메뉴 건너뛰기




Volumn 14, Issue 5-6, 2008, Pages 764-792

Accelerated projected gradient method for linear inverse problems with sparsity constraints

Author keywords

Linear inverse problems; Projected gradient method; Sparse recovery

Indexed keywords


EID: 57349127864     PISSN: 10695869     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00041-008-9039-8     Document Type: Article
Times cited : (209)

References (46)
  • 1
    • 0004841122 scopus 로고    scopus 로고
    • On the projected subgradient method for nonsmooth convex optimization in a Hilbert space
    • 1
    • Y.I. Alber A.N. Iusem M.V. Solodov 1998 On the projected subgradient method for nonsmooth convex optimization in a Hilbert space Math. Program. Ser. A 81 1 23 35
    • (1998) Math. Program. Ser. A , vol.81 , pp. 23-35
    • Alber, Y.I.1    Iusem, A.N.2    Solodov, M.V.3
  • 2
    • 33751010296 scopus 로고    scopus 로고
    • Different wavelet-based approaches for the separation of noisy and blurred mixtures of components
    • Ph.D. Thesis, Princeton University
    • Anthoine, S.: Different Wavelet-based Approaches for the Separation of Noisy and Blurred Mixtures of Components. Application to Astrophysical Data. Ph.D. Thesis, Princeton University, 2005
    • (2005) Application to Astrophysical Data
    • Anthoine, S.1
  • 3
    • 0001263852 scopus 로고
    • Finding the common point of convex sets by the method of successive projection
    • L.M. Brègman 1965 Finding the common point of convex sets by the method of successive projection Dokl. Akad. Nauk SSSR 162 487 490
    • (1965) Dokl. Akad. Nauk SSSR , vol.162 , pp. 487-490
    • Brègman, L.M.1
  • 6
    • 33947416035 scopus 로고    scopus 로고
    • Near-optimal signal recovery from random projections: Universal encoding strategies?
    • 12
    • E.J. Candès T. Tao 2006 Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inf. Theory 52 12 5406 5425
    • (2006) IEEE Trans. Inf. Theory , vol.52 , pp. 5406-5425
    • Candès, E.J.1    Tao, T.2
  • 7
    • 33745604236 scopus 로고    scopus 로고
    • Stable signal recovery from incomplete and inaccurate measurements
    • 8
    • E. Candès J. Romberg T. Tao 2006 Stable signal recovery from incomplete and inaccurate measurements Commun. Pure Appl. Math. 59 8 1207 1223
    • (2006) Commun. Pure Appl. Math. , vol.59 , pp. 1207-1223
    • Candès, E.1    Romberg, J.2    Tao, T.3
  • 8
    • 31744440684 scopus 로고    scopus 로고
    • Exact signal reconstruction from highly incomplete frequency information
    • 2
    • E.J. Candès J. Romberg T. Tao 2006 Exact signal reconstruction from highly incomplete frequency information IEEE Trans. Inf. Theory 52 2 489 509
    • (2006) IEEE Trans. Inf. Theory , vol.52 , pp. 489-509
    • Candès, E.J.1    Romberg, J.2    Tao, T.3
  • 9
    • 27744525221 scopus 로고    scopus 로고
    • Adaptive optimization of convex functionals in Banach spaces
    • 5
    • C. Canuto K. Urban 2004 Adaptive optimization of convex functionals in Banach spaces SIAM J. Numer. Anal. 42 5 2043 2075
    • (2004) SIAM J. Numer. Anal. , vol.42 , pp. 2043-2075
    • Canuto, C.1    Urban, K.2
  • 10
    • 0032022704 scopus 로고    scopus 로고
    • Nonlinear wavelet image processing: Variational problems, compression, and noise removal through wavelet shrinkage
    • 3
    • A. Chambolle R.A. DeVore N.-Y. Lee B.J. Lucier 1998 Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage IEEE Trans. Image Process. 7 3 319 335
    • (1998) IEEE Trans. Image Process. , vol.7 , pp. 319-335
    • Chambolle, A.1    Devore, R.A.2    Lee, N.-Y.3    Lucier, B.J.4
  • 13
    • 0035606214 scopus 로고    scopus 로고
    • Adaptive wavelet methods for elliptic operator equations-Convergence rates
    • A. Cohen W. Dahmen R. DeVore 2001 Adaptive wavelet methods for elliptic operator equations-Convergence rates Math. Comput. 70 27 75
    • (2001) Math. Comput. , vol.70 , pp. 27-75
    • Cohen, A.1    Dahmen, W.2    Devore, R.3
  • 14
    • 0347937165 scopus 로고    scopus 로고
    • Adaptive wavelet methods II: Beyond the elliptic case
