메뉴 건너뛰기




Volumn 6, Issue , 2005, Pages 2075-2129

Kernel methods for measuring independence

Author keywords

Covariance operator; Independence; Independent component analysis; Kernel; Mutual information; Parzen window estimate

Indexed keywords

INDEPENDENT COMPONENT ANALYSIS; INFORMATION ANALYSIS;

EID: 29144480967     PISSN: 15337928     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (328)

References (75)
  • 6
    • 29144471292 scopus 로고    scopus 로고
    • http://www.cs.berkeley.edu/~fbach/kernel-ica/index.htm
  • 9
    • 29144446225 scopus 로고
    • Mutual information for gaussian processes
    • C. R. Baker. Mutual information for gaussian processes. SIAM Journal on Applied Mathematics, 19(2):451-458, 1970.
    • (1970) SIAM Journal on Applied Mathematics , vol.19 , Issue.2 , pp. 451-458
    • Baker, C.R.1
  • 11
    • 29144490172 scopus 로고    scopus 로고
    • Multivariate regression with stiefel constraints
    • Max Planck Institute for Biological Cybernetics
    • G. Bakir, A. Gretton, M. Franz, and B. Schölkopf. Multivariate regression with stiefel constraints. Technical Report 101, Max Planck Institute for Biological Cybernetics, 2004.
    • (2004) Technical Report , vol.101
    • Bakir, G.1    Gretton, A.2    Franz, M.3    Schölkopf, B.4
  • 12
    • 0029411030 scopus 로고
    • An information-maximization approach to blind separation and blind deconvolution
    • A. Bell and T. Sejnowski. An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7(6): 1129-1159, 1995.
    • (1995) Neural Computation , vol.7 , Issue.6 , pp. 1129-1159
    • Bell, A.1    Sejnowski, T.2
  • 14
    • 0032204239 scopus 로고    scopus 로고
    • Blind source separation based on time-frequency signal representations
    • A. Belouchrani and M. G. Amin. Blind source separation based on time-frequency signal representations. IEEE Transactions on Signal Processing, 46(11):2888-2897, 1998.
    • (1998) IEEE Transactions on Signal Processing , vol.46 , Issue.11 , pp. 2888-2897
    • Belouchrani, A.1    Amin, M.G.2
  • 16
    • 84950771789 scopus 로고
    • Estimating optimal transformations for multiple regression and correlation
    • L. Breiman and J. Friedman. Estimating optimal transformations for multiple regression and correlation. Journal of the American Statistical Association, 80:580-598, 1985.
    • (1985) Journal of the American Statistical Association , vol.80 , pp. 580-598
    • Breiman, L.1    Friedman, J.2
  • 17
    • 0032187518 scopus 로고    scopus 로고
    • Blind signal separation: Statistical principles
    • J.-F. Cardoso. Blind signal separation: statistical principles. Proceedings of the IEEE, 90(8):2009-2026, 1998a.
    • (1998) Proceedings of the IEEE , vol.90 , Issue.8 , pp. 2009-2026
    • Cardoso, J.-F.1
  • 18
    • 0031645454 scopus 로고    scopus 로고
    • Multidimensional independent component analysis
    • J.-F. Cardoso. Multidimensional independent component analysis. In ICASSP, 1998b.
    • (1998) ICASSP
    • Cardoso, J.-F.1
  • 19
    • 29144438939 scopus 로고    scopus 로고
    • Consistent independent component analysis and prewhitening
    • Berkeley
    • A. Chen and P. Bickel. Consistent independent component analysis and prewhitening. Technical report, Berkeley, 2004.
    • (2004) Technical Report
    • Chen, A.1    Bickel, P.2
  • 21
    • 0028416938 scopus 로고
    • Independent component analysis, a new concept?
    • P. Comon. Independent component analysis, a new concept? Signal Processing, 36:287-314, 1994.
    • (1994) Signal Processing , vol.36 , pp. 287-314
    • Comon, P.1
  • 23
    • 84898954907 scopus 로고    scopus 로고
    • Spectral kernel methods for clustering
