메뉴 건너뛰기




Volumn 46, Issue , 2014, Pages 151-178

Local online kernel ridge regression for forecasting of urban travel times

Author keywords

Forecasting; Kernel method; Machine learning; Prediction; Time series; Travel time

Indexed keywords

FORECASTING; INTELLIGENT SYSTEMS; LEARNING SYSTEMS; MACHINE LEARNING; MOTOR TRANSPORTATION; REGRESSION ANALYSIS; TIME SERIES; TRAVEL TIME;

EID: 84902485592     PISSN: 0968090X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.trc.2014.05.015     Document Type: Article
Times cited : (70)

References (99)
  • 1
    • 84879574761 scopus 로고    scopus 로고
    • Forecasting multivariate road traffic flows using Bayesian dynamic graphical models, splines and other traffic variables
    • Anacleto O., Queen C., Albers C.J. Forecasting multivariate road traffic flows using Bayesian dynamic graphical models, splines and other traffic variables. Aust. N. Z. J. Stat. 2013, 55:69-86. 10.1111/anzs.12026.
    • (2013) Aust. N. Z. J. Stat. , vol.55 , pp. 69-86
    • Anacleto, O.1    Queen, C.2    Albers, C.J.3
  • 2
    • 84874190610 scopus 로고    scopus 로고
    • Multivariate forecasting of road traffic flows in the presence of heteroscedasticity and measurement errors
    • Anacleto O., Queen C., Albers C.J. Multivariate forecasting of road traffic flows in the presence of heteroscedasticity and measurement errors. J. R. Stat. Soc. Ser. C Appl. Stat. 2013, 62:251-270. 10.1111/j.1467-9876.2012.01059.x.
    • (2013) J. R. Stat. Soc. Ser. C Appl. Stat. , vol.62 , pp. 251-270
    • Anacleto, O.1    Queen, C.2    Albers, C.J.3
  • 3
    • 84857383259 scopus 로고    scopus 로고
    • Neural networks in R using the Stuttgart neural network simulator: RSNNS
    • Bergmeir C., Benítez J.M. Neural networks in R using the Stuttgart neural network simulator: RSNNS. J. Stat. Softw. 2012, 46:1-26.
    • (2012) J. Stat. Softw. , vol.46 , pp. 1-26
    • Bergmeir, C.1    Benítez, J.M.2
  • 4
    • 34548134136 scopus 로고    scopus 로고
    • Application of the ARIMA models to urban roadway travel time prediction - a case study
    • 2006 IEEE International Conference on Systems, Man, and Cybernetics. Presented at the 2006 IEEE International Conference on Systems, Man, and Cybernetics, Taipei.
    • Billings, D., Yang, J.-S., 2006. Application of the ARIMA models to urban roadway travel time prediction - a case study. In: 2006 IEEE International Conference on Systems, Man, and Cybernetics. Presented at the 2006 IEEE International Conference on Systems, Man, and Cybernetics, Taipei.
    • (2006)
    • Billings, D.1    Yang, J.-S.2
  • 5
    • 0026966646 scopus 로고
    • A training algorithm for optimal margin classifiers
    • Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory. ACM Press
    • Boser, B.E., Guyon, I.M., Vapnik, V.N., 1992. A training algorithm for optimal margin classifiers. In: Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory. ACM Press, pp. 144-152.
    • (1992) , pp. 144-152
    • Boser, B.E.1    Guyon, I.M.2    Vapnik, V.N.3
  • 7
    • 70449085050 scopus 로고    scopus 로고
    • Tourism demand forecasting by support vector regression and genetic algorithm
    • Computer Science and Information Technology, 2009. ICCSIT 2009. 2nd IEEE International Conference on. Presented at the Computer Science and Information Technology, 2009. ICCSIT 2009. 2nd IEEE International Conference on
    • Cai, Z., Li, S., Zhang, X., 2009. Tourism demand forecasting by support vector regression and genetic algorithm. In: Computer Science and Information Technology, 2009. ICCSIT 2009. 2nd IEEE International Conference on. Presented at the Computer Science and Information Technology, 2009. ICCSIT 2009. 2nd IEEE International Conference on, pp. 144-146. doi:10.1109/ICCSIT.2009.5234447.
    • (2009) , pp. 144-146
    • Cai, Z.1    Li, S.2    Zhang, X.3
  • 8
    • 70349598845 scopus 로고    scopus 로고
    • Appearance-based object recognition using SVMs: which kernel should I use?
    • Proceedings of NIPS Workshop on Statistical Methods for Computational Experiments in Visual Processing and Computer Vision. Presented at the NIPS Workshop on Statistical Methods for Computational Experiments in Visual Processing and Computer Vision, Whistler.
    • Caputo, B., Sim, K., Furesjo, F., Smola, A., 2002. Appearance-based object recognition using SVMs: which kernel should I use? In: Proceedings of NIPS Workshop on Statistical Methods for Computational Experiments in Visual Processing and Computer Vision. Presented at the NIPS Workshop on Statistical Methods for Computational Experiments in Visual Processing and Computer Vision, Whistler.
    • (2002)
    • Caputo, B.1    Sim, K.2    Furesjo, F.3    Smola, A.4
  • 9
    • 58349104545 scopus 로고    scopus 로고
    • Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions
    • Castro-Neto M., Jeong Y.S., Jeong M.K., Han L.D. Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions. Expert Syst. Appl. 2009, 36:6164-6173.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 6164-6173
    • Castro-Neto, M.1    Jeong, Y.S.2    Jeong, M.K.3    Han, L.D.4
  • 10
    • 84871806794 scopus 로고    scopus 로고
    • Prediction of short-term traffic variables using intelligent swarm-based neural networks
    • Chan K.Y., Dillon T., Chang E., Singh J. Prediction of short-term traffic variables using intelligent swarm-based neural networks. IEEE Trans. Control Syst. Technol. 2013, 21:263-274. 10.1109/TCST.2011.2180386.
