메뉴 건너뛰기




Volumn 10, Issue , 2009, Pages 1187-1238

The hidden life of latent variables: bayesian learning with mixed graph models

Author keywords

Bayesian inference; Graphical models; Latent variable models 2009 ricardo silva and zoubin ghahramani; Markov chain monte carlo; Structural equation models

Indexed keywords

BAYESIAN; BAYESIAN INFERENCE; BAYESIAN LEARNING; CONDITIONAL INDEPENDENCES; COVARIANCE MATRICES; DIRECTED ACYCLIC GRAPHS; GAUSSIAN; GRAPHICAL MODEL; GRAPHICAL MODELS; HIDDEN VARIABLE; LATENT VARIABLE; MACHINE-LEARNING; MARGINALIZATION; MARKOV CHAIN MONTE CARLO; MIXED GRAPH; MODEL DEPENDENCIES; STRUCTURAL EQUATION MODELS;

EID: 67650499890     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (51)

References (55)
  • 2
    • 84916537550 scopus 로고    scopus 로고
    • Albert and S. Chib. Bayesian analysis of binary and polychotomous response data. Journal of the American Statistical Association, 88:669-679, 1993.
    • Albert and S. Chib. Bayesian analysis of binary and polychotomous response data. Journal of the American Statistical Association, 88:669-679, 1993.
  • 3
    • 21644460685 scopus 로고    scopus 로고
    • A Monte Carlo method for computing the marginal likelihood in nondecomposable Gaussian graphical models
    • A. Atay-Kayis and H. Massam. A Monte Carlo method for computing the marginal likelihood in nondecomposable Gaussian graphical models. Biometrika, 92:317-335, 2005.
    • (2005) Biometrika , vol.92 , pp. 317-335
    • Atay-Kayis, A.1    Massam, H.2
  • 4
    • 67650467875 scopus 로고    scopus 로고
    • Bartholomew and M. Knott. Latent Variable Models and Factor Analysis. Arnold Publishers, 1999.
    • Bartholomew and M. Knott. Latent Variable Models and Factor Analysis. Arnold Publishers, 1999.
  • 5
    • 67650506559 scopus 로고    scopus 로고
    • Beal. Variational algorithms for approximate Bayesian
    • Beal. Variational algorithms for approximate Bayesian
  • 6
    • 67650498038 scopus 로고    scopus 로고
    • inference. PhD. Thesis, Gatsby Computational Neuroscience Unit, University College London, 2003.
    • inference. PhD. Thesis, Gatsby Computational Neuroscience Unit, University College London, 2003.
  • 7
    • 33750511893 scopus 로고    scopus 로고
    • Beal and Z. Ghahramani. Variational Baeysian learning of directed graphical models with hidden variables. Bayesian Analysis, 1:793-832, 2006.
    • Beal and Z. Ghahramani. Variational Baeysian learning of directed graphical models with hidden variables. Bayesian Analysis, 1:793-832, 2006.
  • 8
    • 62349112885 scopus 로고    scopus 로고
    • P. Bickel and E. Levina. Covariance regularization by thresholding. Annals of Statistics, 36:25772604, 2008.
    • P. Bickel and E. Levina. Covariance regularization by thresholding. Annals of Statistics, 36:25772604, 2008.
  • 11
    • 0347994096 scopus 로고    scopus 로고
    • Random effects selection in linear mixed models
    • Z. Chen and D. Dunson. Random effects selection in linear mixed models. Biometrics, 59:762-769, 2003.
    • (2003) Biometrics , vol.59 , pp. 762-769
    • Chen, Z.1    Dunson, D.2
  • 12
    • 0042967741 scopus 로고    scopus 로고
    • Optimal structure identification with greedy search
    • Chickering. Optimal structure identification with greedy search. Journal of Machine Learning Research, 3:507-554, 2002.
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 507-554
    • Chickering1
  • 13
    • 0442325081 scopus 로고    scopus 로고
    • Daniels and R. Kass. Nonconjugate Bayesian estimation of covariance matrices and its use in hierarchical models. Journal of the American Statistical Association, 94:1254-1263, 1999.
    • Daniels and R. Kass. Nonconjugate Bayesian estimation of covariance matrices and its use in hierarchical models. Journal of the American Statistical Association, 94:1254-1263, 1999.
  • 14
    • 49449118676 scopus 로고    scopus 로고
    • Drton and M. Perlman. Multiple testing and error control in Gaussian graphical model selection. Statistical Science, pages 430-449, 2007.