    • Cambridge, MA. MIT Press
    • N. Cristianini, J. Shawe-Taylor, and J. Kandola. Spectral kernel methods for clustering. In NIPS, volume 14, Cambridge, MA, 2002. MIT Press.
    • (2002) NIPS , vol.14
    • Cristianini, N.1    Shawe-Taylor, J.2    Kandola, J.3
  • 24
    • 0040350036 scopus 로고    scopus 로고
    • Nonlinear canonical analysis and independence tests
    • J. Dauxois and G. M. Nkiet. Nonlinear canonical analysis and independence tests. Annals of Statistics, 26(4):1254-1278, 1998.
    • (1998) Annals of Statistics , vol.26 , Issue.4 , pp. 1254-1278
    • Dauxois, J.1    Nkiet, G.M.2
  • 27
    • 0041494125 scopus 로고    scopus 로고
    • Efficient SVM training using low-rank kernel representations
    • S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel representations. Journal of Machine Learning Research, 2(Dec):243-264, 2001.
    • (2001) Journal of Machine Learning Research , vol.2 , Issue.DEC , pp. 243-264
    • Fine, S.1    Scheinberg, K.2
  • 28
    • 29144521495 scopus 로고    scopus 로고
    • Consistency of kernel canonical correlation analysis
    • Institute of Statistical Mathematics
    • K. Fukumizu, F. Bach, and A. Gretton. Consistency of kernel canonical correlation analysis. Technical Report 942, Institute of Statistical Mathematics, 2005.
    • (2005) Technical Report , vol.942
    • Fukumizu, K.1    Bach, F.2    Gretton, A.3
  • 29
    • 4544371135 scopus 로고    scopus 로고
    • Dimensionality reduction for supervised learning with reproducing kernel hilbert spaces
    • K. Fukumizu, F. R. Bach, and M. I. Jordan. Dimensionality reduction for supervised learning with reproducing kernel hilbert spaces. Journal of Machine Learning Research, 5:73-99, 2004.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 73-99
    • Fukumizu, K.1    Bach, F.R.2    Jordan, M.I.3
  • 32
    • 33750587254 scopus 로고    scopus 로고
    • Measuring statistical dependence with hilbert-schmidt norms
    • MPI for Biological Cybernetics
    • A. Gretton, O. Bousquet, A. Smola, and B. Schoelkopf. Measuring statistical dependence with hilbert-schmidt norms. Technical Report 140, MPI for Biological Cybernetics, 2005a.
    • (2005) Technical Report , vol.140
    • Gretton, A.1    Bousquet, O.2    Smola, A.3    Schoelkopf, B.4
  • 33
    • 0141804070 scopus 로고    scopus 로고
    • The kernel mutual information
    • Cambridge University Engineering Department and Max Planck Institute for Biological Cybernetics
    • A. Gretton, R. Herbrich, and A. Smola. The kernel mutual information. Technical report, Cambridge University Engineering Department and Max Planck Institute for Biological Cybernetics, 2003a.
    • (2003) Technical Report
    • Gretton, A.1    Herbrich, R.2    Smola, A.3
  • 34
    • 0141521533 scopus 로고    scopus 로고
    • The kernel mutual information
    • A. Gretton, R. Herbrich, and A. Smola. The kernel mutual information. In ICASSP, volume 4, pages 880-883, 2003b.
    • (2003) ICASSP , vol.4 , pp. 880-883
    • Gretton, A.1    Herbrich, R.2    Smola, A.3
  • 35
    • 29144468229 scopus 로고    scopus 로고
    • Behaviour and convergence of the constrained covariance
    • MPI for Biological Cybernetics
    • A. Gretton, A. Smola, O. Bousquet, and R. Herbrich. Behaviour and convergence of the constrained covariance. Technical Report 130, MPI for Biological Cybernetics, 2004.
    • (2004) Technical Report , vol.130
    • Gretton, A.1    Smola, A.2    Bousquet, O.3    Herbrich, R.4
  • 40
    • 29144480949 scopus 로고    scopus 로고
    • Kernels, associated structures, and generalizations
    • Max Planck Institute for Biological Cybernetics
