-
1
-
-
33845866857
-
Inflammation and metabolic disorders
-
DOI 10.1038/nature05485, PII NATURE05485
-
Hotamisligil, G.S. Inflammation and metabolic disorders. Nature 444, 860-867 (2006). (Pubitemid 46024993)
-
(2006)
Nature
, vol.444
, Issue.7121
, pp. 860-867
-
-
Hotamisligil, G.S.1
-
2
-
-
64149101055
-
Getting away from glucose: Fanning the flames of obesity-induced inflammation
-
Shoelson, S.E. & Goldfine, A.B. Getting away from glucose: fanning the flames of obesity-induced inflammation. Nat. Med. 15, 373-374 (2009).
-
(2009)
Nat. Med.
, vol.15
, pp. 373-374
-
-
Shoelson, S.E.1
Goldfine, A.B.2
-
3
-
-
20044387026
-
IKK-β links inflammation to obesity-induced insulin resistance
-
DOI 10.1038/nm1185
-
Arkan, M.C. et al. IKK-β links inflammation to obesity-induced insulin resistance. Nat. Med. 11, 191-198 (2005). (Pubitemid 40321355)
-
(2005)
Nature Medicine
, vol.11
, Issue.2
, pp. 191-198
-
-
Arkan, M.C.1
Hevener, A.L.2
Greten, F.R.3
Maeda, S.4
Li, Z.-W.5
Long, J.M.6
Wynshaw-Boris, A.7
Poli, G.8
Olefsky, J.9
Karin, M.10
-
4
-
-
14644427890
-
Local and systemic insulin resistance resulting from hepatic activation of IKK-β and NF-κB
-
DOI 10.1038/nm1166
-
Cai, D. et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-β and NF-κB. Nat. Med. 11, 183-190 (2005). (Pubitemid 40321354)
-
(2005)
Nature Medicine
, vol.11
, Issue.2
, pp. 183-190
-
-
Cai, D.1
Yuan, M.2
Frantz, D.F.3
Melendez, P.A.4
Hansen, L.5
Lee, J.6
Shoelson, S.E.7
-
5
-
-
0035979775
-
Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkβ
-
DOI 10.1126/science.1061620
-
Yuan, M. et al. Reversal of obesity-and diet-induced insulin resistance with salicylates or targeted disruption of Ikkβ. Science 293, 1673-1677 (2001). (Pubitemid 32807849)
-
(2001)
Science
, vol.293
, Issue.5535
, pp. 1673-1677
-
-
Yuan, M.1
Konstantopoulos, N.2
Lee, J.3
Hansen, L.4
Li, Z.-W.5
Karin, M.6
Shoelson, S.E.7
-
6
-
-
84855459920
-
Glucagonocentric restructuring of diabetes: A pathophysiologic and therapeutic makeover
-
Unger, R.H. & Cherrington, A.D. Glucagonocentric restructuring of diabetes: a pathophysiologic and therapeutic makeover. J. Clin. Invest. 122, 4-12 (2012).
-
(2012)
J. Clin. Invest.
, vol.122
, pp. 4-12
-
-
Unger, R.H.1
Cherrington, A.D.2
-
8
-
-
79959421553
-
Leptin therapy reverses hyperglycemia in mice with streptozotocin-induced diabetes, independent of hepatic leptin signaling
-
Denroche, H.C. et al. Leptin therapy reverses hyperglycemia in mice with streptozotocin-induced diabetes, independent of hepatic leptin signaling. Diabetes 60, 1414-1423 (2011).
-
(2011)
Diabetes
, vol.60
, pp. 1414-1423
-
-
Denroche, H.C.1
-
9
-
-
52949140814
-
Making insulin-deficient type 1 diabetic rodents thrive without insulin
-
Yu, X., Park, B.H., Wang, M.Y., Wang, Z.V. & Unger, R.H. Making insulin-deficient type 1 diabetic rodents thrive without insulin. Proc. Natl. Acad. Sci. USA 105, 14070-14075 (2008).
