-
1
-
-
0031809018
-
Dynamics of blood flow and oxygenation changes during brain activation: The balloon model
-
DOI 10.1002/mrm.1910390602
-
R.B. Buxton, E.C.Wong, and L.R. Frank. Dynamics of blood flow and oxygenation changes during brain activati on: the balloon model. Magnetic Resonance in Medicine, 39:855-864, 1998. (Pubitemid 28237743)
-
(1998)
Magnetic Resonance in Medicine
, vol.39
, Issue.6
, pp. 855-864
-
-
Buxton, R.B.1
Wong, E.C.2
Frank, L.R.3
-
2
-
-
52049095479
-
Mapping and correction of vascular hemodynamic latency in the bold signal
-
C. Chang, M.E. Thomason, and G.H. Glover. Mapping and correction of vascular hemodynamic latency in the BOLD signal. NeuroImage, 43:90-102, 2008.
-
(2008)
NeuroImage
, vol.43
, pp. 90-102
-
-
Chang, C.1
Thomason, M.E.2
Glover, G.H.3
-
3
-
-
84863132746
-
Causal discovery for linear non-gaussian acyclic models in the presence of latent gaussian confounders
-
Z. Chen and L. Chan. Causal discovery for linear non-gaussian acyclic models in the presence of latent gaussian confounders. In Proc. Int. Conf. on Latent Variable Analysis and Signal Separation, pages 17-24, 2012.
-
Proc. Int. Conf. on Latent Variable Analysis and Signal Separation
, vol.2012
, pp. 17-24
-
-
Chen, Z.1
Chan, L.2
-
5
-
-
80053150280
-
Inferring deterministic causal relations
-
P. Daniusis, D. Janzing, J.Mooij, J. Zscheischler, B. Steudel, K. Zhang, and B. Scholkopf. Inferring deterministic causal relations. In Proc. 26th Conference on Uncertainty in Artificial Intelligence (UAI2010), 2010.
-
Proc. 26th Conference on Uncertainty in Artificial Intelligence (UAI2010)
, vol.2010
-
-
Daniusis, P.1
Janzing, D.2
Mooij, J.3
Zscheischler, J.4
Steudel, B.5
Zhang, K.6
Scholkopf, B.7
-
6
-
-
0035627786
-
On asymmetric properties of the correlation coefficient in the regression setting
-
Y. Dodge and V. Rousson. On asymmetric properties of the correlation coefficient in the regression setting. The American Statistician, 55:51-54, 2001.
-
(2001)
The American Statistician
, vol.55
, pp. 51-54
-
-
Dodge, Y.1
Rousson, V.2
-
7
-
-
77952431169
-
On direction of dependence
-
K J Friston L Harrison and W Penny Dynamic causal modelling NeuroImage 19(4):1273-139-150 2010 K J Friston L Harrison and W Penny Dynamic causal modelling NeuroImage
-
Y. Dodge and I. Yadegari. On direction of dependence. Metrika, 72:139-150, 2010. K. J. Friston, L. Harrison, and W. Penny. Dynamic causal modelling. NeuroImage, 19(4):1273- 1302, 2003.
-
(2003)
Metrika
, vol.72
, pp. 139-150
-
-
Dodge, Y.1
Yadegari, I.2
-
8
-
-
85162060108
-
A kernel statistical test of independence advances
-
MIT Press
-
A. Gretton, K. Fukumizu, C.-H. Teo, L. Song, B. Scholkopf, and A. Smola. A kernel statistical test of independence. In Advances in Neural Information Processing Systems, volume 20. MIT Press, 2008.
-
(2008)
Neural Information Processing Systems
, vol.20
-
-
Gretton, A.1
Fukumizu, K.2
Teo, C.-H.3
Song, L.4
Scholkopf, B.5
Smola, A.6
-
9
-
-
1842505168
-
Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses
-
DOI 10.1016/j.neuroimage.2003.11.029, PII S1053811903007584
-
D.A. Handwerker, J.M. Ollinger, and M. D'Esposito. Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses. NeuroImage, 21:1639- 1651, 2004. (Pubitemid 38446587)
-
(2004)
NeuroImage
, vol.21
, Issue.4
, pp. 1639-1651
-
-
Handwerker, D.A.1
Ollinger, J.M.2
D'Esposito, M.3
-
10
-
-
77956195093
-
Causal discovery of linear acyclic models with arbitrary distributions
-
Helsinki, Finland
-
P. O. Hoyer, A. Hyvarinen, R. Scheines, P. Spirtes, J. Ramsey, G. Lacerda, and S. Shimizu. Causal discovery of linear acyclic models with arbitrary distributions. In Proc. 24th Conf. on Uncertainty in Artificial Intelligence (UAI2008), pages 282-289, Helsinki, Finland, 2008.