    • M. Hein and O. Bousquet. Kernels, associated structures, and generalizations. Technical Report 127, Max Planck Institute for Biological Cybernetics, 2004.
    • (2004) Technical Report , vol.127
    • Hein, M.1    Bousquet, O.2
  • 42
    • 0037296681 scopus 로고    scopus 로고
    • On the separability of nonlinear mixtures of temporally correlated sources
    • S. Hosseni and C. Jutten. On the separability of nonlinear mixtures of temporally correlated sources. IEEE Signal Processing Letters, 10(2):43-46, 2003.
    • (2003) IEEE Signal Processing Letters , vol.10 , Issue.2 , pp. 43-46
    • Hosseni, S.1    Jutten, C.2
  • 43
    • 0031375733 scopus 로고    scopus 로고
    • One-unit contrast functions for independent component analysis: A statistical analysis
    • A. Hyvärinen. One-unit contrast functions for independent component analysis: A statistical analysis. In Proc. IEEE Neural Networks for Signal Processing Workshop, pages 388-397, 1997.
    • (1997) Proc. IEEE Neural Networks for Signal Processing Workshop , pp. 388-397
    • Hyvärinen, A.1
  • 45
    • 0041435860 scopus 로고    scopus 로고
    • Nonlinear independent component analysis: Existence and uniqueness results
    • A. Hyvärinen and P. Pajunen. Nonlinear independent component analysis: Existence and uniqueness results. Neural Networks, 12(3):429-439, 1999.
    • (1999) Neural Networks , vol.12 , Issue.3 , pp. 429-439
    • Hyvärinen, A.1    Pajunen, P.2
  • 47
    • 18144372083 scopus 로고    scopus 로고
    • Asymptotically minimax testing of the hypothesis of independence
    • Y. I. Ingster. Asymptotically minimax testing of the hypothesis of independence. Zap. Nauchn. Seminar. LOMI, 153 (1986)pp. 60-72,
    • Zap. Nauchn. Seminar. LOMI , vol.153 , Issue.1986 , pp. 60-72
    • Ingster, Y.I.1
  • 50
    • 0141469302 scopus 로고    scopus 로고
    • Master's thesis, Technical University of Berlin
    • M. Kuss. Kernel multivariate analysis. Master's thesis, Technical University of Berlin, 2001.
    • (2001) Kernel Multivariate Analysis
    • Kuss, M.1
  • 51
    • 0034304404 scopus 로고    scopus 로고
    • Kernel and nonlinear canonical correlation analysis
    • P. Lai and C. Fyfe. Kernel and nonlinear canonical correlation analysis. International Journal of Neural Systems, 10(5):365-377, 2000.
    • (2000) International Journal of Neural Systems , vol.10 , Issue.5 , pp. 365-377
    • Lai, P.1    Fyfe, C.2
  • 52
    • 8344261659 scopus 로고    scopus 로고
    • ICA using spacings estimates of entropy
    • E. Learned-Miller and J. Fisher III. ICA using spacings estimates of entropy. JMLR, 4:1271-1295, 2003.
    • (2003) JMLR , vol.4 , pp. 1271-1295
    • Learned-Miller, E.1    Fisher III, J.2
  • 55
    • 29144506096 scopus 로고    scopus 로고
    • Kernel canonical correlation analysis
    • Pattern Recognition and Image Processing Group, TU Wien
    • T. Melzer, M. Reiter, and H. Bischof. Kernel canonical correlation analysis. Technical Report PRIP-TR-65, Pattern Recognition and Image Processing Group, TU Wien, 2001.
    • (2001) Technical Report , vol.PRIP-TR-65
    • Melzer, T.1    Reiter, M.2    Bischof, H.3
  • 56
    • 0005079237 scopus 로고
    • Éléments aléatoires dans un éspace de Banach
    • E. Mourier. Éléments aléatoires dans un éspace de Banach. Ann. Inst. H. Poincaré Sect B., 161: 161-244, 1953.
    • (1953) Ann. Inst. H. Poincaré Sect B. , vol.161 , pp. 161-244
    • Mourier, E.1
  • 57
    • 0041877169 scopus 로고    scopus 로고
    • Estimation of entropy and mutual information
    • L. Paninski. Estimation of entropy and mutual information. Neural Computation, 15:1191-1253, 2003.
    • (2003) Neural Computation , vol.15 , pp. 1191-1253
    • Paninski, L.1
  • 60