    • (2013) IEEE Trans. Control Syst. Technol. , vol.21 , pp. 263-274
    • Chan, K.Y.1    Dillon, T.2    Chang, E.3    Singh, J.4
  • 11
    • 84878126816 scopus 로고    scopus 로고
    • An Intelligent particle swarm optimization for short-term traffic flow forecasting using on-road sensor systems
    • Chan K.Y., Dillon T.S., Chang E. An Intelligent particle swarm optimization for short-term traffic flow forecasting using on-road sensor systems. IEEE Trans. Ind. Electron. 2013, 60:4714-4725. 10.1109/TIE.2012.2213556.
    • (2013) IEEE Trans. Ind. Electron. , vol.60 , pp. 4714-4725
    • Chan, K.Y.1    Dillon, T.S.2    Chang, E.3
  • 12
    • 84861893114 scopus 로고    scopus 로고
    • Neural-network-based models for short-term traffic flow forecasting using a hybrid exponential smoothing and Levenberg-Marquardt algorithm
    • Chan K.Y., Dillon T.S., Singh J., Chang E. Neural-network-based models for short-term traffic flow forecasting using a hybrid exponential smoothing and Levenberg-Marquardt algorithm. IEEE Trans. Intell. Transport. Syst. 2012, 13:644-654. 10.1109/TITS.2011.2174051.
    • (2012) IEEE Trans. Intell. Transport. Syst. , vol.13 , pp. 644-654
    • Chan, K.Y.1    Dillon, T.S.2    Singh, J.3    Chang, E.4
  • 13
    • 84859922180 scopus 로고    scopus 로고
    • Selection of significant on-road sensor data for short-term traffic flow forecasting using the taguchi method
    • Chan K.Y., Khadem S., Dillon T.S., Palade V., Singh J., Chang E. Selection of significant on-road sensor data for short-term traffic flow forecasting using the taguchi method. IEEE Trans. Ind. Inform. 2012, 8:255-266. 10.1109/TII.2011.2179052.
    • (2012) IEEE Trans. Ind. Inform. , vol.8 , pp. 255-266
    • Chan, K.Y.1    Khadem, S.2    Dillon, T.S.3    Palade, V.4    Singh, J.5    Chang, E.6
  • 14
    • 84862782234 scopus 로고    scopus 로고
    • The retrieval of intra-day trend and its influence on traffic prediction
    • Chen C., Wang Y., Li L., Hu J., Zhang Z. The retrieval of intra-day trend and its influence on traffic prediction. Transport. Res. Part C Emerg. Technol. 2012, 22:103-118. 10.1016/j.trc.2011.12.006.
    • (2012) Transport. Res. Part C Emerg. Technol. , vol.22 , pp. 103-118
    • Chen, C.1    Wang, Y.2    Li, L.3    Hu, J.4    Zhang, Z.5
  • 15
    • 0035480351 scopus 로고    scopus 로고
    • Use of sequential learning for short-term traffic flow forecasting
    • Chen H., Grant-Muller S. Use of sequential learning for short-term traffic flow forecasting. Transport. Res. Part C Emerg. Technol. 2001, 9:319-336. 10.1016/S0968-090X(00)00039-5.
    • (2001) Transport. Res. Part C Emerg. Technol. , vol.9 , pp. 319-336
    • Chen, H.1    Grant-Muller, S.2
  • 16
    • 84892538587 scopus 로고    scopus 로고
    • A dynamic spatial weight matrix and localized space-time autoregressive integrated moving average for network modeling
    • Cheng T., Wang J., Haworth J., Heydecker B., Chow A. A dynamic spatial weight matrix and localized space-time autoregressive integrated moving average for network modeling. Geogr. Anal. 2014, 46:75-97. 10.1111/gean.12026.
    • (2014) Geogr. Anal. , vol.46 , pp. 75-97
    • Cheng, T.1    Wang, J.2    Haworth, J.3    Heydecker, B.4    Chow, A.5
  • 17
    • 85029854485 scopus 로고    scopus 로고
    • STARIMA for journey time prediction in London
    • Proceedings of the 5th IMA (Institute of Mathematics and Its Applications) Conference on Mathematics in Transport. London, UK.
    • Cheng, T., Wang, J., Heydecker, B., Haworth, J., 2010. STARIMA for journey time prediction in London. In: Proceedings of the 5th IMA (Institute of Mathematics and Its Applications) Conference on Mathematics in Transport. London, UK.
    • (2010)
    • Cheng, T.1    Wang, J.2    Heydecker, B.3    Haworth, J.4
  • 18
    • 45849138568 scopus 로고    scopus 로고
    • Adaptive hybrid fuzzy rule-based system approach for modeling and predicting urban traffic flow
    • 16/j.trc.2007.11.003
    • Dimitriou L., Tsekeris T., Stathopoulos A. Adaptive hybrid fuzzy rule-based system approach for modeling and predicting urban traffic flow. Transport. Res. Part C Emerg. Technol. 2008, 16:554-573. 16/j.trc.2007.11.003.
    • (2008) Transport. Res. Part C Emerg. Technol. , vol.16 , pp. 554-573
    • Dimitriou, L.1    Tsekeris, T.2    Stathopoulos, A.3
  • 19
    • 78650818807 scopus 로고    scopus 로고
    • Forecasting traffic volume with space-time ARIMA model
    • Ding Q.Y., Wang X.F., Zhang X.Y., Sun Z.Q. Forecasting traffic volume with space-time ARIMA model. Adv. Mater. Res. 2010, 156-157:979-983. 10.4028/www.scientific.net/AMR.156-157.979.
