-
1
-
-
0038554077
-
Biology of the p21-activated kinases
-
Bokoch GM. Biology of the p21-activated kinases. Annu Rev Biochem. 2003;72: 743-781.
-
(2003)
Annu Rev Biochem.
, vol.72
, pp. 743-781
-
-
Bokoch, G.M.1
-
3
-
-
0031105660
-
Human p21-activated kinase (pak1) regulates actin organization in mammalian cells
-
SellsMA, Knaus UG, Bagrodia S, AmbroseDM, BokochGM, Chernoff J. Human p21-activated kinase (Pak1) regulates actin organization in mammalian cells. Curr Biol. 1997;7: 202-210.
-
(1997)
Curr Biol.
, vol.7
, pp. 202-210
-
-
Sells, M.A.1
Knaus, U.G.2
Bagrodia, S.3
Ambrose, D.M.4
Bokoch, G.M.5
Chernoff, J.6
-
4
-
-
76149107841
-
Small g proteins in islet β-cell function
-
Kowluru A. Small G proteins in islet β-cell function. Endocr Rev. 2010;31: 52-78.
-
(2010)
Endocr Rev.
, vol.31
, pp. 52-78
-
-
Kowluru, A.1
-
5
-
-
33846279042
-
A rac-cgmp signaling pathway
-
Guo D, Tan YC, Wang D, et al. A Rac-cGMP signaling pathway. Cell. 2007;128: 341-355.
-
(2007)
Cell.
, vol.128
, pp. 341-355
-
-
Guo, D.1
Tan, Y.C.2
Wang, D.3
-
6
-
-
0029828473
-
Insulin activates a p21-activated kinase in muscle cells via phosphatidylinositol 3-kinase
-
Tsakiridis T, Taha C, Grinstein S, Klip A. Insulin activates a p21-activated kinase in muscle cells via phosphatidylinositol 3-kinase. J Biol Chem. 1996;271: 19664-19667.
-
(1996)
J Biol Chem.
, vol.271
, pp. 19664-19667
-
-
Tsakiridis, T.1
Taha, C.2
Grinstein, S.3
Klip, A.4
-
7
-
-
79960711294
-
Rac1 signalling towards glut4/glucose uptake in skeletal muscle
-
Chiu TT, Jensen TE, Sylow L, Richter EA, Klip A. Rac1 signalling towards GLUT4/glucose uptake in skeletal muscle. Cell Signal. 2011;23: 1546-1554.
-
(2011)
Cell Signal.
, vol.23
, pp. 1546-1554
-
-
Chiu, T.T.1
Jensen, T.E.2
Sylow, L.3
Richter, E.A.4
Klip, A.5
-
8
-
-
34248219593
-
Glucose-stimulated cdc42 signaling is essential for the second phase of insulin secretion
-
WangZ, OhE, Thurmond DC. Glucose-stimulated Cdc42 signaling is essential for the second phase of insulin secretion. J Biol Chem. 2007;282: 9536-9546.
-
(2007)
J Biol Chem.
, vol.282
, pp. 9536-9546
-
-
Wang, Z.1
Oh, E.2
Thurmond, D.C.3
-
9
-
-
59649088932
-
Insulin regulates glucagon-like peptide-1 secretion from the enteroendocrine l cell
-
Lim GE, Huang GJ, Flora N, LeRoith D, Rhodes CJ, Brubaker PL. Insulin regulates glucagon-like peptide-1 secretion from the enteroendocrine L cell. Endocrinology. 2009;150: 580-591.
-
(2009)
Endocrinology.
, vol.150
, pp. 580-591
-
-
Lim, G.E.1
Huang, G.J.2
Flora, N.3
LeRoith, D.4
Rhodes, C.J.5
Brubaker, P.L.6
-
10
-
-
82355184464
-
Inhibition or ablation of p21-activated kinase (pak1) disrupts glucose homeostatic mechanisms in vivo
-
Wang Z, Oh E, Clapp DW, Chernoff J, Thurmond DC. Inhibition or ablation of p21-activated kinase (PAK1) disrupts glucose homeostatic mechanisms in vivo. J Biol Chem. 2011;286: 41359-41367.
