-
1
-
-
0030756346
-
Protection from obesity-induced insulin resistance in mice lacking TNF- alpha function
-
DOI 10.1038/39335
-
Uysal KT, Wiesbrock SM, Marino MW, Hotamisligil GS. Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature 1997;389:610-614 (Pubitemid 27446179)
-
(1997)
Nature
, vol.389
, Issue.6651
, pp. 610-614
-
-
Uysal, K.T.1
Wiesbrock, S.M.2
Marino, M.W.3
Hotamisligil, G.S.4
-
2
-
-
14644427890
-
Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB
-
DOI 10.1038/nm1166
-
Cai D, Yuan M, Frantz DF, et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med 2005;11:183-190 (Pubitemid 40321354)
-
(2005)
Nature Medicine
, vol.11
, Issue.2
, pp. 183-190
-
-
Cai, D.1
Yuan, M.2
Frantz, D.F.3
Melendez, P.A.4
Hansen, L.5
Lee, J.6
Shoelson, S.E.7
-
3
-
-
20044387026
-
IKK-beta links inflammation to obesity-induced insulin resistance
-
DOI 10.1038/nm1185
-
Arkan MC, Hevener AL, Greten FR, et al. IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med 2005;11:191-198 (Pubitemid 40321355)
-
(2005)
Nature Medicine
, vol.11
, Issue.2
, pp. 191-198
-
-
Arkan, M.C.1
Hevener, A.L.2
Greten, F.R.3
Maeda, S.4
Li, Z.-W.5
Long, J.M.6
Wynshaw-Boris, A.7
Poli, G.8
Olefsky, J.9
Karin, M.10
-
4
-
-
0035979775
-
Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta
-
DOI 10.1126/science.1061620
-
Yuan M, Konstantopoulos N, Lee J, et al. Reversal of obesity- and dietinduced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science 2001;293:1673-1677 (Pubitemid 32807849)
-
(2001)
Science
, vol.293
, Issue.5535
, pp. 1673-1677
-
-
Yuan, M.1
Konstantopoulos, N.2
Lee, J.3
Hansen, L.4
Li, Z.-W.5
Karin, M.6
Shoelson, S.E.7
-
5
-
-
64749101898
-
Benefits and limitations of reducing glucagon action for the treatment of type 2 diabetes
-
Ali S, Drucker DJ. Benefits and limitations of reducing glucagon action for the treatment of type 2 diabetes. Am J Physiol Endocrinol Metab 2009;296: E415-E421
-
(2009)
Am J Physiol Endocrinol Metab
, vol.296
-
-
Ali, S.1
Drucker, D.J.2
-
7
-
-
0024445798
-
Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133
-
DOI 10.1016/0092-8674(89)90013-5
-
Gonzalez GA, Montminy MR. Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell 1989;59:675-680 (Pubitemid 19282874)
-
(1989)
Cell
, vol.59
, Issue.4
, pp. 675-680
-
-
Gonzalez, G.A.1
Montminy, M.R.2
-
8
-
-
0035855905
-
CREB regulates hepatic gluconeogenesis through the coactivator PGC-1
-
DOI 10.1038/35093131
-
Herzig S, Long F, Jhala US, et al. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 2001;413:179-183 (Pubitemid 32867880)
-
(2001)
Nature
, vol.413
, Issue.6852
, pp. 179-183
-
-
Herzig, S.1
Long, F.2
Jhala, U.S.3
Hedrick, S.4
Quinn, R.5
Bauer, A.6
Rudolph, D.7
Schutz, G.8
Yoon, C.9
Puigserver, P.10
Spiegelman, B.11
Montminy, M.12
-
9
-
-
27144506185
-
The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism
-
Koo SH, Flechner L, Qi L, et al. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 2005;437:1109-1111
-
(2005)
Nature
, vol.437
, pp. 1109-1111
-
-
Koo, S.H.1
