-
1
-
-
84879574761
-
Forecasting multivariate road traffic flows using Bayesian dynamic graphical models, splines and other traffic variables
-
Anacleto O., Queen C., Albers C.J. Forecasting multivariate road traffic flows using Bayesian dynamic graphical models, splines and other traffic variables. Aust. N. Z. J. Stat. 2013, 55:69-86. 10.1111/anzs.12026.
-
(2013)
Aust. N. Z. J. Stat.
, vol.55
, pp. 69-86
-
-
Anacleto, O.1
Queen, C.2
Albers, C.J.3
-
2
-
-
84874190610
-
Multivariate forecasting of road traffic flows in the presence of heteroscedasticity and measurement errors
-
Anacleto O., Queen C., Albers C.J. Multivariate forecasting of road traffic flows in the presence of heteroscedasticity and measurement errors. J. R. Stat. Soc. Ser. C Appl. Stat. 2013, 62:251-270. 10.1111/j.1467-9876.2012.01059.x.
-
(2013)
J. R. Stat. Soc. Ser. C Appl. Stat.
, vol.62
, pp. 251-270
-
-
Anacleto, O.1
Queen, C.2
Albers, C.J.3
-
3
-
-
84857383259
-
Neural networks in R using the Stuttgart neural network simulator: RSNNS
-
Bergmeir C., Benítez J.M. Neural networks in R using the Stuttgart neural network simulator: RSNNS. J. Stat. Softw. 2012, 46:1-26.
-
(2012)
J. Stat. Softw.
, vol.46
, pp. 1-26
-
-
Bergmeir, C.1
Benítez, J.M.2
-
4
-
-
34548134136
-
Application of the ARIMA models to urban roadway travel time prediction - a case study
-
2006 IEEE International Conference on Systems, Man, and Cybernetics. Presented at the 2006 IEEE International Conference on Systems, Man, and Cybernetics, Taipei.
-
Billings, D., Yang, J.-S., 2006. Application of the ARIMA models to urban roadway travel time prediction - a case study. In: 2006 IEEE International Conference on Systems, Man, and Cybernetics. Presented at the 2006 IEEE International Conference on Systems, Man, and Cybernetics, Taipei.
-
(2006)
-
-
Billings, D.1
Yang, J.-S.2
-
5
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory. ACM Press
-
Boser, B.E., Guyon, I.M., Vapnik, V.N., 1992. A training algorithm for optimal margin classifiers. In: Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory. ACM Press, pp. 144-152.
-
(1992)
, pp. 144-152
-
-
Boser, B.E.1
Guyon, I.M.2
Vapnik, V.N.3
-
7
-
-
70449085050
-
Tourism demand forecasting by support vector regression and genetic algorithm
-
Computer Science and Information Technology, 2009. ICCSIT 2009. 2nd IEEE International Conference on. Presented at the Computer Science and Information Technology, 2009. ICCSIT 2009. 2nd IEEE International Conference on
-
Cai, Z., Li, S., Zhang, X., 2009. Tourism demand forecasting by support vector regression and genetic algorithm. In: Computer Science and Information Technology, 2009. ICCSIT 2009. 2nd IEEE International Conference on. Presented at the Computer Science and Information Technology, 2009. ICCSIT 2009. 2nd IEEE International Conference on, pp. 144-146. doi:10.1109/ICCSIT.2009.5234447.
-
(2009)
, pp. 144-146
-
-
Cai, Z.1
Li, S.2
Zhang, X.3
-
8
-
-
70349598845
-
Appearance-based object recognition using SVMs: which kernel should I use?
-
Proceedings of NIPS Workshop on Statistical Methods for Computational Experiments in Visual Processing and Computer Vision. Presented at the NIPS Workshop on Statistical Methods for Computational Experiments in Visual Processing and Computer Vision, Whistler.
-
Caputo, B., Sim, K., Furesjo, F., Smola, A., 2002. Appearance-based object recognition using SVMs: which kernel should I use? In: Proceedings of NIPS Workshop on Statistical Methods for Computational Experiments in Visual Processing and Computer Vision. Presented at the NIPS Workshop on Statistical Methods for Computational Experiments in Visual Processing and Computer Vision, Whistler.
-
(2002)
-
-
Caputo, B.1
Sim, K.2
Furesjo, F.3
Smola, A.4
-
9
-
-
58349104545
-
Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions
-
Castro-Neto M., Jeong Y.S., Jeong M.K., Han L.D. Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions. Expert Syst. Appl. 2009, 36:6164-6173.
-
(2009)
Expert Syst. Appl.
, vol.36
, pp. 6164-6173
-
-
Castro-Neto, M.1
Jeong, Y.S.2
Jeong, M.K.3
Han, L.D.4
-
10
-
-
84871806794
-
Prediction of short-term traffic variables using intelligent swarm-based neural networks
-
Chan K.Y., Dillon T., Chang E., Singh J. Prediction of short-term traffic variables using intelligent swarm-based neural networks. IEEE Trans. Control Syst. Technol. 2013, 21:263-274. 10.1109/TCST.2011.2180386.
-
(2013)
IEEE Trans. Control Syst. Technol.
, vol.21
, pp. 263-274
-
-
Chan, K.Y.1
Dillon, T.2
Chang, E.3
Singh, J.4
-
11
-
-
84878126816
-
An Intelligent particle swarm optimization for short-term traffic flow forecasting using on-road sensor systems
-
Chan K.Y., Dillon T.S., Chang E. An Intelligent particle swarm optimization for short-term traffic flow forecasting using on-road sensor systems. IEEE Trans. Ind. Electron. 2013, 60:4714-4725. 10.1109/TIE.2012.2213556.