-
(2008)
Proc. 24th Conf. on Uncertainty in Artificial Intelligence (UAI2008)
, pp. 282-289
-
-
Hoyer, P.O.1
Hyvarinen, A.2
Scheines, R.3
Spirtes, P.4
Ramsey, J.5
Lacerda, G.6
Shimizu, S.7
-
11
-
-
84858789485
-
Nonlinear causal discovery with additive noise models
-
MIT Press
-
P. O. Hoyer, D. Janzing, J. Mooij, J. Peters, and B. Scholkopf. Nonlinear causal discovery with additive noise models. In Advances in Neural Information Processing Systems, volume 21, pages 689-696. MIT Press, 2009.
-
(2009)
Advances in Neural Information Processing Systems
, vol.21
, pp. 689-696
-
-
Hoyer, P.O.1
Janzing, D.2
Mooij, J.3
Peters, J.4
Scholkopf, B.5
-
12
-
-
33845435132
-
New approximations of differential entropy for independent component analysis and projection pursuit
-
MIT Press
-
A. Hyvarinen. New approximations of differential entropy for independent component analysis and projection pursuit. In Advances in Neural Information Processing Systems, volume 10, pages 273-279. MIT Press, 1998.
-
(1998)
Advances in Neural Information Processing Systems
, vol.10
, pp. 273-279
-
-
Hyvarinen, A.1
-
13
-
-
0032629347
-
Fast and robust fixed-point algorithms for independent component analysis
-
A. Hyvarinen. Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks, 10(3):626-634, 1999.
-
(1999)
IEEE Transactions on Neural Networks
, vol.10
, Issue.3
, pp. 626-634
-
-
Hyvarinen, A.1
-
14
-
-
84867674525
-
Pairwise measures of causal direction in linear non-gaussian acyclic models
-
Tokyo, Japan
-
A. Hyvarinen. Pairwise measures of causal direction in linear non-gaussian acyclic models. In Proc. Asian Conf. on Machine Learning, JMLR W&CP, volume 13, pages 1-16, Tokyo, Japan, 2010.
-
(2010)
Proc. Asian Conf. on Machine Learning, JMLR WCP
, vol.13
, pp. 1-16
-
-
Hyvarinen, A.1
-
16
-
-
77953491241
-
Estimation of a structural vector autoregression model using non-gaussianity
-
A. Hyvarinen, K. Zhang, S. Shimizu, and P. O. Hoyer. Estimation of a structural vector autoregression model using non-gaussianity. J. of Machine Learning Research, 11:1709-1731, 2010.
-
(2010)
J. of Machine Learning Research
, vol.11
, pp. 1709-1731
-
-
Hyvarinen, A.1
Zhang, K.2
Shimizu, S.3
Hoyer, P.O.4
-
17
-
-
0036531349
-
Blind separation methods based on pearson system and its extensions
-
J. Karvanen and V. Koivunen. Blind separation methods based on pearson system and its extensions. Signal Processing, 82(4):663-573, 2002.
-
(2002)
Signal Processing
, vol.82
, Issue.4
, pp. 663-573
-
-
Karvanen, J.1
Koivunen, V.2
-
18
-
-
85162054206
-
Probabilistic latent variable models for distinguishing between cause and effect
-
J. Lafferty C. K. I. Williams, J. Shawe-Taylor, R.S. Zemel, and A. Culotta, editors
-
J.M.Mooij, O. Stegle, D. Janzing, K. Zhang, and B. Scholkopf. Probabilistic latent variable models for distinguishing between cause and effect. In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R.S. Zemel, and A. Culotta, editors, Advances in Neural Information Processing Systems 23 (NIPS 2010), pages 1687-1695, 2010.