Flechner, L.2
Qi, L.3
-
10
-
-
10644256593
-
Role of the liver in the control of carbohydrate and lipid homeostasis
-
Postic C, Dentin R, Girard J. Role of the liver in the control of carbohydrate and lipid homeostasis. Diabetes Metab 2004;30:398-408 (Pubitemid 39648006)
-
(2004)
Diabetes and Metabolism
, vol.30
, Issue.5
, pp. 398-408
-
-
Postic, C.1
Dentin, R.2
Girard, J.3
-
11
-
-
2942729543
-
Insulin regulation of hepatic gluconeogenesis through phosphorylation of CREB-binding protein
-
DOI 10.1038/nm1050
-
Zhou XY, Shibusawa N, Naik K, et al. Insulin regulation of hepatic gluconeogenesis through phosphorylation of CREB-binding protein. Nat Med 2004;10:633-637 (Pubitemid 38796855)
-
(2004)
Nature Medicine
, vol.10
, Issue.6
, pp. 633-637
-
-
Zhou, X.Y.1
Shibusawa, N.2
Naik, K.3
Porras, D.4
Temple, K.5
Ou, H.6
Kaihara, K.7
Roe, M.W.8
Brady, M.J.9
Wondisford, F.E.10
-
12
-
-
33645982255
-
From mice to men: Insights into the insulin resistance syndromes
-
Biddinger SB, Kahn CR. From mice to men: insights into the insulin resistance syndromes. Annu Rev Physiol 2006;68:123-158
-
(2006)
Annu Rev Physiol
, vol.68
, pp. 123-158
-
-
Biddinger, S.B.1
Kahn, C.R.2
-
13
-
-
64149101055
-
Getting away from glucose: Fanning the flames of obesity-induced inflammation
-
Shoelson SE, Goldfine AB. Getting away from glucose: fanning the flames of obesity-induced inflammation. Nat Med 2009;15:373-374
-
(2009)
Nat Med
, vol.15
, pp. 373-374
-
-
Shoelson, S.E.1
Goldfine, A.B.2
-
14
-
-
0023589251
-
Role of hyperglucagonemia in maintenance of increased rates of hepatic glucose output in type II diabetics
-
Baron AD, Schaeffer L, Shragg P, Kolterman OG. Role of hyperglucagonemia in maintenance of increased rates of hepatic glucose output in type II diabetics. Diabetes 1987;36:274-283 (Pubitemid 18028415)
-
(1987)
Diabetes
, vol.36
, Issue.3
, pp. 274-283
-
-
Baron, A.D.1
Schaeffer, L.2
Shragg, P.3
Kolterman, O.G.4
-
15
-
-
9244264963
-
Effects of type 2 diabetes on the regulation of hepatic glucose metabolism
-
Basu A, Shah P, NielsenM, Basu R, Rizza RA. Effects of type 2 diabetes on the regulation of hepatic glucose metabolism. J Investig Med 2004;52:366-374 (Pubitemid 39552605)
-
(2004)
Journal of Investigative Medicine
, vol.52
, Issue.6
, pp. 366-374
-
-
Basu, A.1
Shah, P.2
Nielsen, M.3
Basu, R.4
Rizza, R.A.5
-
16
-
-
0028883204
-
Failure of glucagon suppression contributes to postprandial hyperglycaemia in IDDM
-
Dinneen S, Alzaid A, Turk D, Rizza R. Failure of glucagon suppression contributes to postprandial hyperglycaemia in IDDM. Diabetologia 1995;38:337-343
-
(1995)
Diabetologia
, vol.38
, pp. 337-343
-
-
Dinneen, S.1
Alzaid, A.2
Turk, D.3
Rizza, R.4
-
17
-
-
77958038687
-
Sphingolipids: The oil on the TRAFire that promotes inflammation
-
Napolitano G, Karin M. Sphingolipids: the oil on the TRAFire that promotes inflammation. Sci Signal 2010;3:pe34
-
(2010)
Sci Signal
, vol.3
-
-
Napolitano, G.1
Karin, M.2
-
18
-
-
33544470185
-
TRAF2: A double-edged sword?