    • 3
    • A. Cohen W. Dahmen R. DeVore 2002 Adaptive wavelet methods II: Beyond the elliptic case Found. Comput. Math. 2 3 203 245
    • (2002) Found. Comput. Math. , vol.2 , pp. 203-245
    • Cohen, A.1    Dahmen, W.2    Devore, R.3
  • 15
    • 25444486950 scopus 로고    scopus 로고
    • Adaptive wavelet Galerkin methods for linear inverse problems
    • 4
    • A. Cohen M. Hoffmann M. Reiss 2004 Adaptive wavelet Galerkin methods for linear inverse problems SIAM J. Numer. Anal. 42 4 1479 1501
    • (2004) SIAM J. Numer. Anal. , vol.42 , pp. 1479-1501
    • Cohen, A.1    Hoffmann, M.2    Reiss, M.3
  • 16
    • 30844438177 scopus 로고    scopus 로고
    • Signal recovery by proximal forward-backward splitting
    • 4
    • P.L. Combettes V.R. Wajs 2005 Signal recovery by proximal forward-backward splitting Multiscale Model. Simul. 4 4 1168 1200
    • (2005) Multiscale Model. Simul. , vol.4 , pp. 1168-1200
    • Combettes, P.L.1    Wajs, V.R.2
  • 18
    • 34249869018 scopus 로고    scopus 로고
    • Adaptive frame methods for elliptic operator equations
    • 1
    • S. Dahlke M. Fornasier T. Raasch 2007 Adaptive frame methods for elliptic operator equations Adv. Comput. Math. 27 1 27 63
    • (2007) Adv. Comput. Math. , vol.27 , pp. 27-63
    • Dahlke, S.1    Fornasier, M.2    Raasch, T.3
  • 19
    • 35348892173 scopus 로고    scopus 로고
    • Adaptive frame methods for elliptic operator equations: The steepest descent approach
    • S. Dahlke M. Fornasier T. Raasch R. Stevenson M. Werner 2007 Adaptive frame methods for elliptic operator equations: The steepest descent approach IMA J. Numer. Anal. 27 717 740
    • (2007) IMA J. Numer. Anal. , vol.27 , pp. 717-740
    • Dahlke, S.1    Fornasier, M.2    Raasch, T.3    Stevenson, R.4    Werner, M.5
  • 21
    • 20144365032 scopus 로고    scopus 로고
    • Variational image restoration by means of wavelets: Simultaneous decomposition, deblurring, and denoising
    • 1
    • I. Daubechies G. Teschke 2005 Variational image restoration by means of wavelets: Simultaneous decomposition, deblurring, and denoising Appl. Comput. Harmon. Anal. 19 1 1 16
    • (2005) Appl. Comput. Harmon. Anal. , vol.19 , pp. 1-16
    • Daubechies, I.1    Teschke, G.2
  • 22
    • 7044231546 scopus 로고    scopus 로고
    • An iterative thresholding algorithm for linear inverse problems
    • 11
    • I. Daubechies M. Defrise C. DeMol 2004 An iterative thresholding algorithm for linear inverse problems Commun. Pure Appl. Math. 57 11 1413 1457
    • (2004) Commun. Pure Appl. Math. , vol.57 , pp. 1413-1457
    • Daubechies, I.1    Defrise, M.2    Demol, C.3
  • 23
    • 0011629158 scopus 로고
    • Superresolution via sparsity constraints
    • 5
    • D.L. Donoho 1992 Superresolution via sparsity constraints SIAM J. Math. Anal. 23 5 1309 1331
    • (1992) SIAM J. Math. Anal. , vol.23 , pp. 1309-1331
    • Donoho, D.L.1
  • 24
    • 0029307534 scopus 로고
    • De-noising by soft-thresholding
    • 3
    • D.L. Donoho 1995 De-noising by soft-thresholding IEEE Trans. Inf. Theory 41 3 613 627
    • (1995) IEEE Trans. Inf. Theory , vol.41 , pp. 613-627
    • Donoho, D.L.1
  • 25
    • 0029288068 scopus 로고
    • Nonlinear solution of linear inverse problems by wavelet-vaguelette decomposition
    • 2
    • D.L. Donoho 1995 Nonlinear solution of linear inverse problems by wavelet-vaguelette decomposition Appl. Comput. Harmon. Anal. 2 2 101 126
    • (1995) Appl. Comput. Harmon. Anal. , vol.2 , pp. 101-126
    • Donoho, D.L.1
  • 27
    • 0026845575 scopus 로고
    • Signal recovery and the large sieve
    • D.L. Donoho B.F. Logan 1992 Signal recovery and the large sieve SIAM J. Appl. Math. 52 577 591
    • (1992) SIAM J. Appl. Math. , vol.52 , pp. 577-591
    • Donoho, D.L.1    Logan, B.F.2
  • 28
    • 0001616908 scopus 로고
    • Uncertainty principles and signal recovery
    • D.L. Donoho P. Starck 1989 Uncertainty principles and signal recovery SIAM J. Appl. Math. 49 906 931
    • (1989) SIAM J. Appl. Math. , vol.49 , pp. 906-931