    • Drton and M. Perlman. Multiple testing and error control in Gaussian graphical model selection. Statistical Science, pages 430-449, 2007.
  • 15
    • 67650494531 scopus 로고    scopus 로고
    • Drton and T. Richardson. A new algorithm for maximum likelihood estimation in Gaussian models for marginal independence. Proceedings of the 19th Conference on Uncertainty in Artificial Intelligence, 2003.
    • Drton and T. Richardson. A new algorithm for maximum likelihood estimation in Gaussian models for marginal independence. Proceedings of the 19th Conference on Uncertainty in Artificial Intelligence, 2003.
  • 16
    • 67650467872 scopus 로고    scopus 로고
    • Drton and T. Richardson. Iterative conditional fitting for Gaussian ancestral graph models. Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence, 2004.
    • Drton and T. Richardson. Iterative conditional fitting for Gaussian ancestral graph models. Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence, 2004.
  • 17
    • 67650471906 scopus 로고    scopus 로고
    • Drton and T. Richardson. Binary models for marginal independence. Department of Statistics, University of Washington, Tech. report 474, 2005.
    • Drton and T. Richardson. Binary models for marginal independence. Department of Statistics, University of Washington, Tech. report 474, 2005.
  • 18
    • 38949107955 scopus 로고    scopus 로고
    • Drton and T. Richardson. Binary models for marginal independence. Journal of the Royal Statistical Society, Series B, 70:287-309, 2008a.
    • Drton and T. Richardson. Binary models for marginal independence. Journal of the Royal Statistical Society, Series B, 70:287-309, 2008a.
  • 19
    • 44649199301 scopus 로고    scopus 로고
    • Drton and T. Richardson. Graphical methods for efficient likelihood inference in Gaussian covariance models. Journal of Machine Learning Research, pages 893-914, 2008b.
    • Drton and T. Richardson. Graphical methods for efficient likelihood inference in Gaussian covariance models. Journal of Machine Learning Research, pages 893-914, 2008b.
  • 20
    • 67650487913 scopus 로고    scopus 로고
    • Dunson, J. Palomo, and K. Bollen. Bayesian structural equation modeling. Statistical and Applied Mathematical Sciences Institute, Technical Report #2005-5, 2005.
    • Dunson, J. Palomo, and K. Bollen. Bayesian structural equation modeling. Statistical and Applied Mathematical Sciences Institute, Technical Report #2005-5, 2005.
  • 21
    • 0037262841 scopus 로고    scopus 로고
    • Being Bayesian about network structure: A Bayesian approach to structure discovery in Bayesian networks
    • N. Friedman and D. Koller. Being Bayesian about network structure: a Bayesian approach to structure discovery in Bayesian networks. Machine Learning Journal, 50:95-126, 2003.
    • (2003) Machine Learning Journal , vol.50 , pp. 95-126
    • Friedman, N.1    Koller, D.2
  • 24
    • 20144364427 scopus 로고    scopus 로고
    • Experiments in stochastic computation for high-dimensional graphical models
    • B. Jones, C. Carvalho, A. Dobra, C. Hans, C. Carter, and M. West. Experiments in stochastic computation for high-dimensional graphical models. Statistical Science, 20:388-400, 2005.
    • (2005) Statistical Science , vol.20 , pp. 388-400
    • Jones, B.1    Carvalho, C.2    Dobra, A.3    Hans, C.4    Carter, C.5    West, M.6
  • 26
    • 0000935895 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models
    • M. Jordan Ed
    • Jordan, Z. Ghaharamani, T. Jaakkola, and L. Saul. An introduction to variational methods for graphical models. In M. Jordan (Ed.), Learning in Graphical Models, pages 105-162, 1998.
    • (1998) Learning in Graphical Models , pp. 105-162
    • Jordan1    Ghaharamani, Z.2    Jaakkola, T.3    Saul, L.4
  • 27
    • 85131709086 scopus 로고    scopus 로고
    • Kang and J. Tian. Local Markov property for models satisfying the composition axiom. Proceedings of 21st Conference on Uncertainty in Artificial Intelligence, 2005.
    • Kang and J. Tian. Local Markov property for models satisfying the composition axiom. Proceedings of 21st Conference on Uncertainty in Artificial Intelligence, 2005.
  • 31
