-
1
-
-
35949000947
-
Testing conditional independence for continuous random variables
-
W. P. Bergsma. Testing conditional independence for continuous random variables, 2004. EURANDOMreport 2004-049.
-
(2004)
Eurandom-report
, pp. 2004-2049
-
-
Bergsma, W.P.1
-
3
-
-
85161986095
-
Kernel measures of conditional dependence
-
Cambridge. MIT Press
-
K. Fukumizu, A. Gretton, X. Sun, and B. Schölkopf. Kernel measures of conditional dependence. In NIPS 20, pages 489-496, Cambridge, 2008. MIT Press.
-
(2008)
NIPS
, vol.20
, pp. 489-496
-
-
Fukumizu, K.1
Gretton, A.2
Sun, X.3
Schölkopf, B.4
-
4
-
-
85162060108
-
A kernel statistical test of independence
-
Cambridge. MIT Press
-
A. Gretton, K. Fukumizu, C. H. Teo, L. Song, B. Schölkopf, and A. Smola. A kernel statistical test of independence. In NIPS 20, pages 585-592, Cambridge, 2008. MIT Press.
-
(2008)
NIPS
, vol.20
, pp. 585-592
-
-
Gretton, A.1
Fukumizu, K.2
Teo, C.H.3
Song, L.4
Schölkopf, B.5
Smola, A.6
-
5
-
-
84858789485
-
Nonlinear causal discovery with additive noise models
-
Vancouver, Canada. MIT Press
-
P. Hoyer, D. Janzing, J. Mooij, J. Peters, and B. Schölkopf. Nonlinear causal discovery with additive noise models. In NIPS 21, pages 689-696, Vancouver, Canada, 2009. MIT Press.
-
(2009)
NIPS
, vol.21
, pp. 689-696
-
-
Hoyer, P.1
Janzing, D.2
Mooij, J.3
Peters, J.4
Schölkopf, B.5
-
6
-
-
77956667205
-
Causal inference using the algorithmic Markov condition
-
D. Janzing and B. Schölkopf. Causal inference using the algorithmic Markov condition. IEEE Trans. on Information Theory, 56(10):5168-5194, 2010.
-
(2010)
IEEE Trans. on Information Theory
, vol.56
, Issue.10
, pp. 5168-5194
-
-
Janzing, D.1
Schölkopf, B.2
-
7
-
-
80053147274
-
Justifying additive-noisemodel based causal discovery via algorithmic information theory
-
D. Janzing and B. Steudel. Justifying additive-noisemodel based causal discovery via algorithmic information theory. Open Systems and Information Dynamics, 17:189-212, 2010.
-
(2010)
Open Systems and Information Dynamics
, vol.17
, pp. 189-212
-
-
Janzing, D.1
Steudel, B.2
-
10
-
-
0002753068
-
Causal inference and causal explanation with background knowledge
-
C. Meek. Causal Inference and Causal Explanation with Background Knowledge. In UAI 11, pages 403-441, 1995.
-
(1995)
UAI
, vol.11
, pp. 403-441
-
-
Meek, C.1
-
11
-
-
71149096052
-
Regression by dependence minimization and its application to causal inference
-
Montreal. Omnipress
-
J. Mooij, D. Janzing, J. Peters, and B. Schölkopf. Regression by dependence minimization and its application to causal inference. In ICML 26, pages 745-752, Montreal, 2009. Omnipress.
-
(2009)
ICML
, vol.26
, pp. 745-752
-
-
Mooij, J.1
Janzing, D.2
Peters, J.3
Schölkopf, B.4
-
13
-
-
80053142749
-
Identifying cause and effect on discrete data using additive noise models
-
J. Peters, D. Janzing, and B. Schölkopf. Identifying Cause and Effect on Discrete Data using Additive Noise Models. In AIStats 13, pages 597-604, 2010.
-
(2010)
AIStats
, vol.13
, pp. 597-604
-
-
Peters, J.1
Janzing, D.2
Schölkopf, B.3
-
14
-
-
33749326177
-
A linear non-gaussian acyclic model for causal discovery
-
S. Shimizu, P. O. Hoyer, A. Hyvärinen, and A. J. Kerminen. A linear non-Gaussian acyclic model for causal discovery. Journal of Machine Learning Research, 7:2003-2030, 2006. (Pubitemid 44497456)
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 2003-2030
-
-
Shimizu, S.1
Hoyer, P.O.2
Hyvarinen, A.3
Kerminen, A.4
-
15
-
-
0003614273
-
-
MIT Press, 2. edition
-
P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and Search. MIT Press, 2. edition, 2001.
-
(2001)
Causation Prediction and Search
-
-
Spirtes, P.1
Glymour, C.2
Scheines, R.3
-
16
-
-
79955877490
-
Nonlinear directed acyclic structure learning with weakly additive noise models
-
Vancouver
-
R. Tillman, A. Gretton, and P. Spirtes. Nonlinear directed acyclic structure learning with weakly additive noise models. In NIPS 22, Vancouver, 2009.
-
(2009)
NIPS
, vol.22
-
-
Tillman, R.1
Gretton, A.2
Spirtes, P.3
-
18
-
-
80053155838
-
On the identifiability of the post-nonlinear causal model
-
K. Zhang and A. Hyvärinen. On the identifiability of the post-nonlinear causal model. In UAI 25, 2009.
-
(2009)
UAI
, vol.25
-
-
Zhang, K.1
Hyvärinen, A.2
|