-
(2011)
J Biol Chem.
, vol.286
, pp. 41359-41367
-
-
Wang, Z.1
Oh, E.2
Clapp, D.W.3
Chernoff, J.4
Thurmond, D.C.5
-
11
-
-
77954380946
-
Twelve weeks treatment with the dpp-4 inhibitor, sitagliptin, prevents degradation of peptide yy and improves glucose and non-glucose induced insulin secretion in patients with type 2 diabetes mellitus
-
Aaboe K, Knop FK, Vilsbøll T, et al. Twelve weeks treatment with the DPP-4 inhibitor, sitagliptin, prevents degradation of peptide YY and improves glucose and non-glucose induced insulin secretion in patients with type 2 diabetes mellitus. Diabetes Obes Metab. 2010; 12: 323-333.
-
(2010)
Diabetes Obes Metab.
, vol.12
, pp. 323-333
-
-
Aaboe, K.1
Knop, F.K.2
Vilsbøll, T.3
-
12
-
-
84900544389
-
P21-activated protein kinases and their emerging roles in glucose homeostasis
-
Chiang YT, Jin T. P21-activated protein kinases and their emerging roles in glucose homeostasis.Am J Physiol Endocrinol Metab. 2014; 306: E707-E722.
-
(2014)
Am J Physiol Endocrinol Metab.
, vol.306
-
-
Chiang, Y.T.1
Jin, T.2
-
13
-
-
69849101404
-
P-21-activated protein kinase-1 functions as a linker between insulin and wnt signaling pathways in the intestine
-
Sun J, Khalid S, Rozakis-AdcockM, Fantus IG, Jin T. P-21-activated protein kinase-1 functions as a linker between insulin and Wnt signaling pathways in the intestine. Oncogene. 2009;28: 3132-3144.
-
(2009)
Oncogene.
, vol.28
, pp. 3132-3144
-
-
Sun, J.1
Khalid, S.2
Rozakis-Adcock, M.3
Fantus, I.G.4
Jin, T.5
-
14
-
-
84871677485
-
P21-activated protein kinase 1 (pak1) mediates the cross talk between insulin and β-catenin on proglucagon gene expression and its ablation affects glucose homeostasis in male c57bl/6 mice
-
Chiang YA, Shao W, Xu XX, Chernoff J, Jin T. P21-activated protein kinase 1 (Pak1) mediates the cross talk between insulin and β-catenin on proglucagon gene expression and its ablation affects glucose homeostasis in male C57BL/6 mice. Endocrinology. 2013; 154: 77-88.
-
(2013)
Endocrinology.
, vol.154
, pp. 77-88
-
-
Chiang, Y.A.1
Shao, W.2
Xu, X.X.3
Chernoff, J.4
Jin, T.5
-
15
-
-
65449161015
-
Appl1 potentiates insulinmediated inhibition of hepatic glucose production and alleviates diabetes via akt activation in mice
-
Cheng KK, Iglesias MA, Lam KS, et al. APPL1 potentiates insulinmediated inhibition of hepatic glucose production and alleviates diabetes via Akt activation in mice. Cell Metab. 2009;9: 417-427.
-
(2009)
Cell Metab.
, vol.9
, pp. 417-427
-
-
Cheng, K.K.1
Iglesias, M.A.2
Lam, K.S.3
-
16
-
-
84872378630
-
Delivery of adiponectin gene to skeletal muscle using ultrasound targeted microbubbles improves insulin sensitivity and whole body glucose homeostasis
-
Vu V, Liu Y, Sen S, Xu A, Sweeney G. Delivery of adiponectin gene to skeletal muscle using ultrasound targeted microbubbles improves insulin sensitivity and whole body glucose homeostasis. Am J Physiol Endocrinol Metab. 2013;304: E168-E175.