-
Xia ZP, Chen ZJ. TRAF2: a double-edged sword? Sci STKE 2005;2005:pe7
-
(2005)
Sci STKE
, vol.2005
-
-
Xia, Z.P.1
Chen, Z.J.2
-
19
-
-
0033725155
-
The distinct roles of TRAF2 and RIP in IKK activation by TNF-R1: TRAF2 recruits IKK to TNFR1 while RIP mediates IKK activation
-
Devin A, Cook A, Lin Y, Rodriguez Y, Kelliher M, Liu Z. The distinct roles of TRAF2 and RIP in IKK activation by TNF-R1: TRAF2 recruits IKK to TNFR1 while RIP mediates IKK activation. Immunity 2000;12:419-429
-
(2000)
Immunity
, vol.12
, pp. 419-429
-
-
Devin, A.1
Cook, A.2
Lin, Y.3
Rodriguez, Y.4
Kelliher, M.5
Liu, Z.6
-
20
-
-
40249115896
-
TRAF2 and TRAF3 signal adapters act cooperatively to control the maturation and survival signals delivered to B cells by the BAFF receptor
-
Gardam S, Sierro F, Basten A, Mackay F, Brink R. TRAF2 and TRAF3 signal adapters act cooperatively to control the maturation and survival signals delivered to B cells by the BAFF receptor. Immunity 2008;28:391-401
-
(2008)
Immunity
, vol.28
, pp. 391-401
-
-
Gardam, S.1
Sierro, F.2
Basten, A.3
Mackay, F.4
Brink, R.5
-
21
-
-
8444220390
-
TRAF2 differentially regulates the canonical and noncanonical pathways of NF-kappaB activation in mature B cells
-
DOI 10.1016/j.immuni.2004.09.011, PII S1074761304003024
-
Grech AP, Amesbury M, Chan T, Gardam S, Basten A, Brink R. TRAF2 differentially regulates the canonical and noncanonical pathways of NFkappaB activation in mature B cells. Immunity 2004;21:629-642 (Pubitemid 39487887)
-
(2004)
Immunity
, vol.21
, Issue.5
, pp. 629-642
-
-
Grech, A.P.1
Amesbury, M.2
Chan, T.3
Gardam, S.4
Basten, A.5
Brink, R.6
-
22
-
-
11244334124
-
TRAF3 forms heterotrimers with TRAF2 and modulates its ability to mediate NF-kappaB activation
-
DOI 10.1074/jbc.M407284200
-
He L, Grammer AC, Wu X, Lipsky PE. TRAF3 forms heterotrimers with TRAF2 and modulates its ability to mediate NF-kappaB activation. J Biol Chem 2004;279:55855-55865 (Pubitemid 40066593)
-
(2004)
Journal of Biological Chemistry
, vol.279
, Issue.53
, pp. 55855-55865
-
-
He, L.1
Grammer, A.C.2
Wu, X.3
Lipsky, P.E.4
-
23
-
-
0030032106
-
TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways
-
DOI 10.1016/S0092-8674(00)80984-8
-
Hsu H, Shu HB, Pan MG, Goeddel DV. TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 1996;84:299-308 (Pubitemid 26042835)
-
(1996)
Cell
, vol.84
, Issue.2
, pp. 299-308
-
-
Hsu, H.1
Shu, H.-B.2
Pan, M.-G.3
Goeddel, D.V.4
-
24
-
-
56349164232
-
Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-kappaB signaling
-
Vallabhapurapu S, Matsuzawa A, Zhang W, et al. Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-kappaB signaling. Nat Immunol 2008;9:1364-1370
-
(2008)
Nat Immunol
, vol.9
, pp. 1364-1370
-
-
Vallabhapurapu, S.1
Matsuzawa, A.2
Zhang, W.3
-
25
-
-
56349164239
-
Noncanonical NF-kappaB activation requires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2 and TRAF3 and the kinase NIK
-
Zarnegar BJ, Wang Y, Mahoney DJ, et al. Noncanonical NF-kappaB activation requires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2 and TRAF3 and the kinase NIK. Nat Immunol 2008;9:1371-1378
-
(2008)
Nat Immunol
, vol.9
, pp. 1371-1378
-
-
Zarnegar, B.J.1
Wang, Y.2
Mahoney, D.J.3
-
26
-
-
0034326624
-
TNFR-associated factor family protein expression in normal tissues and lymphoid malignancies
-