    • (2010) Adv. Mater. Res. , pp. 979-983
    • Ding, Q.Y.1    Wang, X.F.2    Zhang, X.Y.3    Sun, Z.Q.4
  • 20
    • 0029485810 scopus 로고
    • A review of neural networks applied to transport
    • Dougherty M. A review of neural networks applied to transport. Transport. Res. Part C Emerg. Technol. 1995, 3:247-260. 10.1016/0968-090X(95)00009-8.
    • (1995) Transport. Res. Part C Emerg. Technol. , vol.3 , pp. 247-260
    • Dougherty, M.1
  • 21
    • 26444565569 scopus 로고
    • Finding structure in time* 1
    • Elman J.L. Finding structure in time* 1. Cogn. Sci. 1990, 14:179-211.
    • (1990) Cogn. Sci. , vol.14 , pp. 179-211
    • Elman, J.L.1
  • 22
    • 84879805315 scopus 로고    scopus 로고
    • Model selection in kernel ridge regression
    • Exterkate P. Model selection in kernel ridge regression. Comput. Stat. Data Anal. 2013, 68:1-16. 10.1016/j.csda.2013.06.006.
    • (2013) Comput. Stat. Data Anal. , vol.68 , pp. 1-16
    • Exterkate, P.1
  • 23
    • 80052718938 scopus 로고    scopus 로고
    • A Bayesian dynamic linear model approach for real-time short-term freeway travel time prediction
    • Fei X., Lu C.-C., Liu K. A Bayesian dynamic linear model approach for real-time short-term freeway travel time prediction. Transport. Res. Part C Emerg. Technol. 2011, 19:1306-1318. 10.1016/j.trc.2010.10.005.
    • (2011) Transport. Res. Part C Emerg. Technol. , vol.19 , pp. 1306-1318
    • Fei, X.1    Lu, C.-C.2    Liu, K.3
  • 24
    • 84858304479 scopus 로고    scopus 로고
    • Valuing travel time variability: characteristics of the travel time distribution on an urban road
    • Fosgerau M., Fukuda D. Valuing travel time variability: characteristics of the travel time distribution on an urban road. Transport. Res. Part C Emerg. Technol. 2012, 24:83-101. 10.1016/j.trc.2012.02.008.
    • (2012) Transport. Res. Part C Emerg. Technol. , vol.24 , pp. 83-101
    • Fosgerau, M.1    Fukuda, D.2
  • 26
    • 10044285992 scopus 로고    scopus 로고
    • Canonical correlation analysis: an overview with application to learning methods
    • Hardoon D.R., Szedmak S., Shawe-Taylor J. Canonical correlation analysis: an overview with application to learning methods. Neural Comput. 2004, 16:2639-2664. 10.1162/0899766042321814.
    • (2004) Neural Comput. , vol.16 , pp. 2639-2664
    • Hardoon, D.R.1    Szedmak, S.2    Shawe-Taylor, J.3
  • 27
    • 74949130472 scopus 로고    scopus 로고
    • Grid-enabling geographically weighted regression: a case study of participation in higher education in England
    • Harris R., Singleton A., Grose D., Brunsdon C., Longley P. Grid-enabling geographically weighted regression: a case study of participation in higher education in England. Trans. GIS 2010, 14:43-61. 10.1111/j.1467-9671.2009.01181.x.
    • (2010) Trans. GIS , vol.14 , pp. 43-61
    • Harris, R.1    Singleton, A.2    Grose, D.3    Brunsdon, C.4    Longley, P.5
  • 28
    • 84902528293 scopus 로고    scopus 로고
    • Graphical LASSO for local spatio-temporal neighbourhood selection
    • Proceedings the GIS Research UK 22nd Annual Conference. Presented at the GISRUK 2014, University of Glasgow, Glasgow, Scotland
    • Haworth, J., Cheng, T., 2014. Graphical LASSO for local spatio-temporal neighbourhood selection. In: Proceedings the GIS Research UK 22nd Annual Conference. Presented at the GISRUK 2014, University of Glasgow, Glasgow, Scotland, pp. 425-433.
    • (2014) , pp. 425-433
    • Haworth, J.1    Cheng, T.2
  • 29
    • 84942484786 scopus 로고
    • Ridge regression: biased estimation for nonorthogonal problems
    • Hoerl A.E., Kennard R.W. Ridge regression: biased estimation for nonorthogonal problems. Technometrics 1970, 12:55-67. 10.2307/1267351.
    • (1970) Technometrics , vol.12 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.W.2
  • 30
    • 84865748237 scopus 로고    scopus 로고
    • Arterial travel time forecast with streaming data: a hybrid approach of flow modeling and machine learning
    • Hofleitner A., Herring R., Bayen A. Arterial travel time forecast with streaming data: a hybrid approach of flow modeling and machine learning. Transport. Res. Part B Methodol. 2012, 46:1097-1122. 10.1016/j.trb.2012.03.006.
    • (2012) Transport. Res. Part B Methodol. , vol.46 , pp. 1097-1122
    • Hofleitner, A.1    Herring, R.2    Bayen, A.3
  • 31
    • 84858160566 scopus 로고    scopus 로고
    • Application of seasonal SVR with chaotic immune algorithm in traffic flow forecasting
    • Hong, W.-C., 2010. Application of seasonal SVR with chaotic immune algorithm in traffic flow forecasting. Neural Comput. Appl. doi:10.1007/s00521-010-0456-7.
    • (2010) Neural Comput. Appl.