-
(2013)
Am J Physiol Endocrinol Metab.
, vol.304
-
-
Vu, V.1
Liu, Y.2
Sen, S.3
Xu, A.4
Sweeney, G.5
-
17
-
-
84863161186
-
Hepatic traf2 regulates glucose metabolism through enhancing glucagon responses
-
Chen Z, Sheng L, Shen H, et al. Hepatic TRAF2 regulates glucose metabolism through enhancing glucagon responses. Diabetes. 2012;61: 566-573.
-
(2012)
Diabetes.
, vol.61
, pp. 566-573
-
-
Chen, Z.1
Sheng, L.2
Shen, H.3
-
18
-
-
84862000588
-
Nf-βb-inducing kinase (nik) promotes hyperglycemia and glucose intolerance in obesity by augmenting glucagon action
-
Sheng L, Zhou Y, Chen Z, et al. NF-βB-inducing kinase (NIK) promotes hyperglycemia and glucose intolerance in obesity by augmenting glucagon action. Nat Med. 2012;18: 943-949.
-
(2012)
Nat Med.
, vol.18
, pp. 943-949
-
-
Sheng, L.1
Zhou, Y.2
Chen, Z.3
-
19
-
-
0028156856
-
Effect of glucagon-like peptide-1 (proglucagon 78-107amide) on hepatic glucose production in healthy man
-
Hvidberg A, Nielsen MT, Hilsted J, Orskov C, Holst JJ. Effect of glucagon-like peptide-1 (proglucagon 78-107amide) on hepatic glucose production in healthy man. Metabolism. 1994;43: 104-108.
-
(1994)
Metabolism.
, vol.43
, pp. 104-108
-
-
Hvidberg, A.1
Nielsen, M.T.2
Hilsted, J.3
Orskov, C.4
Holst, J.J.5
-
20
-
-
84871564295
-
Direct effect of glp-1 infusion on endogenous glucose production in humans
-
Seghieri M, Rebelos E, Gastaldelli A, et al. Direct effect of GLP-1 infusion on endogenous glucose production in humans. Diabetologia. 2013;56: 156-161.
-
(2013)
Diabetologia.
, vol.56
, pp. 156-161
-
-
Seghieri, M.1
Rebelos, E.2
Gastaldelli, A.3
-
21
-
-
41949100602
-
An isoform-selective, smallmolecule inhibitor targets the autoregulatory mechanism of p21-activated kinase
-
Deacon SW, Beeser A, Fukui JA, et al. An isoform-selective, smallmolecule inhibitor targets the autoregulatory mechanism of p21-activated kinase. Chem Biol. 2008;15: 322-331.
-
(2008)
Chem Biol.
, vol.15
, pp. 322-331
-
-
Deacon, S.W.1
Beeser, A.2
Fukui, J.A.3
-
22
-
-
84864981988
-
Inhibition of p21 activated kinase (pak) reduces airway responsiveness in vivo and in vitro in murine and human airways
-
Hoover WC, Zhang W, Xue Z, et al. Inhibition of p21 activated kinase (PAK) reduces airway responsiveness in vivo and in vitro in murine and human airways. PLoS One. 2012;7: e42601.
-
(2012)
PLoS One.
, vol.7
-
-
Hoover, W.C.1
Zhang, W.2
Xue, Z.3
-
23
-
-
63849230362
-
P21-activated kinase regulates mast cell degranulation via effects on calcium mobilization and cytoskeletal dynamics
-
Allen JD, Jaffer ZM, Park SJ, et al. p21-activated kinase regulates mast cell degranulation via effects on calcium mobilization and cytoskeletal dynamics. Blood. 2009;113: 2695-2705.
-
(2009)
Blood.