Zapata JM, Krajewska M, Krajewski S, et al. TNFR-associated factor family protein expression in normal tissues and lymphoid malignancies. J Immunol 2000;165:5084-5096
-
(2000)
J Immunol
, vol.165
, pp. 5084-5096
-
-
Zapata, J.M.1
Krajewska, M.2
Krajewski, S.3
-
27
-
-
0031463025
-
Early lethality, functional NF-kappaB activation, and increased sensitivity to TNF-induced cell death in TRAF2-deficient mice
-
DOI 10.1016/S1074-7613(00)80391-X
-
Yeh WC, Shahinian A, Speiser D, et al. Early lethality, functional NF-kappaB activation, and increased sensitivity to TNF-induced cell death in TRAF2- deficient mice. Immunity 1997;7:715-725 (Pubitemid 28156638)
-
(1997)
Immunity
, vol.7
, Issue.5
, pp. 715-725
-
-
Yeh, W.-C.1
Shahinian, A.2
Speiser, D.3
Kraunus, J.4
Billia, F.5
Wakeham, A.6
De La, P.J.L.7
Ferrick, D.8
Hum, B.9
Iscove, N.10
Ohashi, P.11
Rothe, M.12
Goeddel, D.V.13
Mak, T.W.14
-
28
-
-
0033198702
-
TRAF2 deficiency results in hyperactivity of certain TNFR1 signals and impairment of CD40-mediated responses
-
DOI 10.1016/S1074-7613(00)80113-2
-
Nguyen LT, Duncan GS, Mirtsos C, et al. TRAF2 deficiency results in hyperactivity of certain TNFR1 signals and impairment of CD40-mediated responses. Immunity 1999;11:379-389 (Pubitemid 29463246)
-
(1999)
Immunity
, vol.11
, Issue.3
, pp. 379-389
-
-
Nguyen, L.T.1
Duncan, G.S.2
Mirtsos, C.3
Ng, M.4
Speiser, D.E.5
Shahinian, A.6
Marino, M.W.7
Mak, T.W.8
Ohashi, P.S.9
Yeh, W.-C.10
-
29
-
-
25144523930
-
Identification of SH2-B as a key regulator of leptin sensitivity, energy balance, and body weight in mice
-
Ren D, Li M, Duan C, Rui L. Identification of SH2-B as a key regulator of leptin sensitivity, energy balance, and body weight in mice. Cell Metab 2005;2:95-104
-
(2005)
Cell Metab
, vol.2
, pp. 95-104
-
-
Ren, D.1
Li, M.2
Duan, C.3
Rui, L.4
-
30
-
-
4344581405
-
Disruption of the SH2-B gene causes age-dependent insulin resistance and glucose intolerance
-
DOI 10.1128/MCB.24.17.7435-7443.2004
-
Duan C, Yang H, White MF, Rui L. Disruption of the SH2-B gene causes age-dependent insulin resistance and glucose intolerance. Mol Cell Biol 2004;24:7435-7443 (Pubitemid 39121472)
-
(2004)
Molecular and Cellular Biology
, vol.24
, Issue.17
, pp. 7435-7443
-
-
Duan, C.1
Yang, H.2
White, M.F.3
Rui, L.4
-
31
-
-
21044438041
-
Effect of murine strain on metabolic pathways of glucose production after brief or prolonged fasting
-
DOI 10.1152/ajpendo.00601.2004
-
Burgess SC, Jeffrey FM, Storey C, et al. Effect of murine strain on metabolic pathways of glucose production after brief or prolonged fasting. Am J Physiol Endocrinol Metab 2005;289:E53-E61 (Pubitemid 40874934)
-
(2005)
American Journal of Physiology - Endocrinology and Metabolism
, vol.289
, Issue.1
-
-
Burgess, S.C.1
Jeffrey, F.M.H.2
Storey, C.3
Milde, A.4
Hausler, N.5
Merritt, M.E.6
Mulder, H.7
Holm, C.8
Sherry, A.D.9
Malloy, C.R.10
-
33
-
-
33644784867
-
13C NMR
-
DOI 10.1042/BJ20051174
-
Hausler N, Browning J, Merritt M, et al. Effects of insulin and cytosolic redox state on glucose production pathways in the isolated perfused mouse liver measured by integrated 2H and 13C NMR. Biochem J 2006;394:465-473 (Pubitemid 43342547)
-
(2006)
Biochemical Journal
, vol.394
, Issue.2
, pp. 465-473
-
-
Hausler, N.1
Browning, J.2
Merritt, M.3
Storey, C.4
Milde, A.5
Jeffrey, F.M.H.6
Sherry, A.D.7
Malloy, C.R.8
Burgess, S.C.9
-
34
-
-
0035886761
-
2O administration
-
DOI 10.1006/abio.2001.5326
-