-
(2008)
Proc. Natl. Acad. Sci. USA
, vol.105
, pp. 14070-14075
-
-
Yu, X.1
Park, B.H.2
Wang, M.Y.3
Wang, Z.V.4
Unger, R.H.5
-
10
-
-
79551600048
-
Glucagon receptor knockout prevents insulin-deficient type 1 diabetes in mice
-
Lee, Y., Wang, M.Y., Du, X.Q., Charron, M.J. & Unger, R.H. Glucagon receptor knockout prevents insulin-deficient type 1 diabetes in mice. Diabetes 60, 391-397 (2011).
-
(2011)
Diabetes
, vol.60
, pp. 391-397
-
-
Lee, Y.1
Wang, M.Y.2
Du, X.Q.3
Charron, M.J.4
Unger, R.H.5
-
11
-
-
80052297054
-
Subcutaneous administration of leptin normalizes fasting plasma glucose in obese type 2 diabetic UCD-T2DM rats
-
Cummings, B.P. et al. Subcutaneous administration of leptin normalizes fasting plasma glucose in obese type 2 diabetic UCD-T2DM rats. Proc. Natl. Acad. Sci. USA 108, 14670-14675 (2011).
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 14670-14675
-
-
Cummings, B.P.1
-
12
-
-
0021711003
-
Insulin within islets is a physiologic glucagon release inhibitor
-
Maruyama, H., Hisatomi, A., Orci, L., Grodsky, G.M. & Unger, R.H. Insulin within islets is a physiologic glucagon release inhibitor. J. Clin. Invest. 74, 2296-2299 (1984). (Pubitemid 15197376)
-
(1984)
Journal of Clinical Investigation
, vol.74
, Issue.6
, pp. 2296-2299
-
-
Maruyama, H.1
Hisatomi, A.2
Orci, L.3
-
13
-
-
77956407149
-
NF-κB inducing kinase: A key regulator in the immune system and in cancer
-
Thu, Y.M. & Richmond, A. NF-κB inducing kinase: a key regulator in the immune system and in cancer. Cytokine Growth Factor Rev. 21, 213-226 (2010).
-
(2010)
Cytokine Growth Factor Rev.
, vol.21
, pp. 213-226
-
-
Thu, Y.M.1
Richmond, A.2
-
14
-
-
78650920066
-
Non-canonical NF-κB signaling pathway
-
Sun, S.C. Non-canonical NF-κB signaling pathway. Cell Res. 21, 71-85 (2011).
-
(2011)
Cell Res.
, vol.21
, pp. 71-85
-
-
Sun, S.C.1
-
15
-
-
0035896422
-
Defective lymphotoxin-β receptor-induced NF-κB transcriptional activity in NIK-deficient mice
-
DOI 10.1126/science.1058453
-
Yin, L. et al. Defective lymphotoxin-β receptor-induced NF-κB transcriptional activity in NIK-deficient mice. Science 291, 2162-2165 (2001). (Pubitemid 32224449)
-
(2001)
Science
, vol.291
, Issue.5511
, pp. 2162-2165
-
-
Yin, L.1
Wu, L.2
Wesche, H.3
Arthur, C.D.4
White, J.M.5
Goeddel, D.V.6
Schreiber, R.D.7
-
16
-
-
84055193888
-
NF-κB-inducing kinase plays an essential T cell-intrinsic role in graft-versus-host disease and lethal autoimmunity in mice
-
Murray, S.E. et al. NF-κB-inducing kinase plays an essential T cell-intrinsic role in graft-versus-host disease and lethal autoimmunity in mice. J. Clin. Invest. 121, 4775-4786 (2011).
