메뉴 건너뛰기




Volumn 58, Issue 2, 2014, Pages 381-407

Proximal methods for the latent group lasso penalty

Author keywords

More regularization; Proximal methods; Structured sparsity

Indexed keywords

COMPUTATIONAL METHODS; OPTIMIZATION;

EID: 84901191783     PISSN: 09266003     EISSN: 15732894     Source Type: Journal    
DOI: 10.1007/s10589-013-9628-6     Document Type: Article
Times cited : (30)

References (54)
  • 1
    • 46249088758 scopus 로고    scopus 로고
    • Consistency of the group lasso and multiple kernel learning
    • 1225.68147 2417268
    • Bach, F.: Consistency of the group lasso and multiple kernel learning. J. Mach. Learn. Res. 9, 1179-1225 (2008)
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 1179-1225
    • Bach, F.1
  • 2
    • 14344252374 scopus 로고    scopus 로고
    • Multiple kernel learning, conic duality, and the smo algorithm
    • ACM International Conference Proceeding Series 69
    • Bach, F.R., Lanckriet, G., Jordan, M.I.: Multiple kernel learning, conic duality, and the smo algorithm. In: ICML. ACM International Conference Proceeding Series, vol. 69 (2004)
    • (2004) ICML
    • Bach, F.R.1    Lanckriet, G.2    Jordan, M.I.3
  • 4
    • 0030586523 scopus 로고
    • The approximation of fixed points of compositions of nonexpansive mappings in Hilbert space
    • 10.1006/jmaa.1996.0308 1402593
    • Bauschke, H.: The approximation of fixed points of compositions of nonexpansive mappings in Hilbert space. J. Math. Anal. Appl. 202(1), 150-159 (1994)
    • (1994) J. Math. Anal. Appl. , vol.202 , Issue.1 , pp. 150-159
    • Bauschke, H.1
  • 6
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • 10.1137/080716542 1175.94009 2486527
    • Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183-202 (2009)
    • (2009) SIAM J. Imaging Sci. , vol.2 , Issue.1 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 7
    • 79551550744 scopus 로고    scopus 로고
    • NESTA: A fast and accurate first-order method for sparse recovery
    • 10.1137/090756855 2765668
    • Becker, S., Bobin, J., Candes, E.: NESTA: A fast and accurate first-order method for sparse recovery. SIAM J. Imaging Sci. 4(1), 1-39 (2009)
    • (2009) SIAM J. Imaging Sci. , vol.4 , Issue.1 , pp. 1-39
    • Becker, S.1    Bobin, J.2    Candes, E.3
  • 8
    • 0000377218 scopus 로고
    • Projected Newton methods for optimization problems with simple constraints
    • 10.1137/0320018 0507.49018 646950
    • Bertsekas, D.: Projected Newton methods for optimization problems with simple constraints. SIAM J. Control Optim. 20(2), 221-246 (1982)
    • (1982) SIAM J. Control Optim. , vol.20 , Issue.2 , pp. 221-246
    • Bertsekas, D.1
  • 9
    • 0002436271 scopus 로고
    • A method for finding projections onto the intersection of convex sets in Hilbert spaces
    • R. Dykstra T. Robertson F. Wright (eds) Lecture Notes in Statistics 37 Springer Berlin 10.1007/978-1-4613-9940-7-3
    • Boyle, J., Dykstra, R.: A method for finding projections onto the intersection of convex sets in Hilbert spaces. In: Dykstra, R., Robertson, T., Wright, F. (eds.) Advances in Order Restricted Statistical Inference. Lecture Notes in Statistics, vol. 37, pp. 28-48. Springer, Berlin (1985)
    • (1985) Advances in Order Restricted Statistical Inference , pp. 28-48
    • Boyle, J.1    Dykstra, R.2
  • 10
    • 0018732237 scopus 로고
    • An algorithm for minimizing a differentiable function subject to box constraints and errors
    • 10.1007/BF00934451 0387.65038 552105
    • Brayton, R., Cullum, J.: An algorithm for minimizing a differentiable function subject to box constraints and errors. J. Optim. Theory Appl. 29, 521-558 (1979)
    • (1979) J. Optim. Theory Appl. , vol.29 , pp. 521-558
    • Brayton, R.1    Cullum, J.2
  • 11