Schumann WC, Gastaldelli A, Chandramouli V, et al. Determination of the enrichment of the hydrogen bound to carbon 5 of glucose on 2H2O administration. Anal Biochem 2001;297:195-197 (Pubitemid 32989352)
-
(2001)
Analytical Biochemistry
, vol.297
, Issue.2
, pp. 195-197
-
-
Schumann, W.C.1
Gastaldelli, A.2
Chandramouli, V.3
Previs, S.F.4
Pettiti, M.5
Ferrannini, E.6
Landau, B.R.7
-
35
-
-
0030017082
-
Contributions of gluconeogenesis to glucose production in the fasted state
-
Landau BR, Wahren J, Chandramouli V, Schumann WC, Ekberg K, Kalhan SC. Contributions of gluconeogenesis to glucose production in the fasted state. J Clin Invest 1996;98:378-385 (Pubitemid 26255737)
-
(1996)
Journal of Clinical Investigation
, vol.98
, Issue.2
, pp. 378-385
-
-
Landau, B.R.1
Wahren, J.2
Chandramouli, V.3
Schumann, W.C.4
Ekberg, K.5
Kalhan, S.C.6
-
36
-
-
33846822094
-
Neuronal SH2B1 is essential for controlling energy and glucose homeostasis
-
DOI 10.1172/JCI29417
-
Ren D, Zhou Y, Morris D, Li M, Li Z, Rui L. Neuronal SH2B1 is essential for controlling energy and glucose homeostasis. J Clin Invest 2007;117:397-406 (Pubitemid 46203968)
-
(2007)
Journal of Clinical Investigation
, vol.117
, Issue.2
, pp. 397-406
-
-
Ren, D.1
Zhou, Y.2
Morris, D.3
Li, M.4
Li, Z.5
Rui, L.6
-
37
-
-
66449096802
-
Identification of MUP1 as a regulator for glucose and lipid metabolism in mice
-
Zhou Y, Jiang L, Rui L. Identification of MUP1 as a regulator for glucose and lipid metabolism in mice. J Biol Chem 2009;284:11152-11159
-
(2009)
J Biol Chem
, vol.284
, pp. 11152-11159
-
-
Zhou, Y.1
Jiang, L.2
Rui, L.3
-
38
-
-
78751499277
-
Lipocalin-13 regulates glucose metabolism by both insulin-dependent and insulin-independent mechanisms
-
Cho KW, Zhou Y, Sheng L, Rui L. Lipocalin-13 regulates glucose metabolism by both insulin-dependent and insulin-independent mechanisms. Mol Cell Biol 2011;31:450-457
-
(2011)
Mol Cell Biol
, vol.31
, pp. 450-457
-
-
Cho, K.W.1
Zhou, Y.2
Sheng, L.3
Rui, L.4
-
39
-
-
76749139528
-
The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors
-
Schmutz I, Ripperger JA, Baeriswyl-Aebischer S, Albrecht U. The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors. Genes Dev 2010;24:345-357
-
(2010)
Genes Dev
, vol.24
, pp. 345-357
-
-
Schmutz, I.1
Ripperger, J.A.2
Baeriswyl-Aebischer, S.3
Albrecht, U.4
-
40
-
-
42449104952
-
Endoplasmic reticulum stress and inflammation in obesity and type 2 diabetes
-
discussion 94-88, 162-163, 196-203
-
Hotamisligil GS. Endoplasmic reticulum stress and inflammation in obesity and type 2 diabetes. Novartis Found Symp 2007;286:86-94; discussion 94-88, 162-163, 196-203
-
(2007)
Novartis Found Symp
, vol.286
, pp. 86-94
-
-
Hotamisligil, G.S.1
-
41
-
-
12644272789
-
Tumor necrosis factor (TNF)-mediated kinase cascades: Bifurcation of nuclear factor-kappaB and c-jun N-terminal kinase (JNK/SAPK) pathways at TNF receptor-associated factor 2
-
DOI 10.1073/pnas.94.18.9792
-
Song HY, Régnier CH, Kirschning CJ, Goeddel DV, Rothe M. Tumor necrosis factor (TNF)-mediated kinase cascades: bifurcation of nuclear factor-kappaB and c-jun N-terminal kinase (JNK/SAPK) pathways at TNF receptor-associated factor 2. Proc Natl Acad Sci U S A 1997;94:9792-9796 (Pubitemid 27408143)
-
(1997)
Proceedings of the National Academy of Sciences of the United States of America
, vol.94
, Issue.18
, pp. 9792-9796
-
-
Song, H.Y.1
Regnier, C.H.2
Kirschning, C.J.3
Goeddel, D.V.4
Rothe, M.5
-
