-
1
-
-
46249088758
-
Consistency of the group lasso and multiple kernel learning
-
F. Bach. Consistency of the group lasso and multiple kernel learning. Journal of Machine Learning Research, 9:1179-1225, 2008.
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 1179-1225
-
-
Bach, F.1
-
2
-
-
77956524818
-
High-dimensional non-linear variable selection through hierarchical kernel learning
-
F. Bach. High-dimensional non-linear variable selection through hierarchical kernel learning. Technical Report HAL 00413473, INRIA, 2009.
-
(2009)
Technical Report HAL 00413473 INRIA
-
-
Bach, F.1
-
3
-
-
14344252374
-
Multiple kernel learning, conic duality, and the smo algorithm
-
volume 69 of ACM International Conference Proceeding Series
-
F. R. Bach, G. Lanckriet, and M. I. Jordan. Multiple kernel learning, conic duality, and the smo algorithm. In ICML, volume 69 of ACM International Conference Proceeding Series, 2004.
-
(2004)
ICML
-
-
Bach, F.R.1
Lanckriet, G.2
Jordan, M.I.3
-
4
-
-
70350593691
-
Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems
-
A. Beck and Teboulle. M. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Transactions on Image Processing, 18(11):2419-2434, 2009.
-
(2009)
IEEE Transactions on Image Processing
, vol.18
, Issue.11
, pp. 2419-2434
-
-
Beck, A.1
Teboulle, M.2
-
5
-
-
85014561619
-
A fast iterative shrinkage-thresholding algorithm for linear inverse problems
-
A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci., 2(1):183-202, 2009.
-
(2009)
SIAM J. Imaging Sci.
, vol.2
, Issue.1
, pp. 183-202
-
-
Beck, A.1
Teboulle, M.2
-
7
-
-
0000377218
-
Projected newton methods for optimization problems with simple constraints
-
D. Bertsekas. Projected newton methods for optimization problems with simple constraints. SIAM Journal on Control and Optimization, 20(2):221-246, 1982.
-
(1982)
SIAM Journal on Control and Optimization
, vol.20
, Issue.2
, pp. 221-246
-
-
Bertsekas, D.1
-
8
-
-
0018732237
-
An algorithm for minimizing a differentiable function subject to
-
R. Brayton and J. Cullum. An algorithm for minimizing a differentiable function subject to. J. Opt. Th. Appl., 29:521-558, 1979.
-
(1979)
J. Opt. Th. Appl.
, vol.29
, pp. 521-558
-
-
Brayton, R.1
Cullum, J.2
-
9
-
-
75249102673
-
Efficient online and batch learning using forward backward splitting
-
December
-
J. Duchi and Y. Singer. Efficient online and batch learning using forward backward splitting. Journal of Machine Learning Research, 10:28992934, December 2009.
-
(2009)
Journal of Machine Learning Research
, vol.10
, pp. 28992934
-
-
Duchi, J.1
Singer, Y.2
-
10
-
-
0007016022
-
New proximal point algorithm for convex minimization
-
O. Guler. New proximal point algorithm for convex minimization. SIAM J. on Optimization, 2(4):649-664, 1992.
-
(1992)
SIAM J. on Optimization
, vol.2
, Issue.4
, pp. 649-664
-
-
Guler, O.1
-
11
-
-
69649095451
-
Fixed-point continuation for l1-minimization: Methodology and convergence
-
E. T. Hale, W. Yin, and Y. Zhang. Fixed-point continuation for l1-minimization: Methodology and convergence. SIOPT, 19(3):1107-1130, 2008.
-
(2008)
SIOPT
, vol.19
, Issue.3
, pp. 1107-1130
-
-
Hale, E.T.1
Yin, W.2
Zhang, Y.3
-
12
-
-
71149113559
-
Group lasso with overlap and graph lasso
-
L. Jacob, G. Obozinski, and J.-P. Vert. Group lasso with overlap and graph lasso. In ICML, page 55, 2009.
-
(2009)
ICML
, pp. 55
-
-
Jacob, L.1
Obozinski, G.2
Vert, J.-P.3
-
15
-
-
67650414322
-
1-penalized functionals
-
16
-
1-penalized functionals. Inverse Problems, 25(3):035008, 16, 2009.
-
(2009)
Inverse Problems
, vol.25
, Issue.3
, pp. 035008
-
-
Loris, I.1
-
16
-
-
37849035696
-
The group lasso for logistic regression
-
L. Meier, S. van de Geer, and P. Buhlmann. The group lasso for logistic regression. J. R. Statist. Soc, B(70):53-71, 2008.
-
(2008)
J. R. Statist. Soc, B
, Issue.70
, pp. 53-71
-
-
Meier, L.1
Van De Geer, S.2
Buhlmann, P.3
-
17
-
-
85161992398
-
A fast algorithm for structured gene selection
-
presented at, Edinburgh
-
S. Mosci, S. Villa, Verri A., and L. Rosasco. A fast algorithm for structured gene selection. presented at MLSB 2010, Edinburgh.
-
MLSB 2010
-
-
Mosci, S.1
Villa, S.2
Verri, A.3
Rosasco, L.4
-
19
-
-
17444406259
-
Smooth minimization of non-smooth functions
-
Y. Nesterov. Smooth minimization of non-smooth functions. Math. Prog. Series A, 103(1):127-152, 2005.
-
(2005)
Math. Prog. Series A
, vol.103
, Issue.1
, pp. 127-152
-
-
Nesterov, Y.1
-
20
-
-
34547849507
-
L1-regularization path algorithm for generalized linear models
-
M. Y. Park and T. Hastie. L1-regularization path algorithm for generalized linear models. J. R. Statist. Soc. B, 69:659-677, 2007.
-
(2007)
J. R. Statist. Soc. B
, vol.69
, pp. 659-677
-
-
Park, M.Y.1
Hastie, T.2
-
21
-
-
78049440310
-
Iterative projection methods for structured sparsity regularization
-
MIT
-
L. Rosasco, M. Mosci, S. Santoro, A. Verri, and S. Villa. Iterative projection methods for structured sparsity regularization. Technical Report MIT-CSAIL-TR-2009-050, MIT, 2009.
-
(2009)
Technical Report MIT-CSAIL-TR-2009-050
-
-
Rosasco, L.1
Mosci, M.2
Santoro, S.3
Verri, A.4
Villa, S.5
-
22
-
-
0000788854
-
The gradient projection method for nonlinear programming, part I: Linear constraints
-
J. Rosen. The gradient projection method for nonlinear programming, part i: linear constraints. J. Soc. Ind. Appl. Math., 8:181-217, 1960.
-
(1960)
J. Soc. Ind. Appl. Math.
, vol.8
, pp. 181-217
-
-
Rosen, J.1
-
23
-
-
56449115709
-
The group-lasso for generalized linear models: Uniqueness of solutions and efficient algorithms
-
V. Roth and B. Fischer. The group-lasso for generalized linear models: uniqueness of solutions and efficient algorithms. In Proceedings of 25th ICML, 2008.
-
(2008)
Proceedings of 25th ICML
-
-
Roth, V.1
Fischer, B.2
-
24
-
-
69949155103
-
The composite absolute penalties family for grouped and hierarchical variable selection
-
P. Zhao, G. Rocha, and B. Yu. The composite absolute penalties family for grouped and hierarchical variable selection. Annals of Statistics, 37(6A):3468-3497, 2009.
-
(2009)
Annals of Statistics
, vol.37
, Issue.6 A
, pp. 3468-3497
-
-
Zhao, P.1
Rocha, G.2
Yu, B.3
|