    • 15744369724 scopus 로고    scopus 로고
    • Fast algorithms for mutual information based independent component analysis
    • Submitted
    • D.-T. Pham. Fast algorithms for mutual information based independent component analysis. IEEE Transactions on Signal Processing, 2002. Submitted.
    • (2002) IEEE Transactions on Signal Processing
    • Pham, D.-T.1
  • 61
    • 0031191456 scopus 로고    scopus 로고
    • Blind separation of mixture of independent sources through a quasimaximum likelihood approach
    • D.-T. Pham and P. Garat. Blind separation of mixture of independent sources through a quasimaximum likelihood approach. IEEE Transactions on Signal Processing, 45(7): 1712-1725, 1997.
    • (1997) IEEE Transactions on Signal Processing , vol.45 , Issue.7 , pp. 1712-1725
    • Pham, D.-T.1    Garat, P.2
  • 63
    • 0038259120 scopus 로고    scopus 로고
    • Kernel partial least squares regression in reproducing kernel hilbert spaces
    • R. Rosipal and L. Trejo. Kernel partial least squares regression in reproducing kernel hilbert spaces. Journal of Machine Learning Research, 1(2):97-123, 2001.
    • (2001) Journal of Machine Learning Research , vol.1 , Issue.2 , pp. 97-123
    • Rosipal, R.1    Trejo, L.2
  • 64
    • 29144464874 scopus 로고    scopus 로고
    • Nonparametric independent component analysis
    • A. Samarov and A. Tsybakov. Nonparametric independent component analysis. Bernoulli, 10: 565-582, 2004.
    • (2004) Bernoulli , vol.10 , pp. 565-582
    • Samarov, A.1    Tsybakov, A.2
  • 66
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • B. Schölkopf, A. J. Smola, and K.-R. Müller. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10:1299-1319, 1998.
    • (1998) Neural Computation , vol.10 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.J.2    Müller, K.-R.3
  • 69
    • 0010786475 scopus 로고    scopus 로고
    • On the influence of the kernel on the consistency of support vector machines
    • I. Steinwart. On the influence of the kernel on the consistency of support vector machines. JMLR, 2, 2001.
    • (2001) JMLR , vol.2
    • Steinwart, I.1
  • 70
    • 34548820639 scopus 로고    scopus 로고
    • Least dependent component analysis based on mutual information
    • H. Stögbauer, A. Kraskov, S. A. Astakhov, and P. Grassberger. Least dependent component analysis based on mutual information. Phys. Rev. E, 70(6):066123, 2004.
    • (2004) Phys. Rev. E , vol.70 , Issue.6 , pp. 066123
    • Stögbauer, H.1    Kraskov, A.2    Astakhov, S.A.3    Grassberger, P.4
  • 71
    • 0033341734 scopus 로고    scopus 로고
    • Source separation in post-nonlinear mixtures
    • A. Taleb and C. Jutten. Source separation in post-nonlinear mixtures. IEEE Transactions on Signal Processing, 47(10):2807-2820, 1999.
    • (1999) IEEE Transactions on Signal Processing , vol.47 , Issue.10 , pp. 2807-2820
    • Taleb, A.1    Jutten, C.2
  • 72
    • 29144516371 scopus 로고    scopus 로고
    • Blind signal separation into groups of dependent signals using joint block diagonalisation
    • F. Theis. Blind signal separation into groups of dependent signals using joint block diagonalisation. In ISCAS, pages 5878-5881, 2005.
    • (2005) ISCAS , pp. 5878-5881
    • Theis, F.1
  • 74
    • 0036964214 scopus 로고    scopus 로고
    • Adaptive RLS algorithm for blind source separation using a natural gradient
    • X.-L. Zhu and X.-D. Zhang. Adaptive RLS algorithm for blind source separation using a natural gradient. IEEE Signal Processing Letters, 9(12):432-435, 2002.
    • (2002) IEEE Signal Processing Letters , vol.9 , Issue.12 , pp. 432-435
    • Zhu, X.-L.1    Zhang, X.-D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.