-
(2011)
J. Clin. Invest.
, vol.121
, pp. 4775-4786
-
-
Murray, S.E.1
-
17
-
-
0032583947
-
Nf-κB-inducing kinase activates IKK-α by phosphorylation of Ser-176
-
DOI 10.1073/pnas.95.7.3792
-
Ling, L., Cao, Z. & Goeddel, D.V. NF-κB-inducing kinase activates IKK-α by phosphorylation of Ser-176. Proc. Natl. Acad. Sci. USA 95, 3792-3797 (1998). (Pubitemid 28173208)
-
(1998)
Proceedings of the National Academy of Sciences of the United States of America
, vol.95
, Issue.7
, pp. 3792-3797
-
-
Ling, L.1
Cao, Z.2
Goeddel, D.V.3
-
18
-
-
3142663912
-
Induction of p100 processing by NF-κB-inducing kinase involves docking IκB kinase α (IKKα) to p100 and IKKα-mediated phosphorylation
-
DOI 10.1074/jbc.M401428200
-
Xiao, G., Fong, A. & Sun, S.C. Induction of p100 processing by NF-κB-inducing kinase involves docking IκB kinase α (IKKα) to p100 and IKKα-mediated phosphorylation. J. Biol. Chem. 279, 30099-30105 (2004). (Pubitemid 38937932)
-
(2004)
Journal of Biological Chemistry
, vol.279
, Issue.29
, pp. 30099-30105
-
-
Xiao, G.1
Fong, A.2
Sun, S.-C.3
-
19
-
-
0034745420
-
NF-κB-inducing kinase regulates the processing of NF-κB2 p100
-
DOI 10.1016/S1097-2765(01)00187-3
-
Xiao, G., Harhaj, E.W. & Sun, S.C. NF-κB-inducing kinase regulates the processing of NF-κB2 p100. Mol. Cell 7, 401-409 (2001). (Pubitemid 32206507)
-
(2001)
Molecular Cell
, vol.7
, Issue.2
, pp. 401-409
-
-
Xiao, G.1
Harhaj, E.W.2
Sun, S.-C.3
-
20
-
-
0031017618
-
MAP3K-related kinase involved in NF-κB induction by TNF, CD95 and IL-1
-
DOI 10.1038/385540a0
-
Malinin, N.L., Boldin, M.P., Kovalenko, A.V. & Wallach, D. MAP3K-related kinase involved in NF-κB induction by TNF, CD95 and IL-1. Nature 385, 540-544 (1997). (Pubitemid 27074673)
-
(1997)
Nature
, vol.385
, Issue.6616
, pp. 540-544
-
-
Malinin, N.L.1
Boldin, M.P.2
Kovalenko, A.V.3
Wallach, D.4
-
21
-
-
0033580466
-
The kinase TAK1 can activate the NIK-I κb as well as the MAP kinase cascade in the IL-1 signalling pathway
-
Ninomiya-Tsuji, J. et al. The kinase TAK1 can activate the NIK-I κB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 398, 252-256 (1999).
-
(1999)
Nature
, vol.398
, pp. 252-256
-
-
Ninomiya-Tsuji, J.1
-
22
-
-
49449098218
-
NIK overexpression amplifies, whereas ablation of its TRAF3-binding domain replaces BAFF:BAFF-R-mediated survival signals in B cells
-
Sasaki, Y. et al. NIK overexpression amplifies, whereas ablation of its TRAF3-binding domain replaces BAFF:BAFF-R-mediated survival signals in B cells. Proc. Natl. Acad. Sci. USA 105, 10883-10888 (2008).