-
(2013)
IEEE Trans. Ind. Electron.
, vol.60
, pp. 4714-4725
-
-
Chan, K.Y.1
Dillon, T.S.2
Chang, E.3
-
12
-
-
84861893114
-
Neural-network-based models for short-term traffic flow forecasting using a hybrid exponential smoothing and Levenberg-Marquardt algorithm
-
Chan K.Y., Dillon T.S., Singh J., Chang E. Neural-network-based models for short-term traffic flow forecasting using a hybrid exponential smoothing and Levenberg-Marquardt algorithm. IEEE Trans. Intell. Transport. Syst. 2012, 13:644-654. 10.1109/TITS.2011.2174051.
-
(2012)
IEEE Trans. Intell. Transport. Syst.
, vol.13
, pp. 644-654
-
-
Chan, K.Y.1
Dillon, T.S.2
Singh, J.3
Chang, E.4
-
13
-
-
84859922180
-
Selection of significant on-road sensor data for short-term traffic flow forecasting using the taguchi method
-
Chan K.Y., Khadem S., Dillon T.S., Palade V., Singh J., Chang E. Selection of significant on-road sensor data for short-term traffic flow forecasting using the taguchi method. IEEE Trans. Ind. Inform. 2012, 8:255-266. 10.1109/TII.2011.2179052.
-
(2012)
IEEE Trans. Ind. Inform.
, vol.8
, pp. 255-266
-
-
Chan, K.Y.1
Khadem, S.2
Dillon, T.S.3
Palade, V.4
Singh, J.5
Chang, E.6
-
14
-
-
84862782234
-
The retrieval of intra-day trend and its influence on traffic prediction
-
Chen C., Wang Y., Li L., Hu J., Zhang Z. The retrieval of intra-day trend and its influence on traffic prediction. Transport. Res. Part C Emerg. Technol. 2012, 22:103-118. 10.1016/j.trc.2011.12.006.
-
(2012)
Transport. Res. Part C Emerg. Technol.
, vol.22
, pp. 103-118
-
-
Chen, C.1
Wang, Y.2
Li, L.3
Hu, J.4
Zhang, Z.5
-
15
-
-
0035480351
-
Use of sequential learning for short-term traffic flow forecasting
-
Chen H., Grant-Muller S. Use of sequential learning for short-term traffic flow forecasting. Transport. Res. Part C Emerg. Technol. 2001, 9:319-336. 10.1016/S0968-090X(00)00039-5.
-
(2001)
Transport. Res. Part C Emerg. Technol.
, vol.9
, pp. 319-336
-
-
Chen, H.1
Grant-Muller, S.2
-
16
-
-
84892538587
-
A dynamic spatial weight matrix and localized space-time autoregressive integrated moving average for network modeling
-
Cheng T., Wang J., Haworth J., Heydecker B., Chow A. A dynamic spatial weight matrix and localized space-time autoregressive integrated moving average for network modeling. Geogr. Anal. 2014, 46:75-97. 10.1111/gean.12026.
-
(2014)
Geogr. Anal.
, vol.46
, pp. 75-97
-
-
Cheng, T.1
Wang, J.2
Haworth, J.3
Heydecker, B.4
Chow, A.5
-
17
-
-
85029854485
-
STARIMA for journey time prediction in London
-
Proceedings of the 5th IMA (Institute of Mathematics and Its Applications) Conference on Mathematics in Transport. London, UK.
-
Cheng, T., Wang, J., Heydecker, B., Haworth, J., 2010. STARIMA for journey time prediction in London. In: Proceedings of the 5th IMA (Institute of Mathematics and Its Applications) Conference on Mathematics in Transport. London, UK.
-
(2010)
-
-
Cheng, T.1
Wang, J.2
Heydecker, B.3
Haworth, J.4
-
18
-
-
45849138568
-
Adaptive hybrid fuzzy rule-based system approach for modeling and predicting urban traffic flow
-
16/j.trc.2007.11.003
-
Dimitriou L., Tsekeris T., Stathopoulos A. Adaptive hybrid fuzzy rule-based system approach for modeling and predicting urban traffic flow. Transport. Res. Part C Emerg. Technol. 2008, 16:554-573. 16/j.trc.2007.11.003.
-
(2008)
Transport. Res. Part C Emerg. Technol.
, vol.16
, pp. 554-573
-
-
Dimitriou, L.1
Tsekeris, T.2
Stathopoulos, A.3
-
19
-
-
78650818807
-
Forecasting traffic volume with space-time ARIMA model
-
Ding Q.Y., Wang X.F., Zhang X.Y., Sun Z.Q. Forecasting traffic volume with space-time ARIMA model. Adv. Mater. Res. 2010, 156-157:979-983. 10.4028/www.scientific.net/AMR.156-157.979.
-
(2010)
Adv. Mater. Res.
, pp. 979-983
-
-
Ding, Q.Y.1
Wang, X.F.2
Zhang, X.Y.3
Sun, Z.Q.4
-
20
-
-
0029485810
-
A review of neural networks applied to transport
-
Dougherty M. A review of neural networks applied to transport. Transport. Res. Part C Emerg. Technol. 1995, 3:247-260. 10.1016/0968-090X(95)00009-8.
-
(1995)
Transport. Res. Part C Emerg. Technol.
, vol.3
, pp. 247-260
-
-
Dougherty, M.1
-
21
-
-
26444565569
-
Finding structure in time* 1
-
Elman J.L. Finding structure in time* 1. Cogn. Sci. 1990, 14:179-211.
-
(1990)
Cogn. Sci.