, vol.113
, pp. 2695-2705
-
-
Allen, J.D.1
Jaffer, Z.M.2
Park, S.J.3
-
24
-
-
79953810587
-
Oltipraz upregulates the nuclear factor (erythroid-derived 2)-like 2 [corrected](nrf2) antioxidant system and prevents insulin resistance and obesity induced by a high-fat diet in c57bl6j mice
-
Yu Z, Shao W, Chiang Y, et al. Oltipraz upregulates the nuclear factor (erythroid-derived 2)-like 2 [corrected](NRF2) antioxidant system and prevents insulin resistance and obesity induced by a high-fat diet in C57BL/6J mice. Diabetologia. 2011;54: 922-934.
-
(2011)
Diabetologia.
, vol.54
, pp. 922-934
-
-
Yu, Z.1
Shao, W.2
Chiang, Y.3
-
25
-
-
84871261217
-
The wnt signaling pathway effector tcf7l2 controls gut and brain proglucagon gene expression and glucose homeostasis
-
Shao W, Wang D, Chiang YT, et al. The Wnt signaling pathway effector TCF7L2 controls gut and brain proglucagon gene expression and glucose homeostasis. Diabetes. 2013;62: 789-800.
-
(2013)
Diabetes.
, vol.62
, pp. 789-800
-
-
Shao, W.1
Wang, D.2
Chiang, Y.T.3
-
26
-
-
84855503887
-
Curcumin prevents high fat diet induced insulin resistance and obesity via attenuating lipogenesis in liver and inflammatory pathway in adipocytes
-
Shao W, Yu Z, Chiang Y, et al. Curcumin prevents high fat diet induced insulin resistance and obesity via attenuating lipogenesis in liver and inflammatory pathway in adipocytes. PLoS One. 2012;7: e28784.
-
(2012)
PLoS One.
, vol.7
-
-
Shao, W.1
Yu, Z.2
Chiang, Y.3
-
27
-
-
33845978446
-
Dephosphorylation by default, a potential mechanism for regulation of insulin receptor substrate-1/2, akt, and erk1/2
-
Zhande R, Zhang W, Zheng Y, et al. Dephosphorylation by default, a potential mechanism for regulation of insulin receptor substrate-1/2, Akt, and ERK1/2. J Biol Chem. 2006;281: 39071-39080.
-
(2006)
J Biol Chem.
, vol.281
, pp. 39071-39080
-
-
Zhande, R.1
Zhang, W.2
Zheng, Y.3
-
28
-
-
0141615898
-
Suppression of glucose production by glp-1 independent of islet hormones: A novel extrapancreatic effect
-
Prigeon RL, Quddusi S, Paty B, D'Alessio DA. Suppression of glucose production by GLP-1 independent of islet hormones: a novel extrapancreatic effect. Am J Physiol Endocrinol Metab. 2003;285: E701-E707.
-
(2003)
Am J Physiol Endocrinol Metab.
, vol.285
-
-
Prigeon, R.L.1
Quddusi, S.2
Paty, B.3
D'Alessio, D.A.4
-
29
-
-
0028575660
-
Activation of proglucagon gene transcription by protein kinase-A in a novel mouse enteroendocrine cell line
-
Drucker DJ, Jin T, Asa SL, Young TA, Brubaker PL. Activation of proglucagon gene transcription by protein kinase-A in a novel mouse enteroendocrine cell line. Mol Endocrinol. 1994;8: 1646-1655.
-
(1994)
Mol Endocrinol.
, vol.8
, pp. 1646-1655
-
-
Drucker, D.J.1
Jin, T.2
Asa, S.L.3
Young, T.A.4
Brubaker, P.L.5
-
30
-
-
51249114496
-
The wnt signalling pathway and diabetes mellitus
-
Jin T. The WNT signalling pathway and diabetes mellitus. Diabetologia. 2008;51: 1771-1780.
