-
2
-
-
84916537550
-
-
Albert and S. Chib. Bayesian analysis of binary and polychotomous response data. Journal of the American Statistical Association, 88:669-679, 1993.
-
Albert and S. Chib. Bayesian analysis of binary and polychotomous response data. Journal of the American Statistical Association, 88:669-679, 1993.
-
-
-
-
3
-
-
21644460685
-
A Monte Carlo method for computing the marginal likelihood in nondecomposable Gaussian graphical models
-
A. Atay-Kayis and H. Massam. A Monte Carlo method for computing the marginal likelihood in nondecomposable Gaussian graphical models. Biometrika, 92:317-335, 2005.
-
(2005)
Biometrika
, vol.92
, pp. 317-335
-
-
Atay-Kayis, A.1
Massam, H.2
-
4
-
-
67650467875
-
-
Bartholomew and M. Knott. Latent Variable Models and Factor Analysis. Arnold Publishers, 1999.
-
Bartholomew and M. Knott. Latent Variable Models and Factor Analysis. Arnold Publishers, 1999.
-
-
-
-
5
-
-
67650506559
-
-
Beal. Variational algorithms for approximate Bayesian
-
Beal. Variational algorithms for approximate Bayesian
-
-
-
-
6
-
-
67650498038
-
-
inference. PhD. Thesis, Gatsby Computational Neuroscience Unit, University College London, 2003.
-
inference. PhD. Thesis, Gatsby Computational Neuroscience Unit, University College London, 2003.
-
-
-
-
7
-
-
33750511893
-
-
Beal and Z. Ghahramani. Variational Baeysian learning of directed graphical models with hidden variables. Bayesian Analysis, 1:793-832, 2006.
-
Beal and Z. Ghahramani. Variational Baeysian learning of directed graphical models with hidden variables. Bayesian Analysis, 1:793-832, 2006.
-
-
-
-
8
-
-
62349112885
-
-
P. Bickel and E. Levina. Covariance regularization by thresholding. Annals of Statistics, 36:25772604, 2008.
-
P. Bickel and E. Levina. Covariance regularization by thresholding. Annals of Statistics, 36:25772604, 2008.
-
-
-
-
10
-
-
0001827933
-
Inference for a covariance matrix
-
P. Brown, N. Le, and J. Zidek. Inference for a covariance matrix. In P.R. Freeman, A.F.M. Smith (editors), Aspects of Uncertainty, a tribute to D. V Lindley, pages 77-92, 1993.
-
(1993)
In P.R. Freeman, A.F.M. Smith (editors), Aspects of Uncertainty, a tribute to D. V Lindley
, pp. 77-92
-
-
Brown, P.1
Le, N.2
Zidek, J.3
-
11
-
-
0347994096
-
Random effects selection in linear mixed models
-
Z. Chen and D. Dunson. Random effects selection in linear mixed models. Biometrics, 59:762-769, 2003.
-
(2003)
Biometrics
, vol.59
, pp. 762-769
-
-
Chen, Z.1
Dunson, D.2
-
12
-
-
0042967741
-
Optimal structure identification with greedy search
-
Chickering. Optimal structure identification with greedy search. Journal of Machine Learning Research, 3:507-554, 2002.
-
(2002)
Journal of Machine Learning Research
, vol.3
, pp. 507-554
-
-
Chickering1
-
13
-
-
0442325081
-
-
Daniels and R. Kass. Nonconjugate Bayesian estimation of covariance matrices and its use in hierarchical models. Journal of the American Statistical Association, 94:1254-1263, 1999.
-
Daniels and R. Kass. Nonconjugate Bayesian estimation of covariance matrices and its use in hierarchical models. Journal of the American Statistical Association, 94:1254-1263, 1999.
-
-
-
-
14
-
-
49449118676
-
-
Drton and M. Perlman. Multiple testing and error control in Gaussian graphical model selection. Statistical Science, pages 430-449, 2007.
-
Drton and M. Perlman. Multiple testing and error control in Gaussian graphical model selection. Statistical Science, pages 430-449, 2007.
-
-
-
-
15
-
-
67650494531
-
-
Drton and T. Richardson. A new algorithm for maximum likelihood estimation in Gaussian models for marginal independence. Proceedings of the 19th Conference on Uncertainty in Artificial Intelligence, 2003.
-
Drton and T. Richardson. A new algorithm for maximum likelihood estimation in Gaussian models for marginal independence. Proceedings of the 19th Conference on Uncertainty in Artificial Intelligence, 2003.