, vol.14
, pp. 179-211
-
-
Elman, J.L.1
-
22
-
-
84879805315
-
Model selection in kernel ridge regression
-
Exterkate P. Model selection in kernel ridge regression. Comput. Stat. Data Anal. 2013, 68:1-16. 10.1016/j.csda.2013.06.006.
-
(2013)
Comput. Stat. Data Anal.
, vol.68
, pp. 1-16
-
-
Exterkate, P.1
-
23
-
-
80052718938
-
A Bayesian dynamic linear model approach for real-time short-term freeway travel time prediction
-
Fei X., Lu C.-C., Liu K. A Bayesian dynamic linear model approach for real-time short-term freeway travel time prediction. Transport. Res. Part C Emerg. Technol. 2011, 19:1306-1318. 10.1016/j.trc.2010.10.005.
-
(2011)
Transport. Res. Part C Emerg. Technol.
, vol.19
, pp. 1306-1318
-
-
Fei, X.1
Lu, C.-C.2
Liu, K.3
-
24
-
-
84858304479
-
Valuing travel time variability: characteristics of the travel time distribution on an urban road
-
Fosgerau M., Fukuda D. Valuing travel time variability: characteristics of the travel time distribution on an urban road. Transport. Res. Part C Emerg. Technol. 2012, 24:83-101. 10.1016/j.trc.2012.02.008.
-
(2012)
Transport. Res. Part C Emerg. Technol.
, vol.24
, pp. 83-101
-
-
Fosgerau, M.1
Fukuda, D.2
-
26
-
-
10044285992
-
Canonical correlation analysis: an overview with application to learning methods
-
Hardoon D.R., Szedmak S., Shawe-Taylor J. Canonical correlation analysis: an overview with application to learning methods. Neural Comput. 2004, 16:2639-2664. 10.1162/0899766042321814.
-
(2004)
Neural Comput.
, vol.16
, pp. 2639-2664
-
-
Hardoon, D.R.1
Szedmak, S.2
Shawe-Taylor, J.3
-
27
-
-
74949130472
-
Grid-enabling geographically weighted regression: a case study of participation in higher education in England
-
Harris R., Singleton A., Grose D., Brunsdon C., Longley P. Grid-enabling geographically weighted regression: a case study of participation in higher education in England. Trans. GIS 2010, 14:43-61. 10.1111/j.1467-9671.2009.01181.x.
-
(2010)
Trans. GIS
, vol.14
, pp. 43-61
-
-
Harris, R.1
Singleton, A.2
Grose, D.3
Brunsdon, C.4
Longley, P.5
-
28
-
-
84902528293
-
Graphical LASSO for local spatio-temporal neighbourhood selection
-
Proceedings the GIS Research UK 22nd Annual Conference. Presented at the GISRUK 2014, University of Glasgow, Glasgow, Scotland
-
Haworth, J., Cheng, T., 2014. Graphical LASSO for local spatio-temporal neighbourhood selection. In: Proceedings the GIS Research UK 22nd Annual Conference. Presented at the GISRUK 2014, University of Glasgow, Glasgow, Scotland, pp. 425-433.
-
(2014)
, pp. 425-433
-
-
Haworth, J.1
Cheng, T.2
-
29
-
-
84942484786
-
Ridge regression: biased estimation for nonorthogonal problems
-
Hoerl A.E., Kennard R.W. Ridge regression: biased estimation for nonorthogonal problems. Technometrics 1970, 12:55-67. 10.2307/1267351.
-
(1970)
Technometrics
, vol.12
, pp. 55-67
-
-
Hoerl, A.E.1
Kennard, R.W.2
-
30
-
-
84865748237
-
Arterial travel time forecast with streaming data: a hybrid approach of flow modeling and machine learning
-
Hofleitner A., Herring R., Bayen A. Arterial travel time forecast with streaming data: a hybrid approach of flow modeling and machine learning. Transport. Res. Part B Methodol. 2012, 46:1097-1122. 10.1016/j.trb.2012.03.006.
-
(2012)
Transport. Res. Part B Methodol.
, vol.46
, pp. 1097-1122
-
-
Hofleitner, A.1
Herring, R.2
Bayen, A.3
-
31
-
-
84858160566
-
Application of seasonal SVR with chaotic immune algorithm in traffic flow forecasting
-
Hong, W.-C., 2010. Application of seasonal SVR with chaotic immune algorithm in traffic flow forecasting. Neural Comput. Appl. doi:10.1007/s00521-010-0456-7.
-
(2010)
Neural Comput. Appl.
-
-
Hong, W.-C.1
-
32
-
-
79956119798
-
Traffic flow forecasting by seasonal SVR with chaotic simulated annealing algorithm
-
Hong W.-C. Traffic flow forecasting by seasonal SVR with chaotic simulated annealing algorithm. Neurocomputing 2011, 74:2096-2107. 10.1016/j.neucom.2010.12.032.
-
(2011)
Neurocomputing
, vol.74
, pp. 2096-2107
-
-
Hong, W.-C.1
-
33
-
-
84858160566
-
Application of seasonal SVR with chaotic immune algorithm in traffic flow forecasting
-
Hong W.-C. Application of seasonal SVR with chaotic immune algorithm in traffic flow forecasting. Neural Comput. Appl. 2012, 21:583-593. 10.1007/s00521-010-0456-7.
-
(2012)
Neural Comput. Appl.
, vol.21
, pp. 583-593
-
-
Hong, W.-C.1
-
34
-
-
78549267441
-
Forecasting urban traffic flow by SVR with continuous ACO
-
Hong W.-C., Dong Y., Zheng F., Lai C.-Y. Forecasting urban traffic flow by SVR with continuous ACO. Appl. Math. Model. 2011, 35:1282-1291. 10.1016/j.apm.2010.09.005.
