메뉴 건너뛰기




Volumn , Issue , 2010, Pages

A primal-dual algorithm for group sparse regularization with overlapping groups

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE;

EID: 85161965237     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (36)

References (24)
  • 1
    • 46249088758 scopus 로고    scopus 로고
    • Consistency of the group lasso and multiple kernel learning
    • F. Bach. Consistency of the group lasso and multiple kernel learning. Journal of Machine Learning Research, 9:1179-1225, 2008.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 1179-1225
    • Bach, F.1
  • 2
    • 77956524818 scopus 로고    scopus 로고
    • High-dimensional non-linear variable selection through hierarchical kernel learning
    • F. Bach. High-dimensional non-linear variable selection through hierarchical kernel learning. Technical Report HAL 00413473, INRIA, 2009.
    • (2009) Technical Report HAL 00413473 INRIA
    • Bach, F.1
  • 3
    • 14344252374 scopus 로고    scopus 로고
    • Multiple kernel learning, conic duality, and the smo algorithm
    • volume 69 of ACM International Conference Proceeding Series
    • F. R. Bach, G. Lanckriet, and M. I. Jordan. Multiple kernel learning, conic duality, and the smo algorithm. In ICML, volume 69 of ACM International Conference Proceeding Series, 2004.
    • (2004) ICML
    • Bach, F.R.1    Lanckriet, G.2    Jordan, M.I.3
  • 4
    • 70350593691 scopus 로고    scopus 로고
    • Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems
    • A. Beck and Teboulle. M. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Transactions on Image Processing, 18(11):2419-2434, 2009.
    • (2009) IEEE Transactions on Image Processing , vol.18 , Issue.11 , pp. 2419-2434
    • Beck, A.1    Teboulle, M.2
  • 5
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci., 2(1):183-202, 2009.
    • (2009) SIAM J. Imaging Sci. , vol.2 , Issue.1 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 7
    • 0000377218 scopus 로고
    • Projected newton methods for optimization problems with simple constraints
    • D. Bertsekas. Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization, 20(2):221-246, 1982.
    • (1982) SIAM Journal on Control and Optimization , vol.20 , Issue.2 , pp. 221-246
    • Bertsekas, D.1
  • 8
    • 0018732237 scopus 로고
    • An algorithm for minimizing a differentiable function subject to
    • R. Brayton and J. Cullum. An algorithm for minimizing a differentiable function subject to. J. Opt. Th. Appl., 29:521-558, 1979.
    • (1979) J. Opt. Th. Appl. , vol.29 , pp. 521-558
    • Brayton, R.1    Cullum, J.2
  • 9
    • 75249102673 scopus 로고    scopus 로고
    • Efficient online and batch learning using forward backward splitting
    • December
    • J. Duchi and Y. Singer. Efficient online and batch learning using forward backward splitting. Journal of Machine Learning Research, 10:28992934, December 2009.
    • (2009) Journal of Machine Learning Research , vol.10 , pp. 28992934
    • Duchi, J.1    Singer, Y.2
  • 10
    • 0007016022 scopus 로고
    • New proximal point algorithm for convex minimization
    • O. Guler. New proximal point algorithm for convex minimization. SIAM J. on Optimization, 2(4):649-664, 1992.
    • (1992) SIAM J. on Optimization , vol.2 , Issue.4 , pp. 649-664
    • Guler, O.1
  • 11
    • 69649095451 scopus 로고    scopus 로고
    • Fixed-point continuation for l1-minimization: Methodology and convergence
    • E. T. Hale, W. Yin, and Y. Zhang. Fixed-point continuation for l1-minimization: Methodology and convergence. SIOPT, 19(3):1107-1130, 2008.
    • (2008) SIOPT , vol.19 , Issue.3 , pp. 1107-1130
    • Hale, E.T.1    Yin, W.2    Zhang, Y.3
  • 12
    • 71149113559 scopus 로고    scopus 로고
    • Group lasso with overlap and graph lasso
    • L. Jacob, G. Obozinski, and J.-P. Vert. Group lasso with overlap and graph lasso. In ICML, page 55, 2009.
    • (2009) ICML , pp. 55
    • Jacob, L.1    Obozinski, G.2    Vert, J.-P.3
  • 15
    • 67650414322 scopus 로고    scopus 로고
    • 1-penalized functionals
    • 16
    • 1-penalized functionals. Inverse Problems, 25(3):035008, 16, 2009.
    • (2009) Inverse Problems , vol.25 , Issue.3 , pp. 035008
    • Loris, I.1
  • 17
    • 85161992398 scopus 로고    scopus 로고
    • A fast algorithm for structured gene selection
    • presented at, Edinburgh
    • S. Mosci, S. Villa, Verri A., and L. Rosasco. A fast algorithm for structured gene selection. presented at MLSB 2010, Edinburgh.
    • MLSB 2010
    • Mosci, S.1    Villa, S.2    Verri, A.3    Rosasco, L.4
  • 19
    • 17444406259 scopus 로고    scopus 로고
    • Smooth minimization of non-smooth functions
    • Y. Nesterov. Smooth minimization of non-smooth functions. Math. Prog. Series A, 103(1):127-152, 2005.
    • (2005) Math. Prog. Series A , vol.103 , Issue.1 , pp. 127-152
    • Nesterov, Y.1
  • 20
    • 34547849507 scopus 로고    scopus 로고
    • L1-regularization path algorithm for generalized linear models
    • M. Y. Park and T. Hastie. L1-regularization path algorithm for generalized linear models. J. R. Statist. Soc. B, 69:659-677, 2007.
    • (2007) J. R. Statist. Soc. B , vol.69 , pp. 659-677
    • Park, M.Y.1    Hastie, T.2
  • 22
    • 0000788854 scopus 로고
    • The gradient projection method for nonlinear programming, part I: Linear constraints
    • J. Rosen. The gradient projection method for nonlinear programming, part i: linear constraints. J. Soc. Ind. Appl. Math., 8:181-217, 1960.
    • (1960) J. Soc. Ind. Appl. Math. , vol.8 , pp. 181-217
    • Rosen, J.1
  • 23
    • 56449115709 scopus 로고    scopus 로고
    • The group-lasso for generalized linear models: Uniqueness of solutions and efficient algorithms
    • V. Roth and B. Fischer. The group-lasso for generalized linear models: uniqueness of solutions and efficient algorithms. In Proceedings of 25th ICML, 2008.
    • (2008) Proceedings of 25th ICML
    • Roth, V.1    Fischer, B.2
  • 24
    • 69949155103 scopus 로고    scopus 로고
    • The composite absolute penalties family for grouped and hierarchical variable selection
    • P. Zhao, G. Rocha, and B. Yu. The composite absolute penalties family for grouped and hierarchical variable selection. Annals of Statistics, 37(6A):3468-3497, 2009.
    • (2009) Annals of Statistics , vol.37 , Issue.6 A , pp. 3468-3497
    • Zhao, P.1    Rocha, G.2    Yu, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.