    • 0001341735 scopus 로고    scopus 로고
    • Introduction to Monte Carlo methods
    • MacKay. Introduction to Monte Carlo methods. Learning in Graphical Models, pages 175-204, 1998.
    • (1998) Learning in Graphical Models , pp. 175-204
    • MacKay1
  • 34
    • 0000273048 scopus 로고    scopus 로고
    • Annealed importance sampling
    • R. Neal. Annealed importance sampling. Statistics and Computing, 11:125-139, 2001.
    • (2001) Statistics and Computing , vol.11 , pp. 125-139
    • Neal, R.1
  • 37
    • 33750176872 scopus 로고    scopus 로고
    • Efficient Bayesian inference for Gaussian copula regression models
    • Pitt, D. Chan, and R. Kohn. Efficient Bayesian inference for Gaussian copula regression models. Biometrika, 93:537-554, 2006.
    • (2006) Biometrika , vol.93 , pp. 537-554
    • Pitt1    Chan, D.2    Kohn, R.3
  • 38
    • 0038107398 scopus 로고    scopus 로고
    • Markov properties for acyclic directed mixed graphs
    • T. Richardson. Markov properties for acyclic directed mixed graphs. Scandinavian Journal of Statistics, 30:145-157, 2003.
    • (2003) Scandinavian Journal of Statistics , vol.30 , pp. 145-157
    • Richardson, T.1
  • 40
    • 0035995077 scopus 로고    scopus 로고
    • Hyper inverse Wishart distribution for non-decomposable graphs and its application to Bayesian inference for Gaussian graphical models
    • A. Roverato. Hyper inverse Wishart distribution for non-decomposable graphs and its application to Bayesian inference for Gaussian graphical models. Scandinavian Journal of Statistics, 29: 391-411, 2002.
    • (2002) Scandinavian Journal of Statistics , vol.29 , pp. 391-411
    • Roverato, A.1
  • 41
    • 0033247467 scopus 로고    scopus 로고
    • Bayesian estimation and testing of structural equation models
    • R. Scheines, R. Hoijtink, and A. Boomsma. Bayesian estimation and testing of structural equation models. Psychometrika, 64:37-52, 1999.
    • (1999) Psychometrika , vol.64 , pp. 37-52
    • Scheines, R.1    Hoijtink, R.2    Boomsma, A.3
  • 47
    • 35148901361 scopus 로고    scopus 로고
    • Nested sampling for general Bayesian computation
    • J. Skilling. Nested sampling for general Bayesian computation. Bayesian Analysis, 1:833-860, 2006.
    • (2006) Bayesian Analysis , vol.1 , pp. 833-860
    • Skilling, J.1
  • 50
    • 0000455611 scopus 로고
    • Decomposition by clique separators
    • R. Tarjan. Decomposition by clique separators. Discrete Mathematics, 55:221-232, 1985.
    • (1985) Discrete Mathematics , vol.55 , pp. 221-232
    • Tarjan, R.1
  • 51
    • 67650445378 scopus 로고    scopus 로고
    • Bayesian model determination for multivariate ordinal and binary data
    • Technical report, Southampton Statistical Sciences Research Institute
    • E. Webb and J. Forster. Bayesian model determination for multivariate ordinal and binary data. Technical report, Southampton Statistical Sciences Research Institute, 2006.
    • (2006)
    • Webb, E.1    Forster, J.2
  • 52
    • 3843149220 scopus 로고    scopus 로고
    • Efficient estimation of covariance selection models
    • F. Wong, C. Carter, and R. Kohn. Efficient estimation of covariance selection models. Biometrika, 90:809-830, 2003.
    • (2003) Biometrika , vol.90 , pp. 809-830
    • Wong, F.1    Carter, C.2    Kohn, R.3
  • 54
    • 23744513375 scopus 로고    scopus 로고
    • Constructing free-energy approximations and generalized belief propagation algorithms
    • J. Yedidia, W. Freeman, and Y. Weiss. Constructing free-energy approximations and generalized belief propagation algorithms. IEEE Transactions on Information Theory, 51:2282-2312, 2005.
    • (2005) IEEE Transactions on Information Theory , vol.51 , pp. 2282-2312
    • Yedidia, J.1    Freeman, W.2    Weiss, Y.3
  • 55
    • 48849090548 scopus 로고    scopus 로고
    • Causal reasoning with ancestral graphs
    • J. Zhang. Causal reasoning with ancestral graphs. Journal of Machine Learning Research, pages 1437-1474, 2008.
    • (2008) Journal of Machine Learning Research , pp. 1437-1474
    • Zhang, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.