-
(2011)
Appl. Math. Model.
, vol.35
, pp. 1282-1291
-
-
Hong, W.-C.1
Dong, Y.2
Zheng, F.3
Lai, C.-Y.4
-
35
-
-
0000107975
-
Relations between two sets of variates
-
Hotelling H. Relations between two sets of variates. Biometrika 1936, 28:321-377. 10.1093/biomet/28.3-4.321.
-
(1936)
Biometrika
, vol.28
, pp. 321-377
-
-
Hotelling, H.1
-
36
-
-
67949085060
-
A novel forecasting approach inspired by human memory: the example of short-term traffic volume forecasting
-
Huang S., Sadek A.W. A novel forecasting approach inspired by human memory: the example of short-term traffic volume forecasting. Transport. Res. Part C Emerg. Technol. 2009, 17:510-525. 10.1016/j.trc.2009.04.006.
-
(2009)
Transport. Res. Part C Emerg. Technol.
, vol.17
, pp. 510-525
-
-
Huang, S.1
Sadek, A.W.2
-
37
-
-
79960526501
-
Automatic Time Series for Forecasting: the Forecast Package for R.
-
Hyndman, R.J., Khandakar, Y., 2007. Automatic Time Series for Forecasting: the Forecast Package for R.
-
(2007)
-
-
Hyndman, R.J.1
Khandakar, Y.2
-
38
-
-
33749517168
-
Another look at measures of forecast accuracy
-
Hyndman R.J., Koehler A.B. Another look at measures of forecast accuracy. Int. J. Forecast. 2006, 22:679-688. 10.1016/j.ijforecast.2006.03.001.
-
(2006)
Int. J. Forecast.
, vol.22
, pp. 679-688
-
-
Hyndman, R.J.1
Koehler, A.B.2
-
39
-
-
0001887517
-
Attractor dynamics and parallellism in a connectionist sequential machine
-
Presented at the Proceedings of the Eighth Annual Meeting of the Cognitive Science Society, Lawrence Erlbaum Associates
-
Jordan, M., 1986. Attractor dynamics and parallellism in a connectionist sequential machine. Presented at the Proceedings of the Eighth Annual Meeting of the Cognitive Science Society, Lawrence Erlbaum Associates, pp. 531-546.
-
(1986)
, pp. 531-546
-
-
Jordan, M.1
-
40
-
-
80051595965
-
Feature scaling in support vector data description
-
Juszczak, P., Tax, D., Duin, R.P.W., 2002. Feature scaling in support vector data description. In: Proc. ASCI. pp. 95-102.
-
(2002)
Proc. ASCI
, pp. 95-102
-
-
Juszczak, P.1
Tax, D.2
Duin, R.P.W.3
-
41
-
-
77953362241
-
Characterizing regimes in daily cycles of urban traffic using smooth-transition regressions
-
Kamarianakis Y., Oliver Gao H., Prastacos P. Characterizing regimes in daily cycles of urban traffic using smooth-transition regressions. Transport. Res. Part C Emerg. Technol. 2010, 18:821-840. 10.1016/j.trc.2009.11.001.
-
(2010)
Transport. Res. Part C Emerg. Technol.
, vol.18
, pp. 821-840
-
-
Kamarianakis, Y.1
Oliver Gao, H.2
Prastacos, P.3
-
42
-
-
12344314263
-
Space-time modeling of traffic flow
-
Kamarianakis Y., Prastacos P. Space-time modeling of traffic flow. Comput. Geosci. 2005, 31:119-133. 10.1016/j.cageo.2004.05.012.
-
(2005)
Comput. Geosci.
, vol.31
, pp. 119-133
-
-
Kamarianakis, Y.1
Prastacos, P.2
-
43
-
-
84865148479
-
Real-time road traffic forecasting using regime-switching space-time models and adaptive LASSO
-
Kamarianakis Y., Shen W., Wynter L. Real-time road traffic forecasting using regime-switching space-time models and adaptive LASSO. Appl. Stoch. Models Bus. Ind. 2012, 28:297-315. 10.1002/asmb.1937.
-
(2012)
Appl. Stoch. Models Bus. Ind.
, vol.28
, pp. 297-315
-
-
Kamarianakis, Y.1
Shen, W.2
Wynter, L.3
-
45
-
-
85029856759
-
-
kernlab-An S4 package for kernel methods in R.
-
Karatzoglou, A., Smola, A., Hornik, K., Zeileis, A., 2004. kernlab-An S4 package for kernel methods in R.
-
(2004)
-
-
Karatzoglou, A.1
Smola, A.2
Hornik, K.3
Zeileis, A.4
-
46
-
-
79951775181
-
Statistical methods versus neural networks in transportation research: differences, similarities and some insights
-
Karlaftis M.G., Vlahogianni E.I. Statistical methods versus neural networks in transportation research: differences, similarities and some insights. Transport. Res. Part C Emerg. Technol. 2011, 19:387-399. 10.1016/j.trc.2010.10.004.
-
(2011)
Transport. Res. Part C Emerg. Technol.
, vol.19
, pp. 387-399
-
-
Karlaftis, M.G.1
Vlahogianni, E.I.2
-
47
-
-
0037822222
-
Asymptotic behaviors of support vector machines with gaussian kernel
-
Keerthi S.S., Lin C.-J. Asymptotic behaviors of support vector machines with gaussian kernel. Neural Comput. 2003, 15:1667-1689. 10.1162/089976603321891855.
-
(2003)
Neural Comput.
, vol.15
, pp. 1667-1689
-
-
Keerthi, S.S.1
Lin, C.-J.2
-
48
-
-
84902528286
-
-
Time Series. E. Arnold.