    • 79953201848 scopus 로고    scopus 로고
    • A first-order primal-dual algorithm for convex problems with applications to imaging
    • 10.1007/s10851-010-0251-1 1255.68217 2782122
    • Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120-145 (2011)
    • (2011) J. Math. Imaging Vis. , vol.40 , Issue.1 , pp. 120-145
    • Chambolle, A.1    Pock, T.2
  • 12
    • 0032131292 scopus 로고    scopus 로고
    • Atomic decomposition by basis pursuit
    • 0919.94002 1639094
    • Chen, S., Donoho, D., Saunders, M.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20(1), 33-61 (1999)
    • (1999) SIAM J. Sci. Comput. , vol.20 , Issue.1 , pp. 33-61
    • Chen, S.1    Donoho, D.2    Saunders, M.3
  • 13
    • 84866248858 scopus 로고    scopus 로고
    • Smoothing proximal gradient method for general structured sparse regression
    • 10.1214/11-AOAS514 2976489
    • Chen, X., Lin, Q., Kim, S., Carbonell, J., Xing, E.P.: Smoothing proximal gradient method for general structured sparse regression. Ann. Appl. Stat. 6(2), 719-752 (2012)
    • (2012) Ann. Appl. Stat. , vol.6 , Issue.2 , pp. 719-752
    • Chen, X.1    Lin, Q.2    Kim, S.3    Carbonell, J.4    Xing, E.P.5
  • 14
    • 30844438177 scopus 로고    scopus 로고
    • Signal recovery by proximal forward-backward splitting
    • 10.1137/050626090 1179.94031 2203849 (electronic)
    • Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4(4), 1168-1200 (2005) (electronic)
    • (2005) Multiscale Model. Simul. , vol.4 , Issue.4 , pp. 1168-1200
    • Combettes, P.L.1    Wajs, V.R.2
  • 16
    • 75249102673 scopus 로고    scopus 로고
    • Efficient online and batch learning using forward backward splitting
    • 1235.62151 2579916
    • Duchi, J., Singer, Y.: Efficient online and batch learning using forward backward splitting. J. Mach. Learn. Res. 10, 2899-2934 (2009)
    • (2009) J. Mach. Learn. Res. , vol.10 , pp. 2899-2934
    • Duchi, J.1    Singer, Y.2
  • 19
    • 57349127864 scopus 로고    scopus 로고
    • Accelerated projected gradient methods for linear inverse problems with sparsity constraints
    • Fornasier, M., Daubechies, I., Loris, I.: Accelerated projected gradient methods for linear inverse problems with sparsity constraints. J. Fourier Anal. Appl. (2008)
    • (2008) J. Fourier Anal. Appl.
    • Fornasier, M.1    Daubechies, I.2    Loris, I.3
  • 20
    • 69649095451 scopus 로고    scopus 로고
    • Fixed-point continuation for l1-minimization: Methodology and convergence
    • 10.1137/070698920 1180.65076 2460734
    • Hale, E.T., Yin, W., Zhang, Y.: Fixed-point continuation for l1-minimization: methodology and convergence. SIAM J. Optim. 19(3), 1107-1130 (2008)
    • (2008) SIAM J. Optim. , vol.19 , Issue.3 , pp. 1107-1130
    • Hale, E.T.1    Yin, W.2    Zhang, Y.3
  • 22
    • 78650920797 scopus 로고    scopus 로고
    • Dequantizing compressed sensing: When oversampling and non-Gaussian constraints combine
    • 10.1109/TIT.2010.2093310 2814072
    • Jacques, L., Hammond, D., Fadili, J.: Dequantizing compressed sensing: when oversampling and non-Gaussian constraints combine. IEEE Trans. Inf. Theory 57(1), 559-571 (2011)
    • (2011) IEEE Trans. Inf. Theory , vol.57 , Issue.1 , pp. 559-571
    • Jacques, L.1    Hammond, D.2    Fadili, J.3
  • 27
    • 37849035696 scopus 로고    scopus 로고
    • The group lasso for logistic regression
    • 10.1111/j.1467-9868.2007.00627.x 05563343
    • Meier, L., van de Geer, S., Buhlmann, P.: The group lasso for logistic regression. J. R. Stat. Soc. B 70, 53-71 (2008)
    • (2008) J. R. Stat. Soc. B , vol.70 , pp. 53-71
    • Meier, L.1    Van De Geer, S.2    Buhlmann, P.3
  • 28
    • 23244434257 scopus 로고    scopus 로고
    • Learning the kernel function via regularization
    • 1222.68265 2249850
