-
2
-
-
80054878418
-
-
preparation
-
R. Armann and I. Bü lthoff, in preparation, https://webdav. tuebingen.mpg.de/cause-effect/, 2010.
-
(2010)
Lthoff
-
-
Armann, R.1
Bü, I.2
-
4
-
-
0000642942
-
Some methods for strengthening the common-2 tests
-
W.G. Cochran, "Some Methods for Strengthening the Common-2 Tests," Biometrics, vol. 10, pp. 417-451, 1954.
-
(1954)
Biometrics
, vol.10
, pp. 417-451
-
-
Cochran, W.G.1
-
5
-
-
67651248728
-
Application of rough sets in the presumptive diagnosis of urinary system diseases
-
Kluwer Academic Publishers
-
J. Czerniak and H. Zarzycki, "Application of Rough Sets in the Presumptive Diagnosis of Urinary System Diseases," Artificial Intelligence and Security in Computing Systems, pp. 41-51, Kluwer Academic Publishers, 2003.
-
(2003)
Artificial Intelligence and Security in Computing Systems
, pp. 41-51
-
-
Czerniak, J.1
Zarzycki, H.2
-
6
-
-
0012315692
-
A bayesian approach to causal discovery
-
C. Glymour and G. Cooper, eds. MIT Press
-
D. Heckerman, C. Meek, and G. Cooper, "A Bayesian Approach to Causal Discovery," Computation, Causation, and Discovery, C. Glymour and G. Cooper, eds., pp. 141-165, MIT Press, 1999.
-
(1999)
Computation, Causation, and Discovery
, pp. 141-165
-
-
Heckerman, D.1
Meek, C.2
Cooper, G.3
-
7
-
-
84858789485
-
Nonlinear causal discovery with additive noise models
-
P. Hoyer, D. Janzing, J. Mooij, J. Peters, and B. Schölkopf, "Nonlinear Causal Discovery with Additive Noise Models," Proc. Neural Information Processing Systems, pp. 689-696, 2009.
-
(2009)
Proc. Neural Information Processing Systems
, pp. 689-696
-
-
Hoyer, P.1
Janzing, D.2
Mooij, J.3
Peters, J.4
Schölkopf, B.5
-
8
-
-
80053150077
-
Identifying confounders using additive noise models
-
D. Janzing, J. Peters, J.M. Mooij, and B. Schö lkopf, "Identifying Confounders Using Additive Noise Models," Proc. 25th Conf. Uncertainty in Artificial Intelligence, pp. 249-257, 2009.
-
(2009)
Proc. 25th Conf. Uncertainty in Artificial Intelligence
, pp. 249-257
-
-
Janzing, D.1
Peters, J.2
Mooij, J.M.3
Schölkopf, B.4
-
9
-
-
80053147274
-
Justifying Additive-Noise-Model Based Causal Discovery via Algorithmic Information Theory
-
D. Janzing and B. Steudel, "Justifying Additive-Noise-Model Based Causal Discovery via Algorithmic Information Theory," Open Systems and Information Dynamics, vol. 17, pp. 189-212, 2010.
-
(2010)
Open Systems and Information Dynamics
, vol.17
, pp. 189-212
-
-
Janzing, D.1
Steudel, B.2
-
11
-
-
71149096052
-
Regression by dependence minimization and its application to causal inference
-
J. Mooij, D. Janzing, J. Peters, and B. Schö lkopf, "Regression by Dependence Minimization and Its Application to Causal Inference," Proc. 26th Int'l Conf. Machine Learning, pp. 745-752, 2009.
-
(2009)
Proc. 26th Int'l Conf. Machine Learning
, pp. 745-752
-
-
Mooij, J.1
Janzing, D.2
Peters, J.3
Schö Lkopf, B.4
-
12
-
-
0003841913
-
The population biology of abalone (Haliotis Species) in Tasmania
-
Technical Report No. 48 (ISSN 1034-3288) I Sea Fisheries Division
-
W. Nash, T. Sellers, S. Talbot, A. Cawthorn, and W. Ford, "The Population Biology of Abalone (Haliotis Species) in Tasmania," Technical Report No. 48 (ISSN 1034-3288), I. Blacklip Abalone (H. rubra) from the North Coast and Islands of Bass Strait, Sea Fisheries Division, 1994.
-
(1994)
Blacklip Abalone (H. Rubra) from the North Coast and Islands of Bass Strait
-
-
Nash, W.1
Sellers, T.2
Talbot, S.3
Cawthorn, A.4
Ford, W.5
-
14
-
-
71149117601
-
Detecting the direction of causal time series
-
J. Peters, D. Janzing, A. Gretton, and B. Schölkopf, "Detecting the Direction of Causal Time Series," Proc. 26th Int'l Conf. Machine Learning, pp. 801-808, 2009.
-
(2009)
Proc. 26th Int'l Conf. Machine Learning
, pp. 801-808
-
-
Peters, J.1
Janzing, D.2
Gretton, A.3
Schölkopf, B.4
-
15
-
-
84862292888
-
Identifying cause and effect on discrete data using additive noise models
-
J. Peters, D. Janzing, and B. Schölkopf, "Identifying Cause and Effect on Discrete Data Using Additive Noise Models," Proc. 13th Int'l Conf. Artificial Intelligence and Statistics, vol. 9, pp. 597-604, 2010.
-
(2010)
Proc. 13th Int'l Conf. Artificial Intelligence and Statistics
, vol.9
, pp. 597-604
-
-
Peters, J.1
Janzing, D.2
Schölkopf, B.3
-
16
-
-
33749326177
-
A linear non-gaussian acyclic model for causal discovery
-
S. Shimizu, P.O. Hoyer, A. Hyvärinen, and A.J. Kerminen, "A Linear Non-Gaussian Acyclic Model for Causal Discovery," J. Machine Learning Research, vol. 7, pp. 2003-2030, 2006. (Pubitemid 44497456)
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 2003-2030
-
-
Shimizu, S.1
Hoyer, P.O.2
Hyvarinen, A.3
Kerminen, A.4
-
17
-
-
0003614273
-
-
second ed. MIT Press
-
P. Spirtes, C. Glymour, and R. Scheines, Causation, Prediction, and Search, second ed. MIT Press, 2000.
-
(2000)
Causation Prediction and Search
-
-
Spirtes, P.1
Glymour, C.2
Scheines, R.3
-
18
-
-
84864554405
-
Causal inference by choosing graphs with most plausible markov kernels
-
X. Sun, D. Janzing, and B. Schölkopf, "Causal Inference by Choosing Graphs with Most Plausible Markov Kernels," Proc. Ninth Int'l Symp. Artificial Intelligence and Math., pp. 1-11, 2006.
-
(2006)
Proc. Ninth Int'l Symp. Artificial Intelligence and Math.
, pp. 1-11
-
-
Sun, X.1
Janzing, D.2
Schölkopf, B.3
-
19
-
-
40649092250
-
Causal reasoning by evaluating the complexity of conditional densities with kernel methods
-
X. Sun, D. Janzing, and B. Schö lkopf, "Causal Reasoning by Evaluating the Complexity of Conditional Densities with Kernel Methods," Neurocomputing, vol. 71, pp. 1248-1256, 2008.
-
(2008)
Neurocomputing
, vol.71
, pp. 1248-1256
-
-
Sun, X.1
Janzing, D.2
Schölkopf, B.3
|