-
Kendall, M.G., Ord, J.K., 1990. Time Series. E. Arnold.
-
(1990)
-
-
Kendall, M.G.1
Ord, J.K.2
-
49
-
-
84902528287
-
-
A Statistical Approach to Some Mine Valuation and Allied Problems on the Witwatersrand.
-
Krige, d g, 1951. A Statistical Approach to Some Mine Valuation and Allied Problems on the Witwatersrand.
-
(1951)
-
-
Krige, D.G.1
-
50
-
-
84902528511
-
The Support Vector Regression with the parameter tuning assisted by a differential evolution technique: study of the critical velocity of a slurry flow in a pipeline
-
Association of Chemical Engineers.
-
Lahiri, S.K., Ghanta, K.C., 2008. The Support Vector Regression with the parameter tuning assisted by a differential evolution technique: study of the critical velocity of a slurry flow in a pipeline. Association of Chemical Engineers.
-
(2008)
-
-
Lahiri, S.K.1
Ghanta, K.C.2
-
51
-
-
0031284302
-
An urban traffic flow model integrating neural networks
-
Ledoux C. An urban traffic flow model integrating neural networks. Transport. Res. Part C Emerg. Technol. 1997, 5:287-300. 10.1016/S0968-090X(97)00015-6.
-
(1997)
Transport. Res. Part C Emerg. Technol.
, vol.5
, pp. 287-300
-
-
Ledoux, C.1
-
52
-
-
58549091522
-
A novel automatic parameters optimization approach based on differential evolution for support vector regression
-
Li J., Cai Z. A novel automatic parameters optimization approach based on differential evolution for support vector regression. Adv. Comput. Intell. 2008, 510-519.
-
(2008)
Adv. Comput. Intell.
, pp. 510-519
-
-
Li, J.1
Cai, Z.2
-
53
-
-
79960456666
-
Incorporating uncertainty into short-term travel time predictions
-
Li R., Rose G. Incorporating uncertainty into short-term travel time predictions. Transport. Res. Part C Emerg. Technol. 2011, 19:1006-1018. 10.1016/j.trc.2011.05.014.
-
(2011)
Transport. Res. Part C Emerg. Technol.
, vol.19
, pp. 1006-1018
-
-
Li, R.1
Rose, G.2
-
54
-
-
73849134036
-
Hybrid kernel learning via genetic optimization for TS fuzzy system identification
-
Int. J. Adapt. Control Signal Process. n/a-n/a.
-
Li, W., Yang, Y., 2008. Hybrid kernel learning via genetic optimization for TS fuzzy system identification. Int. J. Adapt. Control Signal Process. n/a-n/a. doi:10.1002/acs.1089.
-
(2008)
-
-
Li, W.1
Yang, Y.2
-
55
-
-
77956104208
-
Particle swarm optimization-based LS-SVM for building cooling load prediction
-
Li X., Shao M., Ding L., Xu G., Li J. Particle swarm optimization-based LS-SVM for building cooling load prediction. J. Comput. 2010, 5. 10.4304/jcp.5.4.614-621.
-
(2010)
J. Comput.
, vol.5
-
-
Li, X.1
Shao, M.2
Ding, L.3
Xu, G.4
Li, J.5
-
56
-
-
79952736659
-
Real-time road traffic prediction with spatio-temporal correlations
-
Min W., Wynter L. Real-time road traffic prediction with spatio-temporal correlations. Transport. Res. Part C Emerg. Technol. 2011, 19:606-616. 10.1016/j.trc.2010.10.002.
-
(2011)
Transport. Res. Part C Emerg. Technol.
, vol.19
, pp. 606-616
-
-
Min, W.1
Wynter, L.2
-
57
-
-
72449184151
-
Short-term traffic flow forecasting of urban network based on dynamic STARIMA model
-
Intelligent Transportation Systems, 2009. ITSC '09. 12th International IEEE Conference on. Presented at the Intelligent Transportation Systems, 2009. ITSC '09. 12th International IEEE Conference on
-
Min, X., Hu, J., Chen, Q., Zhang, T., Zhang, Y., 2009. Short-term traffic flow forecasting of urban network based on dynamic STARIMA model. In: Intelligent Transportation Systems, 2009. ITSC '09. 12th International IEEE Conference on. Presented at the Intelligent Transportation Systems, 2009. ITSC '09. 12th International IEEE Conference on, pp. 1-6. doi:10.1109/ITSC.2009.5309741.
-
(2009)
, pp. 1-6
-
-
Min, X.1
Hu, J.2
Chen, Q.3
Zhang, T.4
Zhang, Y.5
-
58
-
-
78650443114
-
Urban traffic network modeling and short-term traffic flow forecasting based on GSTARIMA model
-
Intelligent Transportation Systems (ITSC), 2010 13th International IEEE Conference on. Presented at the Intelligent Transportation Systems (ITSC), 2010 13th International IEEE Conference on
-
Min, X., Hu, J., Zhang, Z., 2010. Urban traffic network modeling and short-term traffic flow forecasting based on GSTARIMA model. In: Intelligent Transportation Systems (ITSC), 2010 13th International IEEE Conference on. Presented at the Intelligent Transportation Systems (ITSC), 2010 13th International IEEE Conference on, pp. 1535-1540. doi:10.1109/ITSC.2010.5625123.
-
(2010)
, pp. 1535-1540
-
-
Min, X.1
Hu, J.2
Zhang, Z.3
-
59
-
-
84902528288
-
-
Machine Learning, 1st ed. McGraw-Hill Science/Engineering/Math.