    • Micchelli, C.A., Pontil, M.: Learning the kernel function via regularization. J. Mach. Learn. Res. 6, 1099-1125 (2005)
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 1099-1125
    • Micchelli, C.A.1    Pontil, M.2
  • 29
    • 0041356704 scopus 로고
    • Fonctions convexes duales et points proximaux dans un espace hilbertien
    • 0118.10502 144188
    • Moreau, J.-J.: Fonctions convexes duales et points proximaux dans un espace hilbertien. C. R. Acad. Sci. Paris 255, 2897-2899 (1962)
    • (1962) C. R. Acad. Sci. Paris , vol.255 , pp. 2897-2899
    • Moreau, J.-J.1
  • 30
    • 78049443983 scopus 로고    scopus 로고
    • Solving structured sparsity regularization with proximal methods
    • J. Balcázar F. Bonchi A. Gionis M. Sebag (eds) Lecture Notes in Computer Science 6322 Springer Berlin 10.1007/978-3-642-15883-4-27
    • Mosci, S., Rosasco, L., Santoro, M., Verri, A., Villa, S.: Solving structured sparsity regularization with proximal methods. In: Balcázar, J., Bonchi, F., Gionis, A., Sebag, M. (eds.) Machine Learning and Knowledge Discovery in Databases. Lecture Notes in Computer Science, vol. 6322, pp. 418-433. Springer, Berlin (2010)
    • (2010) Machine Learning and Knowledge Discovery in Databases , pp. 418-433
    • Mosci, S.1    Rosasco, L.2    Santoro, M.3    Verri, A.4    Villa, S.5
  • 31
    • 85161965237 scopus 로고    scopus 로고
    • A primal-dual algorithm for group sparse regularization with overlapping groups
    • J. Lafferty C.K.I. Williams J. Shawe-Taylor R.S. Zemel A. Culotta (eds) 23
    • Mosci, S., Villa, S., Verri, A., Rosasco, L.: A primal-dual algorithm for group sparse regularization with overlapping groups. In: Lafferty, J., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems, vol. 23, pp. 2604-2612 (2010)
    • (2010) Advances in Neural Information Processing Systems , pp. 2604-2612
    • Mosci, S.1    Villa, S.2    Verri, A.3    Rosasco, L.4
  • 33
    • 17444406259 scopus 로고    scopus 로고
    • Smooth minimization of non-smooth functions
    • 10.1007/s10107-004-0552-5 1079.90102 2166537
    • Nesterov, Y.: Smooth minimization of non-smooth functions. Math. Program., Ser. A 103(1), 127-152 (2005)
    • (2005) Math. Program., Ser. A , vol.103 , Issue.1 , pp. 127-152
    • Nesterov, Y.1
  • 36
    • 34547849507 scopus 로고    scopus 로고
    • L1-regularization path algorithm for generalized linear models
    • 10.1111/j.1467-9868.2007.00607.x 2370074
    • Park, M.Y., Hastie, T.: L1-regularization path algorithm for generalized linear models. J. R. Stat. Soc. B 69, 659-677 (2007)
    • (2007) J. R. Stat. Soc. B , vol.69 , pp. 659-677
    • Park, M.Y.1    Hastie, T.2
  • 37
    • 84863739550 scopus 로고    scopus 로고
    • Group sparsity with overlapping partition functions
    • Peyré, G., Fadili, J.: Group sparsity with overlapping partition functions. In: Proc. EUSIPCO 2011, pp. 303-307 (2011)
    • (2011) Proc. EUSIPCO 2011 , pp. 303-307
    • Peyré, G.1    Fadili, J.2
  • 39
    • 84862026135 scopus 로고    scopus 로고
    • Structured sparsity via alternating direction methods
    • 06276157 2930644
    • Qin, Z., Goldfarb, D.: Structured sparsity via alternating direction methods. J. Mach. Learn. Res. 13, 1435-1468 (2012)
    • (2012) J. Mach. Learn. Res. , vol.13 , pp. 1435-1468
    • Qin, Z.1    Goldfarb, D.2
  • 41
    • 0016985417 scopus 로고
    • Monotone operators and the proximal point algorithm
    • 10.1137/0314056 0358.90053 410483
    • Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14(5), 877-898 (1976)
    • (1976) SIAM J. Control Optim. , vol.14 , Issue.5 , pp. 877-898
    • Rockafellar, R.T.1
  • 43
    • 0000788854 scopus 로고
    • The gradient projection method for nonlinear programming, part I: Linear constraints
    • 10.1137/0108011 0099.36405
