메뉴 건너뛰기




Volumn 11, Issue 5, 1998, Pages 861-868

How embedded memory in recurrent neural network architectures helps learning long-term temporal dependencies

Author keywords

Automata; Gradient descent; Latching; Long term dependencies; Memory; Neural networks; Recurrent; Time delay; Training

Indexed keywords

AUTOMATA THEORY; COMPUTATION THEORY; COMPUTER ARCHITECTURE; LEARNING SYSTEMS; STORAGE ALLOCATION (COMPUTER);

EID: 0032123428     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0893-6080(98)00018-5     Document Type: Article
Times cited : (80)

References (31)
  • 1
    • 0000029787 scopus 로고
    • FIR and IIR synapses, a new neural network architecture for time series modeling
    • Back A., Tsoi A. FIR and IIR synapses, a new neural network architecture for time series modeling. Neural Computation. 3(3):1991;337-350.
    • (1991) Neural Computation , vol.3 , Issue.3 , pp. 337-350
    • Back, A.1    Tsoi, A.2
  • 3
    • 0025448276 scopus 로고
    • Non-linear system identification using neural networks
    • Chen S., Billings S., Grant P. Non-linear system identification using neural networks. International Journal of Control. 51(6):1990;1191-1214.
    • (1990) International Journal of Control , vol.51 , Issue.6 , pp. 1191-1214
    • Chen, S.1    Billings, S.2    Grant, P.3
  • 4
    • 0026895542 scopus 로고
    • The gamma model - A new neural model for temporal processing
    • de Vries B., Principe J.C. The gamma model - a new neural model for temporal processing. Neural Networks. 5:1992;565-576.
    • (1992) Neural Networks , vol.5 , pp. 565-576
    • De Vries, B.1    Principe, J.C.2
  • 5
    • 26444565569 scopus 로고
    • Finding structure in time
    • Elman J. Finding structure in time. Cognitive Science. 14:1990;179-211.
    • (1990) Cognitive Science , vol.14 , pp. 179-211
    • Elman, J.1
  • 6
    • 0001698763 scopus 로고    scopus 로고
    • Computational capabilities of local-feedback recurrent networks acting as finite-state machines
    • Frasconi P., Gori M. Computational capabilities of local-feedback recurrent networks acting as finite-state machines. IEEE Transactions on Neural Networks. 7(6):1996;1521-1524.
    • (1996) IEEE Transactions on Neural Networks , vol.7 , Issue.6 , pp. 1521-1524
    • Frasconi, P.1    Gori, M.2
  • 9
    • 84947459398 scopus 로고
    • Inserting rules into recurrent neural networks
    • In: Kung, S., Fallside, F., Sorenson, J. A., Kamm, C. (Eds), Neural Network for Signal Processing II, Piscataway, NJ. IEEE Press
    • Giles, C., Omlin, C., 1992. Inserting rules into recurrent neural networks. In: Kung, S., Fallside, F., Sorenson, J. A., Kamm, C. (Eds), Neural Network for Signal Processing II, Proceedings of the 1992 IEEE Workshop, Piscataway, NJ. IEEE Press, pp. 13-22.
    • (1992) Proceedings of the 1992 IEEE Workshop , pp. 13-22
    • Giles, C.1    Omlin, C.2
  • 10
    • 0028392260 scopus 로고
    • Dynamic Recurrent Neural Networks: Theory and Applications
    • Giles, C., Kuhn, G., Williams, R., 1994. Dynamic Recurrent Neural Networks: Theory and Applications. IEEE Transactions on Neural Networks, 5(2), Special Issue.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.2 SPECIAL ISSUE.
    • Giles, C.1    Kuhn, G.2    Williams, R.3
  • 12
    • 0003331189 scopus 로고    scopus 로고
    • Hierarchical recurrent neural networks for long-term dependencies
    • MIT Press, Cambridge, MA.
    • Hihi, S. E., Bengio, Y., 1996. Hierarchical recurrent neural networks for long-term dependencies. In: Advances in Neural Information Processing Systems 8. MIT Press, Cambridge, MA.
    • (1996) In: Advances in Neural Information Processing Systems , vol.8
    • Hihi, S.E.1    Bengio, Y.2
  • 14
    • 0001039722 scopus 로고
    • An experimental comparison of recurrent neural networks
    • MIT Press, Cambridge, MA
    • Horne, B., Giles, C., 1995. An experimental comparison of recurrent neural networks. In: Advances in Neural Information Processing Systems 7. MIT Press, Cambridge, MA, pp. 697-704.
    • (1995) In: Advances in Neural Information Processing Systems , vol.7 , pp. 697-704
    • Horne, B.1    Giles, C.2
  • 16