-
Mitchell, T.M., 1997. Machine Learning, 1st ed. McGraw-Hill Science/Engineering/Math.
-
(1997)
-
-
Mitchell, T.M.1
-
60
-
-
0021375695
-
Dynamic prediction of traffic volume through Kalman filtering theory
-
Okutani I., Stephanedes Y.J. Dynamic prediction of traffic volume through Kalman filtering theory. Transport. Res. Part B Methodol. 1984, 18:1-11.
-
(1984)
Transport. Res. Part B Methodol.
, vol.18
, pp. 1-11
-
-
Okutani, I.1
Stephanedes, Y.J.2
-
61
-
-
0342404846
-
On the order determination of ARIMA Models
-
Ozaki T. On the order determination of ARIMA Models. J. R. Stat. Soc. Ser. C Appl. Stat. 1977, 26:290-301. 10.2307/2346970.
-
(1977)
J. R. Stat. Soc. Ser. C Appl. Stat.
, vol.26
, pp. 290-301
-
-
Ozaki, T.1
-
62
-
-
0025056697
-
Regularization algorithms for learning that are equivalent to multilayer networks
-
Poggio T., Girosi F. Regularization algorithms for learning that are equivalent to multilayer networks. Science 1990, 247:978-982. 10.1126/science.247.4945.978.
-
(1990)
Science
, vol.247
, pp. 978-982
-
-
Poggio, T.1
Girosi, F.2
-
64
-
-
0002619965
-
Ridge regression learning algorithm in dual variables
-
(ICML-1998) Proceedings of the 15th International Conference on Machine Learning
-
Saunders, C., Gammerman, A., Vovk, V., 1998. Ridge regression learning algorithm in dual variables, in: (ICML-1998) Proceedings of the 15th International Conference on Machine Learning. pp. 515-521.
-
(1998)
, pp. 515-521
-
-
Saunders, C.1
Gammerman, A.2
Vovk, V.3
-
65
-
-
84956689194
-
Kernel Principal Component Analysis
-
Springer, Berlin Heidelberg, W. Gerstner, A. Germond, M. Hasler, J.-D. Nicoud (Eds.)
-
Schölkopf B., Smola A., Müller K.-R. Kernel Principal Component Analysis. Artificial Neural Networks - ICANN'97, Lecture Notes in Computer Science 1997, 583-588. Springer, Berlin Heidelberg. W. Gerstner, A. Germond, M. Hasler, J.-D. Nicoud (Eds.).
-
(1997)
Artificial Neural Networks - ICANN'97, Lecture Notes in Computer Science
, pp. 583-588
-
-
Schölkopf, B.1
Smola, A.2
Müller, K.-R.3
-
66
-
-
14644392676
-
-
Cambridge University Press, New York, NY, USA
-
Shawe-Taylor J., Cristianini N. Kernel Methods for Pattern Analysis 2004, Cambridge University Press, New York, NY, USA.
-
(2004)
Kernel Methods for Pattern Analysis
-
-
Shawe-Taylor, J.1
Cristianini, N.2
-
67
-
-
33644989492
-
A bayesian network approach to traffic flow forecasting
-
Sun Shiliang, Zhang Changshui, Guoqiang Yu A bayesian network approach to traffic flow forecasting. Intell. Transport. Syst. IEEE Trans. 2006, 7:124-132. 10.1109/TITS.2006.869623.
-
(2006)
Intell. Transport. Syst. IEEE Trans.
, vol.7
, pp. 124-132
-
-
Sun, S.1
Zhang, C.2
Guoqiang, Y.3
-
69
-
-
4043137356
-
A tutorial on support vector regression
-
Smola A.J., Schölkopf B A tutorial on support vector regression. Stat. Comput. 2004, 14:199-222.
-
(2004)
Stat. Comput.
, vol.14
, pp. 199-222
-
-
Smola, A.J.1
Schölkopf, B.2
-
70
-
-
0037954189
-
A multivariate state space approach for urban traffic flow modeling and prediction
-
Stathopoulos A., Karlaftis M.G. A multivariate state space approach for urban traffic flow modeling and prediction. Transport. Res. Part C Emerg. Technol. 2003, 11:121-135. 10.1016/S0968-090X(03)00004-4.
-
(2003)
Transport. Res. Part C Emerg. Technol.
, vol.11
, pp. 121-135
-
-
Stathopoulos, A.1
Karlaftis, M.G.2
-
71
-
-
85015516737
-
Bayesian network methods for traffic flow forecasting with incomplete data
-
Sun S., Zhang C., Yu G., Lu N., Xiao F. Bayesian network methods for traffic flow forecasting with incomplete data. Mach. Learn. ECML 2004, 2004:419-428.
-
(2004)
Mach. Learn. ECML
, vol.2004
, pp. 419-428
-
-
Sun, S.1
Zhang, C.2
Yu, G.3
Lu, N.4
Xiao, F.5
-
72
-
-
33646262592
-
Traffic flow forecasting using a spatio-temporal bayesian network predictor
-
ICANN 2005 273-278.
-
Sun, S., Zhang, C., Zhang, Y., 2005. Traffic flow forecasting using a spatio-temporal bayesian network predictor. Artif. Neural Netw. Form. Models Their Appl.-ICANN 2005 273-278.
-
(2005)
Artif. Neural Netw. Form. Models Their Appl.
-
-
Sun, S.1
Zhang, C.2
Zhang, Y.3
-
73
-
-
20444505293
-
Determination of optimal support vector regression parameters by genetic algorithms and simplex optimization
-
Üstün B., Melssen W.J., Oudenhuijzen M., Buydens L.M.C. Determination of optimal support vector regression parameters by genetic algorithms and simplex optimization. Anal. Chim. Acta 2005, 544:292-305. 10.1016/j.aca.2004.12.024.