-
(2008)
Diabetologia.
, vol.51
, pp. 1771-1780
-
-
Jin, T.1
-
31
-
-
0029844024
-
Proglucagon gene expression is induced by gastrin-releasing peptide in a mouse enteroendocrine cell line
-
Lü F, Jin T, Drucker DJ. Proglucagon gene expression is induced by gastrin-releasing peptide in a mouse enteroendocrine cell line. Endocrinology. 1996;137: 3710-3716.
-
(1996)
Endocrinology.
, vol.137
, pp. 3710-3716
-
-
Lü, F.1
Jin, T.2
Drucker, D.J.3
-
32
-
-
12544254474
-
Tcf-4 mediates cell type-specific regulation of proglucagon gene expression by β-catenin and glycogen synthase kinase-3β
-
Yi F, Brubaker PL, Jin T. TCF-4 mediates cell type-specific regulation of proglucagon gene expression by β-catenin and glycogen synthase kinase-3β. J Biol Chem. 2005;280: 1457-1464.
-
(2005)
J Biol Chem.
, vol.280
, pp. 1457-1464
-
-
Yi, F.1
Brubaker, P.L.2
Jin, T.3
-
33
-
-
42449134942
-
Cross talk between the insulin and wnt signaling pathways: Evidence from intestinal endocrine l cells
-
Yi F, Sun J, Lim GE, et al. Cross talk between the insulin and Wnt signaling pathways: evidence from intestinal endocrine L cells. Endocrinology. 2008;149: 2341-2351.
-
(2008)
Endocrinology.
, vol.149
, pp. 2341-2351
-
-
Yi, F.1
Sun, J.2
Lim, G.E.3
-
34
-
-
0037428472
-
Transcriptional activation of the proglucagon gene by lithium and β-catenin in intestinal endocrine l cells
-
Ni Z, Anini Y, Fang X, Mills G, Brubaker PL, Jin T. Transcriptional activation of the proglucagon gene by lithium and β-catenin in intestinal endocrine L cells. J Biol Chem. 2003;278: 1380-1387.
-
(2003)
J Biol Chem.
, vol.278
, pp. 1380-1387
-
-
Ni, Z.1
Anini, Y.2
Fang, X.3
Mills, G.4
Brubaker, P.L.5
Jin, T.6
-
35
-
-
50849116749
-
Pak1 interacts with β-catenin and is required for the regulation of the β-catenin signalling pathway by gastrins
-
He H, Shulkes A, Baldwin GS. PAK1 interacts with β-catenin and is required for the regulation of the β-catenin signalling pathway by gastrins. Biochim Biophys Acta. 2008;1783: 1943-1954.
-
(2008)
Biochim Biophys Acta.
, vol.1783
, pp. 1943-1954
-
-
He, H.1
Shulkes, A.2
Baldwin, G.S.3
-
36
-
-
84856336786
-
P-21 activated kinase 1 knockdown inhibits β-catenin signalling and blocks colorectal cancer growth
-
He H, Huynh N, Liu KH, et al. P-21 activated kinase 1 knockdown inhibits β-catenin signalling and blocks colorectal cancer growth. Cancer Lett. 2012;317: 65-71.
-
(2012)
Cancer Lett.
, vol.317
, pp. 65-71
-
-
He, H.1
Huynh, N.2
Liu, K.H.3
-
37
-
-
84857364721
-
A rac1/pak1 cascade controls β-catenin activation in colon cancer cells
-
Zhu G, Wang Y, Huang B, et al. A Rac1/PAK1 cascade controls β-catenin activation in colon cancer cells. Oncogene. 2012;31: 1001-1012.
-
(2012)
Oncogene.