-
-
-
-
16
-
-
67650467872
-
-
Drton and T. Richardson. Iterative conditional fitting for Gaussian ancestral graph models. Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence, 2004.
-
Drton and T. Richardson. Iterative conditional fitting for Gaussian ancestral graph models. Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence, 2004.
-
-
-
-
17
-
-
67650471906
-
-
Drton and T. Richardson. Binary models for marginal independence. Department of Statistics, University of Washington, Tech. report 474, 2005.
-
Drton and T. Richardson. Binary models for marginal independence. Department of Statistics, University of Washington, Tech. report 474, 2005.
-
-
-
-
18
-
-
38949107955
-
-
Drton and T. Richardson. Binary models for marginal independence. Journal of the Royal Statistical Society, Series B, 70:287-309, 2008a.
-
Drton and T. Richardson. Binary models for marginal independence. Journal of the Royal Statistical Society, Series B, 70:287-309, 2008a.
-
-
-
-
19
-
-
44649199301
-
-
Drton and T. Richardson. Graphical methods for efficient likelihood inference in Gaussian covariance models. Journal of Machine Learning Research, pages 893-914, 2008b.
-
Drton and T. Richardson. Graphical methods for efficient likelihood inference in Gaussian covariance models. Journal of Machine Learning Research, pages 893-914, 2008b.
-
-
-
-
20
-
-
67650487913
-
-
Dunson, J. Palomo, and K. Bollen. Bayesian structural equation modeling. Statistical and Applied Mathematical Sciences Institute, Technical Report #2005-5, 2005.
-
Dunson, J. Palomo, and K. Bollen. Bayesian structural equation modeling. Statistical and Applied Mathematical Sciences Institute, Technical Report #2005-5, 2005.
-
-
-
-
21
-
-
0037262841
-
Being Bayesian about network structure: A Bayesian approach to structure discovery in Bayesian networks
-
N. Friedman and D. Koller. Being Bayesian about network structure: a Bayesian approach to structure discovery in Bayesian networks. Machine Learning Journal, 50:95-126, 2003.
-
(2003)
Machine Learning Journal
, vol.50
, pp. 95-126
-
-
Friedman, N.1
Koller, D.2
-
22
-
-
84858789485
-
Nonlinear causal discovery with additive noise models
-
P. Hoyer, D. Janzing, J. Mooij, J. Peters, and B. Schölkopf. Nonlinear causal discovery with additive noise models. Neural Information Processing Systems, 2008.
-
(2008)
Neural Information Processing Systems
-
-
Hoyer, P.1
Janzing, D.2
Mooij, J.3
Peters, J.4
Schölkopf, B.5
-
24
-
-
20144364427
-
Experiments in stochastic computation for high-dimensional graphical models
-
B. Jones, C. Carvalho, A. Dobra, C. Hans, C. Carter, and M. West. Experiments in stochastic computation for high-dimensional graphical models. Statistical Science, 20:388-400, 2005.
-
(2005)
Statistical Science
, vol.20
, pp. 388-400
-
-
Jones, B.1
Carvalho, C.2
Dobra, A.3
Hans, C.4
Carter, C.5
West, M.6
-
26
-
-
0000935895
-
An introduction to variational methods for graphical models
-
M. Jordan Ed
-
Jordan, Z. Ghaharamani, T. Jaakkola, and L. Saul. An introduction to variational methods for graphical models. In M. Jordan (Ed.), Learning in Graphical Models, pages 105-162, 1998.
-
(1998)
Learning in Graphical Models
, pp. 105-162
-
-
Jordan1
Ghaharamani, Z.2
Jaakkola, T.3
Saul, L.4
-
27
-
-
85131709086
-
-
Kang and J. Tian. Local Markov property for models satisfying the composition axiom. Proceedings of 21st Conference on Uncertainty in Artificial Intelligence, 2005.
-
Kang and J. Tian. Local Markov property for models satisfying the composition axiom. Proceedings of 21st Conference on Uncertainty in Artificial Intelligence, 2005.
-
-
-
-
31
-
-
0001341735
-
Introduction to Monte Carlo methods
-
MacKay. Introduction to Monte Carlo methods. Learning in Graphical Models, pages 175-204, 1998.