    • Hong, W.-C.1
  • 32
    • 79956119798 scopus 로고    scopus 로고
    • Traffic flow forecasting by seasonal SVR with chaotic simulated annealing algorithm
    • Hong W.-C. Traffic flow forecasting by seasonal SVR with chaotic simulated annealing algorithm. Neurocomputing 2011, 74:2096-2107. 10.1016/j.neucom.2010.12.032.
    • (2011) Neurocomputing , vol.74 , pp. 2096-2107
    • Hong, W.-C.1
  • 33
    • 84858160566 scopus 로고    scopus 로고
    • Application of seasonal SVR with chaotic immune algorithm in traffic flow forecasting
    • Hong W.-C. Application of seasonal SVR with chaotic immune algorithm in traffic flow forecasting. Neural Comput. Appl. 2012, 21:583-593. 10.1007/s00521-010-0456-7.
    • (2012) Neural Comput. Appl. , vol.21 , pp. 583-593
    • Hong, W.-C.1
  • 34
    • 78549267441 scopus 로고    scopus 로고
    • Forecasting urban traffic flow by SVR with continuous ACO
    • Hong W.-C., Dong Y., Zheng F., Lai C.-Y. Forecasting urban traffic flow by SVR with continuous ACO. Appl. Math. Model. 2011, 35:1282-1291. 10.1016/j.apm.2010.09.005.
    • (2011) Appl. Math. Model. , vol.35 , pp. 1282-1291
    • Hong, W.-C.1    Dong, Y.2    Zheng, F.3    Lai, C.-Y.4
  • 35
    • 0000107975 scopus 로고
    • Relations between two sets of variates
    • Hotelling H. Relations between two sets of variates. Biometrika 1936, 28:321-377. 10.1093/biomet/28.3-4.321.
    • (1936) Biometrika , vol.28 , pp. 321-377
    • Hotelling, H.1
  • 36
    • 67949085060 scopus 로고    scopus 로고
    • A novel forecasting approach inspired by human memory: the example of short-term traffic volume forecasting
    • Huang S., Sadek A.W. A novel forecasting approach inspired by human memory: the example of short-term traffic volume forecasting. Transport. Res. Part C Emerg. Technol. 2009, 17:510-525. 10.1016/j.trc.2009.04.006.
    • (2009) Transport. Res. Part C Emerg. Technol. , vol.17 , pp. 510-525
    • Huang, S.1    Sadek, A.W.2
  • 37
    • 79960526501 scopus 로고    scopus 로고
    • Automatic Time Series for Forecasting: the Forecast Package for R.
    • Hyndman, R.J., Khandakar, Y., 2007. Automatic Time Series for Forecasting: the Forecast Package for R.
    • (2007)
    • Hyndman, R.J.1    Khandakar, Y.2
  • 38
    • 33749517168 scopus 로고    scopus 로고
    • Another look at measures of forecast accuracy
    • Hyndman R.J., Koehler A.B. Another look at measures of forecast accuracy. Int. J. Forecast. 2006, 22:679-688. 10.1016/j.ijforecast.2006.03.001.
    • (2006) Int. J. Forecast. , vol.22 , pp. 679-688
    • Hyndman, R.J.1    Koehler, A.B.2
  • 39
    • 0001887517 scopus 로고
    • Attractor dynamics and parallellism in a connectionist sequential machine
    • Presented at the Proceedings of the Eighth Annual Meeting of the Cognitive Science Society, Lawrence Erlbaum Associates
    • Jordan, M., 1986. Attractor dynamics and parallellism in a connectionist sequential machine. Presented at the Proceedings of the Eighth Annual Meeting of the Cognitive Science Society, Lawrence Erlbaum Associates, pp. 531-546.
    • (1986) , pp. 531-546
    • Jordan, M.1
  • 40
    • 80051595965 scopus 로고    scopus 로고
    • Feature scaling in support vector data description
    • Juszczak, P., Tax, D., Duin, R.P.W., 2002. Feature scaling in support vector data description. In: Proc. ASCI. pp. 95-102.
    • (2002) Proc. ASCI , pp. 95-102
    • Juszczak, P.1    Tax, D.2    Duin, R.P.W.3
  • 41
    • 77953362241 scopus 로고    scopus 로고
    • Characterizing regimes in daily cycles of urban traffic using smooth-transition regressions
    • Kamarianakis Y., Oliver Gao H., Prastacos P. Characterizing regimes in daily cycles of urban traffic using smooth-transition regressions. Transport. Res. Part C Emerg. Technol. 2010, 18:821-840. 10.1016/j.trc.2009.11.001.
    • (2010) Transport. Res. Part C Emerg. Technol. , vol.18 , pp. 821-840
    • Kamarianakis, Y.1    Oliver Gao, H.2    Prastacos, P.3
  • 42
    • 12344314263 scopus 로고    scopus 로고
    • Space-time modeling of traffic flow
    • Kamarianakis Y., Prastacos P. Space-time modeling of traffic flow. Comput. Geosci. 2005, 31:119-133. 10.1016/j.cageo.2004.05.012.
    • (2005) Comput. Geosci. , vol.31 , pp. 119-133
    • Kamarianakis, Y.1    Prastacos, P.2
  • 43
    • 84865148479 scopus 로고    scopus 로고
    • Real-time road traffic forecasting using regime-switching space-time models and adaptive LASSO
    • Kamarianakis Y., Shen W., Wynter L. Real-time road traffic forecasting using regime-switching space-time models and adaptive LASSO. Appl. Stoch. Models Bus. Ind. 2012, 28:297-315. 10.1002/asmb.1937.