, vol.31
, pp. 1001-1012
-
-
Zhu, G.1
Wang, Y.2
Huang, B.3
-
38
-
-
84879101353
-
Cherdoi: Noff j. Pak1 kinase links erbb2 to β-catenin in transformation of breast epithelial cells
-
Arias-Romero LE, Villamar-Cruz O, Huang M, Hoeflich KP, Cherdoi: noff J. PAK1 kinase links ErbB2 to β-catenin in transformation of breast epithelial cells. Cancer Res. 2013;73: 3671-3682.
-
(2013)
Cancer Res.
, vol.73
, pp. 3671-3682
-
-
Arias-Romero, L.E.1
Villamar-Cruz, O.2
Huang, M.3
Hoeflich, K.P.4
-
39
-
-
0036188070
-
Preservation of active incretin hormones by inhibition of dipeptidyl peptidase iv suppresses meal-induced incretin secretion in dogs
-
Deacon CF, Wamberg S, Bie P, Hughes TE, Holst JJ. Preservation of active incretin hormones by inhibition of dipeptidyl peptidase IV suppresses meal-induced incretin secretion in dogs. J Endocrinol. 2002;172: 355-362.
-
(2002)
J Endocrinol.
, vol.172
, pp. 355-362
-
-
Deacon, C.F.1
Wamberg, S.2
Bie, P.3
Hughes, T.E.4
Holst, J.J.5
-
40
-
-
84864803643
-
Mechanism of action of dpp-4 inhibitors-new insights
-
Vella A. Mechanism of action of DPP-4 inhibitors-new insights. J Clin Endocrinol Metab. 2012;97: 2626-2628.
-
(2012)
J Clin Endocrinol Metab.
, vol.97
, pp. 2626-2628
-
-
Vella, A.1
-
41
-
-
77954866977
-
The effect of dpp-4 inhibition with sitagliptin on incretin secretion and on fasting and postprandial glucose turnover in subjects with impaired fasting glucose
-
Bock G, Dalla Man C, Micheletto F, et al. The effect of DPP-4 inhibition with sitagliptin on incretin secretion and on fasting and postprandial glucose turnover in subjects with impaired fasting glucose. Clin Endocrinol (Oxf). 2010;73: 189-196.
-
(2010)
Clin Endocrinol (Oxf).
, vol.73
, pp. 189-196
-
-
Bock, G.1
Dalla Man, C.2
Micheletto, F.3
-
42
-
-
34248223285
-
Biology of incretins: Glp-1 and gip
-
Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology. 2007;132: 2131-2157.
-
(2007)
Gastroenterology.
, vol.132
, pp. 2131-2157
-
-
Baggio, L.L.1
Drucker, D.J.2
-
43
-
-
13344282056
-
A role for glucagon-like peptide-1 in the central regulation of feeding
-
Turton MD, O'Shea D, Gunn I, et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature. 1996;379: 69-72.
-
(1996)
Nature.
, vol.379
, pp. 69-72
-
-
Turton, M.D.1
O'Shea, D.2
Gunn, I.3
-
44
-
-
0037667613
-
Normalization of glucose concentrations and deceleration of gastric emptying after solid meals during intravenous glucagon-like peptide 1 in patients with type 2 diabetes
-
Meier JJ, Gallwitz B, Salmen S, et al. Normalization of glucose concentrations and deceleration of gastric emptying after solid meals during intravenous glucagon-like peptide 1 in patients with type 2 diabetes. J Clin Endocrinol Metab. 2003;88: 2719-2725.
-
(2003)
J Clin Endocrinol Metab.
, vol.88
, pp. 2719-2725
-
-
Meier, J.J.1
Gallwitz, B.2
Salmen, S.3
-
45
-
-
43249089631
-
Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways
-
Ban K, Noyan-Ashraf MH, Hoefer J, Bolz SS, Drucker DJ, Husain M. Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation. 2008; 117: 2340-2350.
-
(2008)
Circulation.