-
(2010)
Neural Information Processing Systems
, vol.23
, pp. 1687-1695
-
-
Mooij, J.M.1
Stegle, O.2
Janzing, D.3
Zhang, K.4
Scholkopf, B.5
-
21
-
-
80052148144
-
Multi-subject search correctly identifies causal connections and most causal directions in the dcm models of the smith et al. Simulation study
-
J. D. Ramsey, S. J. Hanson, and C. Glymour. Multi-subject search correctly identifies causal connections and most causal directions in the DCM models of the Smith et al. simulation study. NeuroImage, 58(3):838-848, 2011.
-
(2011)
NeuroImage
, vol.58
, Issue.3
, pp. 838-848
-
-
Ramsey, J.D.1
Hanson, S.J.2
Glymour, C.3
-
22
-
-
33749326177
-
A linear non-gaussian acyclic model for causal discovery
-
S. Shimizu, P. O. Hoyer, A. Hyvarinen, and A. Kerminen. A linear non-Gaussian acyclic model for causal discovery. J. of Machine Learning Research, 7:2003-2030, 2006. (Pubitemid 44497456)
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 2003-2030
-
-
Shimizu, S.1
Hoyer, P.O.2
Hyvarinen, A.3
Kerminen, A.4
-
23
-
-
80053162211
-
A direct method for estimating a causal ordering in a linear non-gaussian acyclic model
-
Montr'eal, Canada
-
S. Shimizu, A. Hyvarinen, Y. Kawahara, and T. Washio. A direct method for estimating a causal ordering in a linear non-gaussian acyclic model. In Proc. 25th Conference on Uncertainty in Artificial Intelligence (UAI2009), pages 506-513, Montr'eal, Canada, 2009.
-
(2009)
Proc. 25th Conference on Uncertainty in Artificial Intelligence (UAI2009)
, pp. 506-513
-
-
Shimizu, S.1
Hyvarinen, A.2
Kawahara, Y.3
Washio, T.4
-
24
-
-
79955829373
-
Directlingam: A direct method for learning a linear non-gaussian structural equation model
-
S. Shimizu, T. Inazumi, Y. Sogawa, A. Hyvarinen, Y. Kawahara, T. Washio, P. O. Hoyer, and K. Bollen. DirectLiNGAM: A direct method for learning a linear non-gaussian structural equation model. J. of Machine Learning Research, 12:1225-1248, 2011.
-
(2011)
J. of Machine Learning Research
, vol.12
, pp. 1225-1248
-
-
Shimizu, S.1
Inazumi, T.2
Sogawa, Y.3
Hyvarinen, A.4
Kawahara, Y.5
Washio, T.6
Hoyer, P.O.7
Bollen, K.8
-
25
-
-
78649717035
-
Network modelling methods for fmri
-
S. M. Smith, K. L. Miller, G. Salimi-Khorshidi, M. Webster, C. F. Beckmann, T. E. Nichols, J. D. Ramsey, and M.W. Woolrich. Network modelling methods for fMRI. NeuroImage, 54:875-891, 2011.
-
(2011)
NeuroImage
, vol.54
, pp. 875-891
-
-
Smith, S.M.1
Miller, K.L.2
Salimi-Khorshidi, G.3
Webster, M.4
Beckmann, C.F.5
Nichols, T.E.6
Ramsey, J.D.7
Woolrich, M.W.8
-
26
-
-
79959464188
-
An experimental comparison of linear nongaussian causal discovery methods and their variants
-
Barcelona, Spain
-
Y. Sogawa, S. Shimizu, Y. Kawahara, and T. Washio. An experimental comparison of linear nongaussian causal discovery methods and their variants. In Proc. Int. Joint Conf. on Neural Networks (IJCNN2010), Barcelona, Spain, 2010.
-
Proc. Int. Joint Conf. on Neural Networks (IJCNN2010)
, vol.2010
-
-
Sogawa, Y.1
Shimizu, S.2
Kawahara, Y.3
Washio, T.4
-
27
-
-
80051781964
-
Estimating exogenous variables in data with more variables than observations
-
Y. Sogawa, S. Shimizu, A. Hyvarinen, T. Washio, T. Shimamura, and S. Imoto. Estimating exogenous variables in data with more variables than observations. Neural Networks, 24(8):875-880, 2011.
-
(2011)
Neural Networks
, vol.24
, Issue.8
, pp. 875-880
-
-
Sogawa, Y.1
Shimizu, S.2
Hyvarinen, A.3
Washio, T.4
Shimamura, T.5
Imoto, S.6
|