    • (2012) Appl. Stoch. Models Bus. Ind. , vol.28 , pp. 297-315
    • Kamarianakis, Y.1    Shen, W.2    Wynter, L.3
  • 46
    • 79951775181 scopus 로고    scopus 로고
    • Statistical methods versus neural networks in transportation research: differences, similarities and some insights
    • Karlaftis M.G., Vlahogianni E.I. Statistical methods versus neural networks in transportation research: differences, similarities and some insights. Transport. Res. Part C Emerg. Technol. 2011, 19:387-399. 10.1016/j.trc.2010.10.004.
    • (2011) Transport. Res. Part C Emerg. Technol. , vol.19 , pp. 387-399
    • Karlaftis, M.G.1    Vlahogianni, E.I.2
  • 47
    • 0037822222 scopus 로고    scopus 로고
    • Asymptotic behaviors of support vector machines with gaussian kernel
    • Keerthi S.S., Lin C.-J. Asymptotic behaviors of support vector machines with gaussian kernel. Neural Comput. 2003, 15:1667-1689. 10.1162/089976603321891855.
    • (2003) Neural Comput. , vol.15 , pp. 1667-1689
    • Keerthi, S.S.1    Lin, C.-J.2
  • 48
    • 84902528286 scopus 로고
    • Time Series. E. Arnold.
    • Kendall, M.G., Ord, J.K., 1990. Time Series. E. Arnold.
    • (1990)
    • Kendall, M.G.1    Ord, J.K.2
  • 49
    • 84902528287 scopus 로고
    • A Statistical Approach to Some Mine Valuation and Allied Problems on the Witwatersrand.
    • Krige, d g, 1951. A Statistical Approach to Some Mine Valuation and Allied Problems on the Witwatersrand.
    • (1951)
    • Krige, D.G.1
  • 50
    • 84902528511 scopus 로고    scopus 로고
    • The Support Vector Regression with the parameter tuning assisted by a differential evolution technique: study of the critical velocity of a slurry flow in a pipeline
    • Association of Chemical Engineers.
    • Lahiri, S.K., Ghanta, K.C., 2008. The Support Vector Regression with the parameter tuning assisted by a differential evolution technique: study of the critical velocity of a slurry flow in a pipeline. Association of Chemical Engineers.
    • (2008)
    • Lahiri, S.K.1    Ghanta, K.C.2
  • 51
    • 0031284302 scopus 로고    scopus 로고
    • An urban traffic flow model integrating neural networks
    • Ledoux C. An urban traffic flow model integrating neural networks. Transport. Res. Part C Emerg. Technol. 1997, 5:287-300. 10.1016/S0968-090X(97)00015-6.
    • (1997) Transport. Res. Part C Emerg. Technol. , vol.5 , pp. 287-300
    • Ledoux, C.1
  • 52
    • 58549091522 scopus 로고    scopus 로고
    • A novel automatic parameters optimization approach based on differential evolution for support vector regression
    • Li J., Cai Z. A novel automatic parameters optimization approach based on differential evolution for support vector regression. Adv. Comput. Intell. 2008, 510-519.
    • (2008) Adv. Comput. Intell. , pp. 510-519
    • Li, J.1    Cai, Z.2
  • 53
    • 79960456666 scopus 로고    scopus 로고
    • Incorporating uncertainty into short-term travel time predictions
    • Li R., Rose G. Incorporating uncertainty into short-term travel time predictions. Transport. Res. Part C Emerg. Technol. 2011, 19:1006-1018. 10.1016/j.trc.2011.05.014.
    • (2011) Transport. Res. Part C Emerg. Technol. , vol.19 , pp. 1006-1018
    • Li, R.1    Rose, G.2
  • 54
    • 73849134036 scopus 로고    scopus 로고
    • Hybrid kernel learning via genetic optimization for TS fuzzy system identification
    • Int. J. Adapt. Control Signal Process. n/a-n/a.
    • Li, W., Yang, Y., 2008. Hybrid kernel learning via genetic optimization for TS fuzzy system identification. Int. J. Adapt. Control Signal Process. n/a-n/a. doi:10.1002/acs.1089.
    • (2008)
    • Li, W.1    Yang, Y.2
  • 55
    • 77956104208 scopus 로고    scopus 로고
    • Particle swarm optimization-based LS-SVM for building cooling load prediction
    • Li X., Shao M., Ding L., Xu G., Li J. Particle swarm optimization-based LS-SVM for building cooling load prediction. J. Comput. 2010, 5. 10.4304/jcp.5.4.614-621.
    • (2010) J. Comput. , vol.5
    • Li, X.1    Shao, M.2    Ding, L.3    Xu, G.4    Li, J.5
  • 56
    • 79952736659 scopus 로고    scopus 로고
    • Real-time road traffic prediction with spatio-temporal correlations
    • Min W., Wynter L. Real-time road traffic prediction with spatio-temporal correlations. Transport. Res. Part C Emerg. Technol. 2011, 19:606-616. 10.1016/j.trc.2010.10.002.
    • (2011) Transport. Res. Part C Emerg. Technol. , vol.19 , pp. 606-616
    • Min, W.1    Wynter, L.2
  • 57
    • 72449184151 scopus 로고    scopus 로고
    • Short-term traffic flow forecasting of urban network based on dynamic STARIMA model
    • Intelligent Transportation Systems, 2009. ITSC '09. 12th International IEEE Conference on. Presented at the Intelligent Transportation Systems, 2009. ITSC '09. 12th International IEEE Conference on
    • Min, X., Hu, J., Chen, Q., Zhang, T., Zhang, Y., 2009. Short-term traffic flow forecasting of urban network based on dynamic STARIMA model. In: Intelligent Transportation Systems, 2009. ITSC '09. 12th International IEEE Conference on. Presented at the Intelligent Transportation Systems, 2009. ITSC '09. 12th International IEEE Conference on, pp. 1-6. doi:10.1109/ITSC.2009.5309741.
