recurrent neural network addressing the scaling problem in static optimisation
    • Serpen G, Patwardhan A, Geib J (2001) The simultaneous recurrent neural network addressing the scaling problem in static optimisation. Inter. J. Neu. Sys. 11(5): 477-487
    • (2001) Inter. J. Neu. Sys. , vol.11 , Issue.5 , pp. 477-487
    • Serpen, G.1    Patwardhan, A.2    Geib, J.3
  • 11
    • 0034284295 scopus 로고    scopus 로고
    • Determination of weights for relaxation recurrent neural networks
    • Serpen G, Livingston DL (2000) Determination of weights for relaxation recurrent neural networks. Neurocomput. 34: 145-168
    • (2000) Neurocomput. , vol.34 , pp. 145-168
    • Serpen, G.1    Livingston, D.L.2
  • 12
    • 0000903748 scopus 로고
    • Generalization of backpropagation with application to a recurrent gas market model
    • Werbos PJ (1988) Generalization of backpropagation with application to a recurrent gas market model. Neu. Networks, 1(4): 234-242
    • (1988) Neu. Networks , vol.1 , Issue.4 , pp. 234-242
    • Werbos, P.J.1
  • 13
    • 0005942774 scopus 로고    scopus 로고
    • Neural network design for j function approximation in dynamic programming
    • technical report
    • Werbos PJ, Pang X (1998) Neural network design for j function approximation in dynamic programming, technical report available online at http://www.isr.umd.edu/TechReports/CSHCN/1998/CSHCN_M S_98-1/CSHCN_MS_98-1.pdf
    • (1998)
    • Werbos, P.J.1    Pang, X.2
  • 14
    • 0003529238 scopus 로고
    • Beyond regression: New tools for prediction and analysis in the behavioral sciences
    • Ph. D. Thesis, Harvard University
    • Werbos PJ (1974) Beyond regression: new tools for prediction and analysis in the behavioral sciences, Ph. D. Thesis, Harvard University
    • (1974)
    • Werbos, P.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.