-
(2005)
Anal. Chim. Acta
, vol.544
, pp. 292-305
-
-
Üstün, B.1
Melssen, W.J.2
Oudenhuijzen, M.3
Buydens, L.M.C.4
-
74
-
-
0030298951
-
Combining Kohonen maps with arima time series models to forecast traffic flow
-
Van Der Voort M., Dougherty M., Watson S. Combining Kohonen maps with arima time series models to forecast traffic flow. Transport. Res. Part C Emerg. Technol. 1996, 4:307-318. 10.1016/S0968-090X(97)82903-8.
-
(1996)
Transport. Res. Part C Emerg. Technol.
, vol.4
, pp. 307-318
-
-
Van Der Voort, M.1
Dougherty, M.2
Watson, S.3
-
76
-
-
33751077286
-
Reliable real-time framework for short-term freeway travel time prediction
-
Van Lint J.W.C. Reliable real-time framework for short-term freeway travel time prediction. J. Transport. Eng. 2006, 132:921-932. 10.1061/(ASCE)0733-947X(2006) 132:12(921).
-
(2006)
J. Transport. Eng.
, vol.132
, pp. 921-932
-
-
Van Lint, J.W.C.1
-
77
-
-
33646762818
-
Accurate freeway travel time prediction with state-space neural networks under missing data
-
Van Lint J.W.C., Hoogendoorn S.P., van Zuylen H.J. Accurate freeway travel time prediction with state-space neural networks under missing data. Transport. Res. Part C Emerg. Technol. 2005, 13:347-369. 10.1016/j.trc.2005.03.001.
-
(2005)
Transport. Res. Part C Emerg. Technol.
, vol.13
, pp. 347-369
-
-
Van Lint, J.W.C.1
Hoogendoorn, S.P.2
van Zuylen, H.J.3
-
79
-
-
78049413965
-
Fixed-budget kernel recursive least-squares
-
2010 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP). Presented at the 2010 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP)
-
Van Vaerenbergh, S., Santamaria, I., Liu, W., Principe, J.C., 2010. Fixed-budget kernel recursive least-squares. In: 2010 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP). Presented at the 2010 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp. 1882-1885. doi:10.1109/ICASSP.2010.5495350.
-
(2010)
, pp. 1882-1885
-
-
Van Vaerenbergh, S.1
Santamaria, I.2
Liu, W.3
Principe, J.C.4
-
80
-
-
33947702137
-
A sliding-window kernel RLS algorithm and its application to nonlinear channel identification
-
Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE International Conference on. V-V
-
Van Vaerenbergh, S., Via, J., Santamana, I., 2006. A sliding-window kernel RLS algorithm and its application to nonlinear channel identification. In: Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE International Conference on. pp. V-V.
-
(2006)
-
-
Van Vaerenbergh, S.1
Via, J.2
Santamana, I.3
-
81
-
-
4544262864
-
A comparison of the performance of artificial
-
neural networks and support vector machines for the prediction of traffic speed, 2004 IEEE Intelligent Vehicles Symposium. Parma.
-
Vanajakshi, L., Rilett, L.R., 2004. A comparison of the performance of artificial. neural networks and support vector machines for the prediction of traffic speed. In: 2004 IEEE Intelligent Vehicles Symposium. Parma.
-
(2004)
-
-
Vanajakshi, L.1
Rilett, L.R.2
-
82
-
-
47849099540
-
Support Vector Machine Technique for the Short Term Prediction of Travel Time
-
Proceedings of the 2007 IEEE Intelligent Vehicles Symposium. Istanbul.
-
Vanajakshi, L., Rilett, L.R., 2007. Support Vector Machine Technique for the Short Term Prediction of Travel Time. In: Proceedings of the 2007 IEEE Intelligent Vehicles Symposium. Istanbul.
-
(2007)
-
-
Vanajakshi, L.1
Rilett, L.R.2
-
83
-
-
0010864753
-
Pattern recognition using generalized portrait method
-
Vapnik V., Lerner A. Pattern recognition using generalized portrait method. Autom. Remote Control 1963, 24:774-780.
-
(1963)
Autom. Remote Control
, vol.24
, pp. 774-780
-
-
Vapnik, V.1
Lerner, A.2
-
85
-
-
23844513726
-
Optimized and meta-optimized neural networks for short-term traffic flow prediction: a genetic approach
-
Vlahogianni E.I., Karlaftis M.G., Golias J.C. Optimized and meta-optimized neural networks for short-term traffic flow prediction: a genetic approach. Transport. Res. Part C Emerg. Technol. 2005, 13:211-234. 10.1016/j.trc.2005.04.007.
-
(2005)
Transport. Res. Part C Emerg. Technol.
, vol.13
, pp. 211-234
-
-
Vlahogianni, E.I.1
Karlaftis, M.G.2
Golias, J.C.3
-
86
-
-
34249317652
-
Spatio-temporal short-term urban traffic volume forecasting using genetically optimized modular networks
-
Vlahogianni E.I., Karlaftis M.G., Golias J.C. Spatio-temporal short-term urban traffic volume forecasting using genetically optimized modular networks. Comput.-Aided Civ. Infrastruct. Eng. 2007, 22:317-325. 10.1111/j.1467-8667.2007.00488.x.
-
(2007)
Comput.-Aided Civ. Infrastruct. Eng.