    • (2009) , pp. 1-6
    • Min, X.1    Hu, J.2    Chen, Q.3    Zhang, T.4    Zhang, Y.5
  • 58
    • 78650443114 scopus 로고    scopus 로고
    • Urban traffic network modeling and short-term traffic flow forecasting based on GSTARIMA model
    • Intelligent Transportation Systems (ITSC), 2010 13th International IEEE Conference on. Presented at the Intelligent Transportation Systems (ITSC), 2010 13th International IEEE Conference on
    • Min, X., Hu, J., Zhang, Z., 2010. Urban traffic network modeling and short-term traffic flow forecasting based on GSTARIMA model. In: Intelligent Transportation Systems (ITSC), 2010 13th International IEEE Conference on. Presented at the Intelligent Transportation Systems (ITSC), 2010 13th International IEEE Conference on, pp. 1535-1540. doi:10.1109/ITSC.2010.5625123.
    • (2010) , pp. 1535-1540
    • Min, X.1    Hu, J.2    Zhang, Z.3
  • 59
    • 84902528288 scopus 로고    scopus 로고
    • Machine Learning, 1st ed. McGraw-Hill Science/Engineering/Math.
    • Mitchell, T.M., 1997. Machine Learning, 1st ed. McGraw-Hill Science/Engineering/Math.
    • (1997)
    • Mitchell, T.M.1
  • 60
    • 0021375695 scopus 로고
    • Dynamic prediction of traffic volume through Kalman filtering theory
    • Okutani I., Stephanedes Y.J. Dynamic prediction of traffic volume through Kalman filtering theory. Transport. Res. Part B Methodol. 1984, 18:1-11.
    • (1984) Transport. Res. Part B Methodol. , vol.18 , pp. 1-11
    • Okutani, I.1    Stephanedes, Y.J.2
  • 61
    • 0342404846 scopus 로고
    • On the order determination of ARIMA Models
    • Ozaki T. On the order determination of ARIMA Models. J. R. Stat. Soc. Ser. C Appl. Stat. 1977, 26:290-301. 10.2307/2346970.
    • (1977) J. R. Stat. Soc. Ser. C Appl. Stat. , vol.26 , pp. 290-301
    • Ozaki, T.1
  • 62
    • 0025056697 scopus 로고
    • Regularization algorithms for learning that are equivalent to multilayer networks
    • Poggio T., Girosi F. Regularization algorithms for learning that are equivalent to multilayer networks. Science 1990, 247:978-982. 10.1126/science.247.4945.978.
    • (1990) Science , vol.247 , pp. 978-982
    • Poggio, T.1    Girosi, F.2
  • 64
    • 0002619965 scopus 로고    scopus 로고
    • Ridge regression learning algorithm in dual variables
    • (ICML-1998) Proceedings of the 15th International Conference on Machine Learning
    • Saunders, C., Gammerman, A., Vovk, V., 1998. Ridge regression learning algorithm in dual variables, in: (ICML-1998) Proceedings of the 15th International Conference on Machine Learning. pp. 515-521.
    • (1998) , pp. 515-521
    • Saunders, C.1    Gammerman, A.2    Vovk, V.3
  • 67
    • 33644989492 scopus 로고    scopus 로고
    • A bayesian network approach to traffic flow forecasting
    • Sun Shiliang, Zhang Changshui, Guoqiang Yu A bayesian network approach to traffic flow forecasting. Intell. Transport. Syst. IEEE Trans. 2006, 7:124-132. 10.1109/TITS.2006.869623.
    • (2006) Intell. Transport. Syst. IEEE Trans. , vol.7 , pp. 124-132
    • Sun, S.1    Zhang, C.2    Guoqiang, Y.3
  • 69
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • Smola A.J., Schölkopf B A tutorial on support vector regression. Stat. Comput. 2004, 14:199-222.
    • (2004) Stat. Comput. , vol.14 , pp. 199-222
    • Smola, A.J.1    Schölkopf, B.2
  • 70
    • 0037954189 scopus 로고    scopus 로고
    • A multivariate state space approach for urban traffic flow modeling and prediction
    • Stathopoulos A., Karlaftis M.G. A multivariate state space approach for urban traffic flow modeling and prediction. Transport. Res. Part C Emerg. Technol. 2003, 11:121-135. 10.1016/S0968-090X(03)00004-4.
    • (2003) Transport. Res. Part C Emerg. Technol. , vol.11 , pp. 121-135
    • Stathopoulos, A.1    Karlaftis, M.G.2
  • 71
    • 85015516737 scopus 로고    scopus 로고
    • Bayesian network methods for traffic flow forecasting with incomplete data
    • Sun S., Zhang C., Yu G., Lu N., Xiao F. Bayesian network methods for traffic flow forecasting with incomplete data. Mach. Learn. ECML 2004, 2004:419-428.
    • (2004) Mach. Learn. ECML , vol.2004 , pp. 419-428
    • Sun, S.1    Zhang, C.2    Yu, G.3    Lu, N.4    Xiao, F.5
  • 72
    • 33646262592 scopus 로고    scopus 로고
    • Traffic flow forecasting using a spatio-temporal bayesian network predictor
    • ICANN 2005 273-278.
    • Sun, S., Zhang, C., Zhang, Y., 2005. Traffic flow forecasting using a spatio-temporal bayesian network predictor. Artif. Neural Netw. Form. Models Their Appl.-ICANN 2005 273-278.
    • (2005) Artif. Neural Netw. Form. Models Their Appl.