-
(2008)
Proc. Natl. Acad. Sci. USA
, vol.105
, pp. 10883-10888
-
-
Sasaki, Y.1
-
23
-
-
0035855905
-
CREB regulates hepatic gluconeogenesis through the coactivator PGC-1
-
DOI 10.1038/35093131
-
Herzig, S. et al. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 413, 179-183 (2001). (Pubitemid 32867880)
-
(2001)
Nature
, vol.413
, Issue.6852
, pp. 179-183
-
-
Herzig, S.1
Long, F.2
Jhala, U.S.3
Hedrick, S.4
Quinn, R.5
Bauer, A.6
Rudolph, D.7
Schutz, G.8
Yoon, C.9
Puigserver, P.10
Spiegelman, B.11
Montminy, M.12
-
24
-
-
2942729543
-
Insulin regulation of hepatic gluconeogenesis through phosphorylation of CREB-binding protein
-
DOI 10.1038/nm1050
-
Zhou, X.Y. et al. Insulin regulation of hepatic gluconeogenesis through phosphorylation of CREB-binding protein. Nat. Med. 10, 633-637 (2004). (Pubitemid 38796855)
-
(2004)
Nature Medicine
, vol.10
, Issue.6
, pp. 633-637
-
-
Zhou, X.Y.1
Shibusawa, N.2
Naik, K.3
Porras, D.4
Temple, K.5
Ou, H.6
Kaihara, K.7
Roe, M.W.8
Brady, M.J.9
Wondisford, F.E.10
-
25
-
-
27144506185
-
The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism
-
Koo, S.H. et al. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 437, 1109-1111 (2005).
-
(2005)
Nature
, vol.437
, pp. 1109-1111
-
-
Koo, S.H.1
-
26
-
-
65549136655
-
Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein
-
He, L. et al. Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein. Cell 137, 635-646 (2009).
-
(2009)
Cell
, vol.137
, pp. 635-646
-
-
He, L.1
-
27
-
-
0035855858
-
Control of hepatic gluconeogenesis through the transcriptional coaotivator PGC-1
-
DOI 10.1038/35093050
-
Yoon, J.C. et al. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413, 131-138 (2001). (Pubitemid 32867868)
-
(2001)
Nature
, vol.413
, Issue.6852
, pp. 131-138
-
-
Yoon, J.C.1
Puigserver, P.2
Chen, G.3
Donovan, J.4
Wu, Z.5
Rhee, J.6
Adelmant, G.7
Stafford, J.8
Kahn, C.R.9
Granner, D.K.10
Newgard, C.B.11
Spiegelman, B.M.12
-
28
-
-
2942731516
-
Regulation of the NF-κB-inducing kinase by tumor necrosis factor receptor-associated factor 3-induced degradation
-
DOI 10.1074/jbc.M403286200
-
Liao, G., Zhang, M., Harhaj, E.W. & Sun, S.C. Regulation of the NF-κB-inducing kinase by tumor necrosis factor receptor-associated factor 3-induced degradation. J. Biol. Chem. 279, 26243-26250 (2004). (Pubitemid 38798772)
-
(2004)
Journal of Biological Chemistry
, vol.279
, Issue.25
, pp. 26243-26250
-
-
Liao, G.1
Zhang, M.2
Harhaj, E.W.3
Sun, S.-C.4
-
29
-
-
56349164232
-
Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-κB signaling
-
Vallabhapurapu, S. et al. Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-κB signaling. Nat. Immunol. 9, 1364-1370 (2008).
-
(2008)
Nat. Immunol.
, vol.9
, pp. 1364-1370
-
-
Vallabhapurapu, S.1
-
30
-
-
56349164239
-
Noncanonical NF-κB activation requires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2 and TRAF3 and the kinase NIK
-
Zarnegar, B.J. et al. Noncanonical NF-κB activation requires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2 and TRAF3 and the kinase NIK. Nat. Immunol. 9, 1371-1378 (2008).
-
(2008)
Nat. Immunol.