    • Donoho, D.L.1    Starck, P.2
  • 31
    • 0142200827 scopus 로고    scopus 로고
    • An em algorithm for wavelet-based image restoration
    • 8
    • M.A.T. Figueiredo R.D. Nowak 2003 An EM algorithm for wavelet-based image restoration IEEE Trans. Image Proc. 12 8 906 916
    • (2003) IEEE Trans. Image Proc. , vol.12 , pp. 906-916
    • Figueiredo, M.A.T.1    Nowak, R.D.2
  • 32
    • 39449126969 scopus 로고    scopus 로고
    • Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems
    • 4
    • M.A.T. Figueiredo R.D. Nowak S.J. Wright 2007 Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems IEEE J. Sel. Top. Signal Process. 1 4 586 597
    • (2007) IEEE J. Sel. Top. Signal Process. , vol.1 , pp. 586-597
    • Figueiredo, M.A.T.1    Nowak, R.D.2    Wright, S.J.3
  • 33
    • 36749084177 scopus 로고    scopus 로고
    • Domain decomposition methods for linear inverse problems with sparsity constraints
    • M. Fornasier 2007 Domain decomposition methods for linear inverse problems with sparsity constraints Inverse Probl. 23 2505 2526
    • (2007) Inverse Probl. , vol.23 , pp. 2505-2526
    • Fornasier, M.1
  • 34
    • 52149104280 scopus 로고    scopus 로고
    • Adaptive iterative thresholding algorithms for magnetoenceophalography (MEG)
    • 10.1016/j.cam.2007.10.048
    • M. Fornasier F. Pitolli 2008 Adaptive iterative thresholding algorithms for magnetoenceophalography (MEG) J. Comput. Appl. Math. 10.1016/j.cam.2007.10. 048
    • (2008) J. Comput. Appl. Math.
    • Fornasier, M.1    Pitolli, F.2
  • 36
    • 36749019495 scopus 로고    scopus 로고
    • Recovery algorithms for vector valued data with joint sparsity constraints
    • 2
    • M. Fornasier H. Rauhut 2008 Recovery algorithms for vector valued data with joint sparsity constraints SIAM J. Numer. Anal. 46 2 577 613
    • (2008) SIAM J. Numer. Anal. , vol.46 , pp. 577-613
    • Fornasier, M.1    Rauhut, H.2
  • 40
    • 25444521335 scopus 로고    scopus 로고
    • Tikhonov replacement functionals for iteratively solving nonlinear operator equations
    • 5
    • R. Ramlau G. Teschke 2005 Tikhonov replacement functionals for iteratively solving nonlinear operator equations Inverse Probl. 21 5 1571 1592
    • (2005) Inverse Probl. , vol.21 , pp. 1571-1592
    • Ramlau, R.1    Teschke, G.2
  • 41
    • 33750997591 scopus 로고    scopus 로고
    • Random sampling of sparse trigonometric polynomials
    • 1
    • H. Rauhut 2007 Random sampling of sparse trigonometric polynomials Appl. Comput. Harmon. Anal. 22 1 16 42
    • (2007) Appl. Comput. Harmon. Anal. , vol.22 , pp. 16-42
    • Rauhut, H.1
  • 42
    • 0037316980 scopus 로고    scopus 로고
    • Astronomical image representation by curvelet transform
    • J.-L. Starck E.J. Candès D.L. Donoho 2003 Astronomical image representation by curvelet transform Astron. Astrophys. 298 785 800
    • (2003) Astron. Astrophys. , vol.298 , pp. 785-800
    • Starck, J.-L.1    Candès, E.J.2    Donoho, D.L.3
  • 43
    • 0043265073 scopus 로고    scopus 로고
    • Wavelets and curvelets for image deconvolution: A combined approach
    • J.-L. Starck M.K. Nguyen F. Murtagh 2003 Wavelets and curvelets for image deconvolution: a combined approach Signal Process. 83 2279 2283
    • (2003) Signal Process. , vol.83 , pp. 2279-2283
    • Starck, J.-L.1    Nguyen, M.K.2    Murtagh, F.3
  • 44
    • 33751004125 scopus 로고    scopus 로고
    • Multi-frame representations in linear inverse problems with mixed multi-constraints
    • 1
    • G. Teschke 2007 Multi-frame representations in linear inverse problems with mixed multi-constraints Appl. Comput. Harmon. Anal. 22 1 43 60
    • (2007) Appl. Comput. Harmon. Anal. , vol.22 , pp. 43-60
    • Teschke, G.1
  • 46
    • 0004149831 scopus 로고    scopus 로고
    • 5 Wolfram Media/Cambridge University Press Cambridge
    • Wolfram, S.: The Mathematica Book, 5th edn. Wolfram Media/Cambridge University Press, Cambridge (2003)
    • (2003) The Mathematica Book
    • Wolfram, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.