-
(1998)
Learning in Graphical Models
, pp. 175-204
-
-
MacKay1
-
34
-
-
0000273048
-
Annealed importance sampling
-
R. Neal. Annealed importance sampling. Statistics and Computing, 11:125-139, 2001.
-
(2001)
Statistics and Computing
, vol.11
, pp. 125-139
-
-
Neal, R.1
-
37
-
-
33750176872
-
Efficient Bayesian inference for Gaussian copula regression models
-
Pitt, D. Chan, and R. Kohn. Efficient Bayesian inference for Gaussian copula regression models. Biometrika, 93:537-554, 2006.
-
(2006)
Biometrika
, vol.93
, pp. 537-554
-
-
Pitt1
Chan, D.2
Kohn, R.3
-
38
-
-
0038107398
-
Markov properties for acyclic directed mixed graphs
-
T. Richardson. Markov properties for acyclic directed mixed graphs. Scandinavian Journal of Statistics, 30:145-157, 2003.
-
(2003)
Scandinavian Journal of Statistics
, vol.30
, pp. 145-157
-
-
Richardson, T.1
-
40
-
-
0035995077
-
Hyper inverse Wishart distribution for non-decomposable graphs and its application to Bayesian inference for Gaussian graphical models
-
A. Roverato. Hyper inverse Wishart distribution for non-decomposable graphs and its application to Bayesian inference for Gaussian graphical models. Scandinavian Journal of Statistics, 29: 391-411, 2002.
-
(2002)
Scandinavian Journal of Statistics
, vol.29
, pp. 391-411
-
-
Roverato, A.1
-
41
-
-
0033247467
-
Bayesian estimation and testing of structural equation models
-
R. Scheines, R. Hoijtink, and A. Boomsma. Bayesian estimation and testing of structural equation models. Psychometrika, 64:37-52, 1999.
-
(1999)
Psychometrika
, vol.64
, pp. 37-52
-
-
Scheines, R.1
Hoijtink, R.2
Boomsma, A.3
-
45
-
-
33646379109
-
Learning the structure of linear latent variable models
-
R. Silva, R. Scheines, C. Glymour, and P. Spirtes. Learning the structure of linear latent variable models. Journal of Machine Learning Research, 7:191-246, 2006.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 191-246
-
-
Silva, R.1
Scheines, R.2
Glymour, C.3
Spirtes, P.4
-
47
-
-
35148901361
-
Nested sampling for general Bayesian computation
-
J. Skilling. Nested sampling for general Bayesian computation. Bayesian Analysis, 1:833-860, 2006.
-
(2006)
Bayesian Analysis
, vol.1
, pp. 833-860
-
-
Skilling, J.1
-
50
-
-
0000455611
-
Decomposition by clique separators
-
R. Tarjan. Decomposition by clique separators. Discrete Mathematics, 55:221-232, 1985.
-
(1985)
Discrete Mathematics
, vol.55
, pp. 221-232
-
-
Tarjan, R.1
-
51
-
-
67650445378
-
Bayesian model determination for multivariate ordinal and binary data
-
Technical report, Southampton Statistical Sciences Research Institute
-
E. Webb and J. Forster. Bayesian model determination for multivariate ordinal and binary data. Technical report, Southampton Statistical Sciences Research Institute, 2006.
-
(2006)
-
-
Webb, E.1
Forster, J.2
-
52
-
-
3843149220
-
Efficient estimation of covariance selection models
-
F. Wong, C. Carter, and R. Kohn. Efficient estimation of covariance selection models. Biometrika, 90:809-830, 2003.
-
(2003)
Biometrika
, vol.90
, pp. 809-830
-
-
Wong, F.1
Carter, C.2
Kohn, R.3
-
54
-
-
23744513375
-
Constructing free-energy approximations and generalized belief propagation algorithms
-
J. Yedidia, W. Freeman, and Y. Weiss. Constructing free-energy approximations and generalized belief propagation algorithms. IEEE Transactions on Information Theory, 51:2282-2312, 2005.
-
(2005)
IEEE Transactions on Information Theory
, vol.51
, pp. 2282-2312
-
-
Yedidia, J.1
Freeman, W.2
Weiss, Y.3
-
55
-
-
48849090548
-
Causal reasoning with ancestral graphs
-
J. Zhang. Causal reasoning with ancestral graphs. Journal of Machine Learning Research, pages 1437-1474, 2008.
-
(2008)
Journal of Machine Learning Research
, pp. 1437-1474
-
-
Zhang, J.1
|