, vol.9
, pp. 1371-1378
-
-
Zarnegar, B.J.1
-
31
-
-
4344581405
-
Disruption of the SH2-B gene causes age-dependent insulin resistance and glucose intolerance
-
DOI 10.1128/MCB.24.17.7435-7443.2004
-
Duan, C., Yang, H., White, M.F. & Rui, L. Disruption of the SH2-B gene causes age-dependent insulin resistance and glucose intolerance. Mol. Cell. Biol. 24, 7435-7443 (2004). (Pubitemid 39121472)
-
(2004)
Molecular and Cellular Biology
, vol.24
, Issue.17
, pp. 7435-7443
-
-
Duan, C.1
Yang, H.2
White, M.F.3
Rui, L.4
-
32
-
-
0032768942
-
Dehydroepiandrosterone suppresses the elevated hepatic glucose-6- phosphatase and fructose-1,6-bisphosphatase activities in C57BL/Ksj-db/db mice: Comparison with troglitazone
-
DOI 10.2337/diabetes.48.8.1579
-
Aoki, K. et al. Dehydroepiandrosterone suppresses the elevated hepatic glucose-6-phosphatase and fructose-1,6-bisphosphatase activities in C57BL/Ksj-db/db mice: comparison with troglitazone. Diabetes 48, 1579-1585 (1999). (Pubitemid 29356866)
-
(1999)
Diabetes
, vol.48
, Issue.8
, pp. 1579-1585
-
-
Aoki, K.1
Saito, T.2
Satoh, S.3
Mukasa, K.4
Kaneshiro, M.5
Kawasaki, S.6
Okamura, A.7
Sekihara, H.8
-
33
-
-
33846822094
-
Neuronal SH2B1 is essential for controlling energy and glucose homeostasis
-
DOI 10.1172/JCI29417
-
Ren, D. et al. Neuronal SH2B1 is essential for controlling energy and glucose homeostasis. J. Clin. Invest. 117, 397-406 (2007). (Pubitemid 46203968)
-
(2007)
Journal of Clinical Investigation
, vol.117
, Issue.2
, pp. 397-406
-
-
Ren, D.1
Zhou, Y.2
Morris, D.3
Li, M.4
Li, Z.5
Rui, L.6
-
34
-
-
66449096802
-
Identification of MUP1 as a regulator for glucose and lipid metabolism in mice
-
Zhou, Y., Jiang, L. & Rui, L. Identification of MUP1 as a regulator for glucose and lipid metabolism in mice. J. Biol. Chem. 284, 11152-11159 (2009).
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 11152-11159
-
-
Zhou, Y.1
Jiang, L.2
Rui, L.3
-
35
-
-
2542444292
-
Impaired activation of phosphatidylinositol 3-kinase by leptin is a novel mechanism of hepatic leptin resistance in diet-induced obesity
-
DOI 10.1074/jbc.M401546200
-
Huang, W., Dedousis, N., Bhatt, B.A. & O'Doherty, R.M. Impaired activation of phosphatidylinositol 3-kinase by leptin is a novel mechanism of hepatic leptin resistance in diet-induced obesity. J. Biol. Chem. 279, 21695-21700 (2004). (Pubitemid 38679354)
-
(2004)
Journal of Biological Chemistry
, vol.279
, Issue.21
, pp. 21695-21700
-
-
Huang, W.1
Dedousis, N.2
Bhatt, B.A.3
O'Doherty, R.M.4
-
36
-
-
78751499277
-
Lipocalin-13 regulates glucose metabolism by both insulin-dependent and insulin-independent mechanisms
-
Cho, K.W., Zhou, Y., Sheng, L. & Rui, L. Lipocalin-13 regulates glucose metabolism by both insulin-dependent and insulin-independent mechanisms. Mol. Cell. Biol. 31, 450-457 (2011).
-
(2011)
Mol. Cell. Biol.
, vol.31
, pp. 450-457
-
-
Cho, K.W.1
Zhou, Y.2
Sheng, L.3
Rui, L.4
-
37
-
-
80055090394
-
Lipocalin 13 protein protects against hepatic steatosis by both inhibiting lipogenesis and stimulating fatty acid β-oxidation
-
Sheng, L., Cho, K.W., Zhou, Y., Shen, H. & Rui, L. Lipocalin 13 protein protects against hepatic steatosis by both inhibiting lipogenesis and stimulating fatty acid β-oxidation. J. Biol. Chem. 286, 38128-38135 (2011).
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 38128-38135
-
-
Sheng, L.1
Cho, K.W.2
Zhou, Y.3
Shen, H.4
Rui, L.5
|