42
-
-
48749090228
-
Essential cytoplasmic translocation of a cytokine receptor-assembled signaling complex
-
Matsuzawa A, Tseng PH, Vallabhapurapu S, et al. Essential cytoplasmic translocation of a cytokine receptor-assembled signaling complex. Science 2008;321:663-668
-
(2008)
Science
, vol.321
, pp. 663-668
-
-
Matsuzawa, A.1
Tseng, P.H.2
Vallabhapurapu, S.3
-
43
-
-
33646034316
-
Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO
-
Ea CK, Deng L, Xia ZP, Pineda G, Chen ZJ. Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol Cell 2006;22:245-257
-
(2006)
Mol Cell
, vol.22
, pp. 245-257
-
-
Ea, C.K.1
Deng, L.2
Xia, Z.P.3
Pineda, G.4
Chen, Z.J.5
-
44
-
-
61849157254
-
TNFR signaling: Ubiquitin-conjugated TRAFfic signals control stop-and-go for MAPK signaling complexes
-
Karin M, Gallagher E. TNFR signaling: ubiquitin-conjugated TRAFfic signals control stop-and-go for MAPK signaling complexes. Immunol Rev 2009;228:225-240
-
(2009)
Immunol Rev
, vol.228
, pp. 225-240
-
-
Karin, M.1
Gallagher, E.2
-
45
-
-
0034723235
-
Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1
-
DOI 10.1126/science.287.5453.664
-
Urano F, Wang X, Bertolotti A, et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 2000;287:664-666 (Pubitemid 30070916)
-
(2000)
Science
, vol.287
, Issue.5453
, pp. 664-666
-
-
Urano, F.1
Wang, X.2
Bertolotti, A.3
Zhang, Y.4
Chung, P.5
Harding, H.P.6
Ron, D.7
-
46
-
-
5644231992
-
Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes
-
DOI 10.1126/science.1103160
-
Ozcan U, Cao Q, Yilmaz E, et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 2004;306:457-461 (Pubitemid 39372439)
-
(2004)
Science
, vol.306
, Issue.5695
, pp. 457-461
-
-
Ozcan, U.1
Cao, Q.2
Yilmaz, E.3
Lee, A.-H.4
Iwakoshi, N.N.5
Ozdelen, E.6
Tuncman, G.7
Gorgun, C.8
Glimcher, L.H.9
Hotamisligil, G.S.10
-
47
-
-
0034708832
-
307
-
DOI 10.1074/jbc.275.12.9047
-
Aguirre V, Uchida T, Yenush L, Davis R, White MF. The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307). J Biol Chem 2000;275: 9047-9054 (Pubitemid 30180265)
-
(2000)
Journal of Biological Chemistry
, vol.275
, Issue.12
, pp. 9047-9054
-
-
Aguirre, V.1
Uchida, T.2
Yenush, L.3
Davis, R.4
White, M.F.5
-
48
-
-
0037474274
-
c-Jun N-terminal kinase (JNK) mediates feedback inhibition of the insulin signaling cascade
-
DOI 10.1074/jbc.M208359200
-
Lee YH, Giraud J, Davis RJ, White MF. c-Jun N-terminal kinase (JNK) mediates feedback inhibition of the insulin signaling cascade. J Biol Chem 2003;278:2896-2902 (Pubitemid 36801194)
-
(2003)
Journal of Biological Chemistry
, vol.278
, Issue.5
, pp. 2896-2902
-
-
Lee, Y.H.1
Giraud, J.2
Davis, R.J.3
White, M.F.4
-
49
-
-
0037153158
-
A central, role for JNK in obesity and insulin resistance
-
DOI 10.1038/nature01137
-
Hirosumi J, Tuncman G, Chang L, et al. A central role for JNK in obesity and insulin resistance. Nature 2002;420:333-336 (Pubitemid 35398190)
-
(2002)
Nature
, vol.420
, Issue.6913
, pp. 333-336
-
-
Hirosumi, J.1
Tuncman, G.2
Chang, L.3
Gorgun, C.Z.4
Uysal, K.T.5
Maeda, K.6
Karin, M.7
Hotamisligil, G.S.8
-
50
-
-
67749135249
-
The CREB coactivator CRTC2 links hepatic ER stress and fasting gluconeogenesis
-
Wang Y, Vera L, Fischer WH, Montminy M. The CREB coactivator CRTC2 links hepatic ER stress and fasting gluconeogenesis. Nature 2009;460:534-537
-
(2009)
Nature
, vol.460
, pp. 534-537
-
-
Wang, Y.1
Vera, L.2
Fischer, W.H.3
Montminy, M.4
|