, vol.22
, pp. 317-325
-
-
Vlahogianni, E.I.1
Karlaftis, M.G.2
Golias, J.C.3
-
89
-
-
77951491708
-
Parameter Selection of Support Vector Regression Based on a Novel Chaotic Immune Algorithm
-
Innovative Computing, Information and Control (ICICIC), 2009 Fourth International Conference on. Presented at the Innovative Computing, Information and Control (ICICIC), 2009 Fourth International Conference on
-
Wang, J., Wang, Y., Zhang, C., Du, W., Zhou, C., Liang, Y., 2009. Parameter Selection of Support Vector Regression Based on a Novel Chaotic Immune Algorithm. In: Innovative Computing, Information and Control (ICICIC), 2009 Fourth International Conference on. Presented at the Innovative Computing, Information and Control (ICICIC), 2009 Fourth International Conference on, pp. 652-655. doi:10.1109/ICICIC.2009.287.
-
(2009)
, pp. 652-655
-
-
Wang, J.1
Wang, Y.2
Zhang, C.3
Du, W.4
Zhou, C.5
Liang, Y.6
-
90
-
-
67650677303
-
Parameters optimization of support vector regression based on immune particle swarm optimization algorithm
-
Proceedings of the First ACM/SIGEVO Summit on Genetic and Evolutionary Computation, GEC '09. ACM, New York, NY, USA
-
Wang, Y., Wang, J., Du, W., Zhang, C., Zhang, Y., Zhou, C., 2009. Parameters optimization of support vector regression based on immune particle swarm optimization algorithm. In: Proceedings of the First ACM/SIGEVO Summit on Genetic and Evolutionary Computation, GEC '09. ACM, New York, NY, USA, pp. 997-1000. doi:10.1145/1543834.1543992.
-
(2009)
, pp. 997-1000
-
-
Wang, Y.1
Wang, J.2
Du, W.3
Zhang, C.4
Zhang, Y.5
Zhou, C.6
-
91
-
-
0344944192
-
Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theoretical basis and empirical results
-
Williams B.M., Hoel L.A. Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theoretical basis and empirical results. J. Transport. Eng. ASCE 2003, 129:664-672.
-
(2003)
J. Transport. Eng. ASCE
, vol.129
, pp. 664-672
-
-
Williams, B.M.1
Hoel, L.A.2
-
92
-
-
30444437204
-
Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance
-
Willmott C.J., Matsuura K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 2005, 30:79.
-
(2005)
Clim. Res.
, vol.30
, pp. 79
-
-
Willmott, C.J.1
Matsuura, K.2
-
94
-
-
58349084263
-
A Novel hybrid genetic algorithm for kernel function and parameter optimization in support vector regression
-
Wu C.-H., Tzeng G.-H., Lin R.-H. A Novel hybrid genetic algorithm for kernel function and parameter optimization in support vector regression. Expert Syst. Appl. Int. J. 2009, 36:4725-4735. 10.1016/j.eswa.2008.06.046.
-
(2009)
Expert Syst. Appl. Int. J.
, vol.36
, pp. 4725-4735
-
-
Wu, C.-H.1
Tzeng, G.-H.2
Lin, R.-H.3
-
95
-
-
78651316181
-
Gaussian processes for short-term traffic volume forecasting
-
Xie Y., Zhao K., Sun Y., Chen D. Gaussian processes for short-term traffic volume forecasting. Transport. Res. Rec. J. Transport. Res. Board 2010, 2165:69-78. 10.3141/2165-08.
-
(2010)
Transport. Res. Rec. J. Transport. Res. Board
, vol.2165
, pp. 69-78
-
-
Xie, Y.1
Zhao, K.2
Sun, Y.3
Chen, D.4
-
96
-
-
0036532655
-
Urban traffic flow prediction using a fuzzy-neural approach
-
Yin H., Wong S.C., Xu J., Wong C.K. Urban traffic flow prediction using a fuzzy-neural approach. Transport. Res. Part C Emerg. Technol. 2002, 10:85-98. 10.1016/S0968-090X(01)00004-3.
-
(2002)
Transport. Res. Part C Emerg. Technol.
, vol.10
, pp. 85-98
-
-
Yin, H.1
Wong, S.C.2
Xu, J.3
Wong, C.K.4
-
97
-
-
40449104106
-
Forecasting of short-term freeway volume with v-support vector machines
-
Zhang Y., Xie Y. Forecasting of short-term freeway volume with v-support vector machines. Transport. Res. Rec. J. Transport. Res. Board 2008, 2024:92-99. 10.3141/2024-11.
-
(2008)
Transport. Res. Rec. J. Transport. Res. Board
, vol.2024
, pp. 92-99
-
-
Zhang, Y.1
Xie, Y.2
-
98
-
-
57649120313
-
Support vector regression and ant colony optimization for combustion performance of boilers
-
Natural Computation, 2008. ICNC '08. Fourth International Conference on. Presented at the Natural Computation, 2008. ICNC '08. Fourth International Conference on
-
Zheng, L., Yu, M., Yu, S., 2008. Support vector regression and ant colony optimization for combustion performance of boilers. In: Natural Computation, 2008. ICNC '08. Fourth International Conference on. Presented at the Natural Computation, 2008. ICNC '08. Fourth International Conference on, pp. 178-182. doi:10.1109/ICNC.2008.479.
-
(2008)
, pp. 178-182
-
-
Zheng, L.1
Yu, M.2
Yu, S.3
-
99
-
-
31044437283
-
Short-term freeway traffic flow prediction: Bayesian combined neural network approach
-
Zheng W., Lee D.H., Shi Q. Short-term freeway traffic flow prediction: Bayesian combined neural network approach. J. Transport. Eng. 2006, 132:114.
-
(2006)
J. Transport. Eng.
, vol.132
, pp. 114
-
-
Zheng, W.1
Lee, D.H.2
Shi, Q.3
|