    • 33646241633 scopus 로고    scopus 로고
    • Learning long-term dependencies in narx recurrent neural networks
    • Lin T., Horne B., Tino P., Giles C. Learning long-term dependencies in narx recurrent neural networks. IEEE Transactions on Neural Networks. 7(6):1996;1329-1338.
    • (1996) IEEE Transactions on Neural Networks , vol.7 , Issue.6 , pp. 1329-1338
    • Lin, T.1    Horne, B.2    Tino, P.3    Giles, C.4
  • 17
    • 0038930790 scopus 로고    scopus 로고
    • Learning long-term dependencies is not as difficult with narx recurrent neural networks
    • MIT Press, Cambridge, MA.
    • Lin, T., Horne, B., Tino, P., Giles, C., 1996b. Learning long-term dependencies is not as difficult with narx recurrent neural networks. In: Advances in Neural Information Processing Systems 8. MIT Press, Cambridge, MA.
    • (1996) In: Advances in Neural Information Processing Systems , vol.8
    • Lin, T.1    Horne, B.2    Tino, P.3    Giles, C.4
  • 18
    • 0031274628 scopus 로고    scopus 로고
    • A delay damage model selection algorithm for narx neural networks
    • (Special Issue on Neural Networks)
    • Lin T., Giles C., Horne B., Kung S. A delay damage model selection algorithm for narx neural networks. IEEE Transactions on Signal Processing. 45(11):1997;2719-2730. (Special Issue on Neural Networks).
    • (1997) IEEE Transactions on Signal Processing , vol.45 , Issue.11 , pp. 2719-2730
    • Lin, T.1    Giles, C.2    Horne, B.3    Kung, S.4
  • 20
    • 0005316958 scopus 로고
    • Induction of multiscale temporal structure
    • In: Moody, J., Hanson, S.J., Lippmann, R. (Eds.), Morgan Kaufmann
    • Mozer, M.C., 1992. Induction of multiscale temporal structure. In: Moody, J., Hanson, S.J., Lippmann, R. (Eds.), Neural Information Processing Systems 4. Morgan Kaufmann, pp. 275-282.
    • (1992) Neural Information Processing Systems , vol.4 , pp. 275-282
    • Mozer, M.C.1
  • 21
    • 0002291616 scopus 로고
    • Neural net architectures for temporal sequence processing
    • In: Weigend, A., Gershenfeld, N. (Eds.), Addison-Wesley, Reading, MA
    • Mozer, M.C., 1994. Neural net architectures for temporal sequence processing. In: Weigend, A., Gershenfeld, N. (Eds.), Time Series Prediction. Addison-Wesley, Reading, MA, pp. 243-264.
    • (1994) Time Series Prediction , pp. 243-264
    • Mozer, M.C.1
  • 22
    • 0025399567 scopus 로고
    • Identification and control of dynamical systems using neural networks
    • Narendra K., Parthasarathy K. Identification and control of dynamical systems using neural networks. IEEE Transactions on Neural Networks. 1(1):1990;4-27.
    • (1990) IEEE Transactions on Neural Networks , vol.1 , Issue.1 , pp. 4-27
    • Narendra, K.1    Parthasarathy, K.2
  • 24
    • 0008990451 scopus 로고
    • Recurrent networks: Second order properties and pruning
    • In: Tesauro, G., Touretzky, D., Leen, T. (Eds.), MIT Press, Cambridge, MA.
    • Pedersen, M., Hansen, L., 1995. Recurrent networks: second order properties and pruning. In: Tesauro, G., Touretzky, D., Leen, T. (Eds.), Advances in Neural Information Processing Systems 7. MIT Press, Cambridge, MA.
    • (1995) Advances in Neural Information Processing Systems , vol.7
    • Pedersen, M.1    Hansen, L.2
  • 25
  • 30
    • 0026868901 scopus 로고
    • Long-term predictions of chemical processes using recurrent neural networks: A parallel training approach
    • Su H.-T., McAvoy T., Werbos P. Long-term predictions of chemical processes using recurrent neural networks: a parallel training approach. Industrial Engineering and Chemical Research. 31:1992;1338-1352.
    • (1992) Industrial Engineering and Chemical Research , vol.31 , pp. 1338-1352
    • Su, H.-T.1    McAvoy, T.2    Werbos, P.3
  • 31
    • 0028392406 scopus 로고
    • Locally recurrent globally feedforward networks, a critical review of architectures
    • Tsoi A., Back A. Locally recurrent globally feedforward networks, a critical review of architectures. IEEE Transactions on Neural Networks. 5(2):1994;229-239.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.2 , pp. 229-239
    • Tsoi, A.1    Back, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.