, vol.117
, pp. 2340-2350
-
-
Ban, K.1
Noyan-Ashraf, M.H.2
Hoefer, J.3
Bolz, S.S.4
Drucker, D.J.5
Husain, M.6
-
46
-
-
31044456099
-
Brain glucagon-like peptide-1 increases insulin secretion and muscle insulin resistance to favor hepatic glycogen storage
-
Knauf C, Cani PD, Perrin C, et al. Brain glucagon-like peptide-1 increases insulin secretion and muscle insulin resistance to favor hepatic glycogen storage. J Clin Invest. 2005;115: 3554-3563.
-
(2005)
J Clin Invest.
, vol.115
, pp. 3554-3563
-
-
Knauf, C.1
Cani, P.D.2
Perrin, C.3
-
47
-
-
0030010364
-
The effect of glucagon-like peptide i (glp-i) on glucose elimination in healthy subjects depends on the pancreatic glucoregulatory hormones
-
Toft-Nielson M, Madsbad S, Holst JJ. The effect of glucagon-like peptide I (GLP-I) on glucose elimination in healthy subjects depends on the pancreatic glucoregulatory hormones. Diabetes. 1996;45: 552-556.
-
(1996)
Diabetes.
, vol.45
, pp. 552-556
-
-
Toft-Nielson, M.1
Madsbad, S.2
Holst, J.J.3
-
48
-
-
0030798846
-
Glucagon-like peptide-1 reduces hepatic glucose production indirectly through insulin and glucagon in humans
-
Larsson H, Holst JJ, Ahrén B. Glucagon-like peptide-1 reduces hepatic glucose production indirectly through insulin and glucagon in humans. Acta Physiol Scand. 1997;160: 413-422.
-
(1997)
Acta Physiol Scand.
, vol.160
, pp. 413-422
-
-
Larsson, H.1
Holst, J.J.2
Ahrén, B.3
-
49
-
-
0027157849
-
Biological effects and metabolic rates of glucagonlike peptide-1 7-36 amide and glucagonlike peptide-1 7-37 in healthy subjects are indistinguishable
-
Orskov C, Wettergren A, Holst JJ. Biological effects and metabolic rates of glucagonlike peptide-1 7-36 amide and glucagonlike peptide-1 7-37 in healthy subjects are indistinguishable. Diabetes. 1993;42: 658-661.
-
(1993)
Diabetes.
, vol.42
, pp. 658-661
-
-
Orskov, C.1
Wettergren, A.2
Holst, J.J.3
-
50
-
-
79953213304
-
Diet-induced adipose tissue inflammation and liver steatosis are prevented by dpp-4 inhibition in diabetic mice
-
Shirakawa J, Fujii H, Ohnuma K, et al. Diet-induced adipose tissue inflammation and liver steatosis are prevented by DPP-4 inhibition in diabetic mice. Diabetes. 2011;60: 1246-1257.
-
(2011)
Diabetes.
, vol.60
, pp. 1246-1257
-
-
Shirakawa, J.1
Fujii, H.2
Ohnuma, K.3
-
51
-
-
84878242738
-
Rac1 signaling is required for insulin-stimulated glucose uptake and is dysregulated in insulinresistant murine and human skeletal muscle
-
Sylow L, Jensen TE, Kleinert M, et al. Rac1 signaling is required for insulin-stimulated glucose uptake and is dysregulated in insulinresistant murine and human skeletal muscle. Diabetes. 2013;62: 1865-1875.
-
(2013)
Diabetes.
, vol.62
, pp. 1865-1875
-
-
Sylow, L.1
Jensen, T.E.2
Kleinert, M.3
-
52
-
-
79551707018
-
Wnt signaling regulates hepatic metabolism
-
Liu H, Fergusson MM, Wu JJ, et al. Wnt signaling regulates hepatic metabolism. Sci Signal. 2011;4: ra6.
-
(2011)
Sci Signal.
, vol.4
-
-
Liu, H.1
Fergusson, M.M.2
Wu, J.J.3
|