    • Sun, S.1    Zhang, C.2    Zhang, Y.3
  • 73
    • 20444505293 scopus 로고    scopus 로고
    • Determination of optimal support vector regression parameters by genetic algorithms and simplex optimization
    • Üstün B., Melssen W.J., Oudenhuijzen M., Buydens L.M.C. Determination of optimal support vector regression parameters by genetic algorithms and simplex optimization. Anal. Chim. Acta 2005, 544:292-305. 10.1016/j.aca.2004.12.024.
    • (2005) Anal. Chim. Acta , vol.544 , pp. 292-305
    • Üstün, B.1    Melssen, W.J.2    Oudenhuijzen, M.3    Buydens, L.M.C.4
  • 74
    • 0030298951 scopus 로고    scopus 로고
    • Combining Kohonen maps with arima time series models to forecast traffic flow
    • Van Der Voort M., Dougherty M., Watson S. Combining Kohonen maps with arima time series models to forecast traffic flow. Transport. Res. Part C Emerg. Technol. 1996, 4:307-318. 10.1016/S0968-090X(97)82903-8.
    • (1996) Transport. Res. Part C Emerg. Technol. , vol.4 , pp. 307-318
    • Van Der Voort, M.1    Dougherty, M.2    Watson, S.3
  • 76
    • 33751077286 scopus 로고    scopus 로고
    • Reliable real-time framework for short-term freeway travel time prediction
    • Van Lint J.W.C. Reliable real-time framework for short-term freeway travel time prediction. J. Transport. Eng. 2006, 132:921-932. 10.1061/(ASCE)0733-947X(2006) 132:12(921).
    • (2006) J. Transport. Eng. , vol.132 , pp. 921-932
    • Van Lint, J.W.C.1
  • 77
    • 33646762818 scopus 로고    scopus 로고
    • Accurate freeway travel time prediction with state-space neural networks under missing data
    • Van Lint J.W.C., Hoogendoorn S.P., van Zuylen H.J. Accurate freeway travel time prediction with state-space neural networks under missing data. Transport. Res. Part C Emerg. Technol. 2005, 13:347-369. 10.1016/j.trc.2005.03.001.
    • (2005) Transport. Res. Part C Emerg. Technol. , vol.13 , pp. 347-369
    • Van Lint, J.W.C.1    Hoogendoorn, S.P.2    van Zuylen, H.J.3
  • 79
    • 78049413965 scopus 로고    scopus 로고
    • Fixed-budget kernel recursive least-squares
    • 2010 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP). Presented at the 2010 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP)
    • Van Vaerenbergh, S., Santamaria, I., Liu, W., Principe, J.C., 2010. Fixed-budget kernel recursive least-squares. In: 2010 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP). Presented at the 2010 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp. 1882-1885. doi:10.1109/ICASSP.2010.5495350.
    • (2010) , pp. 1882-1885
    • Van Vaerenbergh, S.1    Santamaria, I.2    Liu, W.3    Principe, J.C.4
  • 80
    • 33947702137 scopus 로고    scopus 로고
    • A sliding-window kernel RLS algorithm and its application to nonlinear channel identification
    • Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE International Conference on. V-V
    • Van Vaerenbergh, S., Via, J., Santamana, I., 2006. A sliding-window kernel RLS algorithm and its application to nonlinear channel identification. In: Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE International Conference on. pp. V-V.
    • (2006)
    • Van Vaerenbergh, S.1    Via, J.2    Santamana, I.3
  • 81
    • 4544262864 scopus 로고    scopus 로고
    • A comparison of the performance of artificial
    • neural networks and support vector machines for the prediction of traffic speed, 2004 IEEE Intelligent Vehicles Symposium. Parma.
    • Vanajakshi, L., Rilett, L.R., 2004. A comparison of the performance of artificial. neural networks and support vector machines for the prediction of traffic speed. In: 2004 IEEE Intelligent Vehicles Symposium. Parma.
    • (2004)
    • Vanajakshi, L.1    Rilett, L.R.2
  • 82
    • 47849099540 scopus 로고    scopus 로고
    • Support Vector Machine Technique for the Short Term Prediction of Travel Time
    • Proceedings of the 2007 IEEE Intelligent Vehicles Symposium. Istanbul.
    • Vanajakshi, L., Rilett, L.R., 2007. Support Vector Machine Technique for the Short Term Prediction of Travel Time. In: Proceedings of the 2007 IEEE Intelligent Vehicles Symposium. Istanbul.
    • (2007)
    • Vanajakshi, L.1    Rilett, L.R.2
  • 83
    • 0010864753 scopus 로고
    • Pattern recognition using generalized portrait method
    • Vapnik V., Lerner A. Pattern recognition using generalized portrait method. Autom. Remote Control 1963, 24:774-780.
    • (1963) Autom. Remote Control , vol.24 , pp. 774-780
    • Vapnik, V.1    Lerner, A.2
  • 85
    • 23844513726 scopus 로고    scopus 로고
    • Optimized and meta-optimized neural networks for short-term traffic flow prediction: a genetic approach
    • Vlahogianni E.I., Karlaftis M.G., Golias J.C. Optimized and meta-optimized neural networks for short-term traffic flow prediction: a genetic approach. Transport. Res. Part C Emerg. Technol. 2005, 13:211-234. 10.1016/j.trc.2005.04.007.
    • (2005) Transport. Res. Part C Emerg. Technol. , vol.13 , pp. 211-234
    • Vlahogianni, E.I.1    Karlaftis, M.G.2    Golias, J.C.3
  • 86
    • 34249317652 scopus 로고    scopus 로고
    • Spatio-temporal short-term urban traffic volume forecasting using genetically optimized modular networks
    • Vlahogianni E.I., Karlaftis M.G., Golias J.C. Spatio-temporal short-term urban traffic volume forecasting using genetically optimized modular networks. Comput.-Aided Civ. Infrastruct. Eng. 2007, 22:317-325. 10.1111/j.1467-8667.2007.00488.x.