    • Rosen, J.: The gradient projection method for nonlinear programming, part I: Linear constraints. J. Soc. Ind. Appl. Math. 8, 181-217 (1960)
    • (1960) J. Soc. Ind. Appl. Math. , vol.8 , pp. 181-217
    • Rosen, J.1
  • 44
    • 56449115709 scopus 로고    scopus 로고
    • The group-lasso for generalized linear models: Uniqueness of solutions and efficient
    • Roth, V., Fischer, B.: The group-lasso for generalized linear models: uniqueness of solutions and efficient. In: Proceedings of 25th ICML (2008)
    • (2008) Proceedings of 25th ICML
    • Roth, V.1    Fischer, B.2
  • 45
    • 84872004272 scopus 로고    scopus 로고
    • Accelerated and inexact proximal point algorithms
    • 3059059
    • Salzo, S., Villa, S.: Accelerated and inexact proximal point algorithms. J. Convex Anal. 9(4), 1167-1192 (2012)
    • (2012) J. Convex Anal. , vol.9 , Issue.4 , pp. 1167-1192
    • Salzo, S.1    Villa, S.2
  • 47
    • 27344435774 scopus 로고    scopus 로고
    • Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles
    • 10.1073/pnas.0506580102
    • Subramanian, A., et al.: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102(43), 15545-15550 (2005)
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , Issue.43 , pp. 15545-15550
    • Subramanian, A.1
  • 48
    • 0034069495 scopus 로고    scopus 로고
    • Gene ontology: Tool for the unification biology
    • The Gene Ontology Consortium 10.1038/75556
    • The Gene Ontology Consortium: Gene ontology: tool for the unification biology. Nat. Genet. 25, 25-29 (2000)
    • (2000) Nat. Genet. , vol.25 , pp. 25-29
  • 49
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • 0850.62538 1379242
    • Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B 58(1), 267-288 (1996)
    • (1996) J. R. Stat. Soc. B , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 50
    • 77958113563 scopus 로고    scopus 로고
    • Approximation accuracy, gradient methods, and error bound for structured convex optimization
    • 10.1007/s10107-010-0394-2 1207.65084
    • Tseng, P.: Approximation accuracy, gradient methods, and error bound for structured convex optimization. Math. Program., Ser. B 125(2), 263-295 (2010)
    • (2010) Math. Program., Ser. B , vol.125 , Issue.2 , pp. 263-295
    • Tseng, P.1
  • 51
    • 18244409687 scopus 로고    scopus 로고
    • Gene expression profiling predicts clinical outcome of breast cancer
    • 10.1038/415530a
    • van 't Veer, L., et al.: Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871), 530 (2002)
    • (2002) Nature , vol.415 , Issue.6871 , pp. 530
    • Van 'T Veer, L.1
  • 52
    • 84886247153 scopus 로고    scopus 로고
    • Accelerated and inexact forward-backward algorithms
    • 10.1137/110844805 06238052 3085126
    • Villa, S., Salzo, S., Baldassarre, L., Verri, A.: Accelerated and inexact forward-backward algorithms. SIAM J. Optim. 23(3), 1607-1633 (2013)
    • (2013) SIAM J. Optim. , vol.23 , Issue.3 , pp. 1607-1633
    • Villa, S.1    Salzo, S.2    Baldassarre, L.3    Verri, A.4
  • 53
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • 10.1111/j.1467-9868.2005.00532.x 1141.62030 2212574
    • Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. B 68(1), 49-67 (2006)
    • (2006) J. R. Stat. Soc. B , vol.68 , Issue.1 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 54
    • 69949155103 scopus 로고    scopus 로고
    • The composite absolute penalties family for grouped and hierarchical variable selection
    • 10.1214/07-AOS584 05644286 2549566
    • Zhao, P., Rocha, G., Yu, B.: The composite absolute penalties family for grouped and hierarchical variable selection. Ann. Stat. 37(6A), 3468-3497 (2009)
    • (2009) Ann. Stat. , vol.37 , Issue.6 A , pp. 3468-3497
    • Zhao, P.1    Rocha, G.2    Yu, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.