    • (2007) Comput.-Aided Civ. Infrastruct. Eng. , vol.22 , pp. 317-325
    • Vlahogianni, E.I.1    Karlaftis, M.G.2    Golias, J.C.3
  • 89
    • 77951491708 scopus 로고    scopus 로고
    • Parameter Selection of Support Vector Regression Based on a Novel Chaotic Immune Algorithm
    • Innovative Computing, Information and Control (ICICIC), 2009 Fourth International Conference on. Presented at the Innovative Computing, Information and Control (ICICIC), 2009 Fourth International Conference on
    • Wang, J., Wang, Y., Zhang, C., Du, W., Zhou, C., Liang, Y., 2009. Parameter Selection of Support Vector Regression Based on a Novel Chaotic Immune Algorithm. In: Innovative Computing, Information and Control (ICICIC), 2009 Fourth International Conference on. Presented at the Innovative Computing, Information and Control (ICICIC), 2009 Fourth International Conference on, pp. 652-655. doi:10.1109/ICICIC.2009.287.
    • (2009) , pp. 652-655
    • Wang, J.1    Wang, Y.2    Zhang, C.3    Du, W.4    Zhou, C.5    Liang, Y.6
  • 90
    • 67650677303 scopus 로고    scopus 로고
    • Parameters optimization of support vector regression based on immune particle swarm optimization algorithm
    • Proceedings of the First ACM/SIGEVO Summit on Genetic and Evolutionary Computation, GEC '09. ACM, New York, NY, USA
    • Wang, Y., Wang, J., Du, W., Zhang, C., Zhang, Y., Zhou, C., 2009. Parameters optimization of support vector regression based on immune particle swarm optimization algorithm. In: Proceedings of the First ACM/SIGEVO Summit on Genetic and Evolutionary Computation, GEC '09. ACM, New York, NY, USA, pp. 997-1000. doi:10.1145/1543834.1543992.
    • (2009) , pp. 997-1000
    • Wang, Y.1    Wang, J.2    Du, W.3    Zhang, C.4    Zhang, Y.5    Zhou, C.6
  • 91
    • 0344944192 scopus 로고    scopus 로고
    • Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theoretical basis and empirical results
    • Williams B.M., Hoel L.A. Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theoretical basis and empirical results. J. Transport. Eng. ASCE 2003, 129:664-672.
    • (2003) J. Transport. Eng. ASCE , vol.129 , pp. 664-672
    • Williams, B.M.1    Hoel, L.A.2
  • 92
    • 30444437204 scopus 로고    scopus 로고
    • Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance
    • Willmott C.J., Matsuura K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 2005, 30:79.
    • (2005) Clim. Res. , vol.30 , pp. 79
    • Willmott, C.J.1    Matsuura, K.2
  • 93
    • 10644266188 scopus 로고    scopus 로고
    • Travel-time prediction with support vector regression
    • Wu C.-H., Ho J.-M., Lee D.T. Travel-time prediction with support vector regression. IEEE Trans. Intell. Transport. Syst. 2004, 5:276-281. 10.1109/TITS.2004.837813.
    • (2004) IEEE Trans. Intell. Transport. Syst. , vol.5 , pp. 276-281
    • Wu, C.-H.1    Ho, J.-M.2    Lee, D.T.3
  • 94
    • 58349084263 scopus 로고    scopus 로고
    • A Novel hybrid genetic algorithm for kernel function and parameter optimization in support vector regression
    • Wu C.-H., Tzeng G.-H., Lin R.-H. A Novel hybrid genetic algorithm for kernel function and parameter optimization in support vector regression. Expert Syst. Appl. Int. J. 2009, 36:4725-4735. 10.1016/j.eswa.2008.06.046.
    • (2009) Expert Syst. Appl. Int. J. , vol.36 , pp. 4725-4735
    • Wu, C.-H.1    Tzeng, G.-H.2    Lin, R.-H.3
  • 96
  • 97
    • 40449104106 scopus 로고    scopus 로고
    • Forecasting of short-term freeway volume with v-support vector machines
    • Zhang Y., Xie Y. Forecasting of short-term freeway volume with v-support vector machines. Transport. Res. Rec. J. Transport. Res. Board 2008, 2024:92-99. 10.3141/2024-11.
    • (2008) Transport. Res. Rec. J. Transport. Res. Board , vol.2024 , pp. 92-99
    • Zhang, Y.1    Xie, Y.2
  • 98
    • 57649120313 scopus 로고    scopus 로고
    • Support vector regression and ant colony optimization for combustion performance of boilers
    • Natural Computation, 2008. ICNC '08. Fourth International Conference on. Presented at the Natural Computation, 2008. ICNC '08. Fourth International Conference on
    • Zheng, L., Yu, M., Yu, S., 2008. Support vector regression and ant colony optimization for combustion performance of boilers. In: Natural Computation, 2008. ICNC '08. Fourth International Conference on. Presented at the Natural Computation, 2008. ICNC '08. Fourth International Conference on, pp. 178-182. doi:10.1109/ICNC.2008.479.
    • (2008) , pp. 178-182
    • Zheng, L.1    Yu, M.2    Yu, S.3
  • 99
    • 31044437283 scopus 로고    scopus 로고
    • Short-term freeway traffic flow prediction: Bayesian combined neural network approach
    • Zheng W., Lee D.H., Shi Q. Short-term freeway traffic flow prediction: Bayesian combined neural network approach. J. Transport. Eng. 2006, 132:114.
    • (2006) J. Transport. Eng. , vol.132 , pp. 114
    • Zheng, W.1    Lee, D.H.2    Shi, Q.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.