메뉴 건너뛰기




Volumn , Issue , 2010, Pages

Network flow algorithms for structured sparsity

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE;

EID: 85161999697     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (127)

References (30)
  • 1
    • 68649086910 scopus 로고    scopus 로고
    • Simultaneous analysis of Lasso and Dantzig selector
    • P. Bickel, Y. Ritov, and A. Tsybakov. Simultaneous analysis of Lasso and Dantzig selector. Ann. Stat., 37(4):1705-1732, 2009.
    • (2009) Ann. Stat. , vol.37 , Issue.4 , pp. 1705-1732
    • Bickel, P.1    Ritov, Y.2    Tsybakov, A.3
  • 4
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imag. Sci., 2(1):183-202, 2009.
    • (2009) SIAM J. Imag. Sci. , vol.2 , Issue.1 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 7
    • 69949155103 scopus 로고    scopus 로고
    • The composite absolute penalties family for grouped and hierarchical variable selection
    • P. Zhao, G. Rocha, and B. Yu. The composite absolute penalties family for grouped and hierarchical variable selection. Ann. Stat., 37(6A):3468-3497, 2009.
    • (2009) Ann. Stat. , vol.37 , Issue.6 A , pp. 3468-3497
    • Zhao, P.1    Rocha, G.2    Yu, B.3
  • 11
    • 77956548668 scopus 로고    scopus 로고
    • Tree-guided group lasso for multi-task regression with structured sparsity
    • S. Kim and E. P. Xing. Tree-guided group lasso for multi-task regression with structured sparsity. In Proc. ICML, 2010.
    • (2010) Proc. ICML
    • Kim, S.1    Xing, E.P.2
  • 12
    • 77956506018 scopus 로고    scopus 로고
    • Proximal methods for sparse hierarchical dictionary learning
    • R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal methods for sparse hierarchical dictionary learning. In Proc. ICML, 2010.
    • (2010) Proc. ICML
    • Jenatton, R.1    Mairal, J.2    Obozinski, G.3    Bach, F.4
  • 13
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. J. Roy. Stat. Soc. B, 68:49-67, 2006.
    • (2006) J. Roy. Stat. Soc. B , vol.68 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 14
    • 77953322499 scopus 로고    scopus 로고
    • Joint covariate selection and joint subspace selection for multiple classification problems
    • G. Obozinski, B. Taskar, and M. I. Jordan. Joint covariate selection and joint subspace selection for multiple classification problems. Stat. Comput., 20(2):231-252, 2010.
    • (2010) Stat. Comput. , vol.20 , Issue.2 , pp. 231-252
    • Obozinski, G.1    Taskar, B.2    Jordan, M.I.3
  • 15
    • 84858766876 scopus 로고    scopus 로고
    • Exploring large feature spaces with hierarchical multiple kernel learning
    • F. Bach. Exploring large feature spaces with hierarchical multiple kernel learning. In Adv. NIPS, 2008.
    • (2008) Adv. NIPS
    • Bach, F.1
  • 18
    • 58149363429 scopus 로고
    • About strongly polynomial time algorithms for quadratic optimization over submodular constraints
    • D. S. Hochbaum and S. P. Hong. About strongly polynomial time algorithms for quadratic optimization over submodular constraints. Math. Program., 69(1):269-309, 1995.
    • (1995) Math. Program. , vol.69 , Issue.1 , pp. 269-309
    • Hochbaum, D.S.1    Hong, S.P.2
  • 19
    • 0021479943 scopus 로고
    • An O(n) algorithm for quadratic knapsack problems
    • P. Brucker. An O(n) algorithm for quadratic knapsack problems. Oper. Res. Lett., 3:163-166, 1984.
    • (1984) Oper. Res. Lett. , vol.3 , pp. 163-166
    • Brucker, P.1
  • 20
    • 0024610615 scopus 로고
    • A fast parametric maximum flow algorithm and applications
    • G. Gallo, M. E. Grigoriadis, and R. E. Tarjan. A fast parametric maximum flow algorithm and applications. SIAM J. Comput., 18:30-55, 1989.
    • (1989) SIAM J. Comput. , vol.18 , pp. 30-55
    • Gallo, G.1    Grigoriadis, M.E.2    Tarjan, R.E.3
  • 22
    • 0026221935 scopus 로고
    • Two algorithms for maximizing a separable concave function over a polymatroid feasible region
    • H. Groenevelt. Two algorithms for maximizing a separable concave function over a polymatroid feasible region. Eur. J. Oper. Res., pages 227-236, 1991.
    • (1991) Eur. J. Oper. Res. , pp. 227-236
    • Groenevelt, H.1
  • 23
    • 85162027958 scopus 로고    scopus 로고
    • Structured sparsity-inducing norms through submodular functions
    • F. Bach. Structured sparsity-inducing norms through submodular functions. In Adv. NIPS, 2010.
    • (2010) Adv. NIPS
    • Bach, F.1
  • 26
    • 0000122499 scopus 로고    scopus 로고
    • On implementing the pushrelabel method for the maximum flow problem
    • B. V. Cherkassky and A. V. Goldberg. On implementing the pushrelabel method for the maximum flow problem. Algorithmica, 19(4):390-410, 1997.
    • (1997) Algorithmica , vol.19 , Issue.4 , pp. 390-410
    • Cherkassky, B.V.1    Goldberg, A.V.2
  • 27
    • 84858717588 scopus 로고    scopus 로고
    • A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers
    • S. Negahban, P. Ravikumar, M. J. Wainwright, and B. Yu. A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers. In Adv. NIPS, 2009.
    • (2009) Adv. NIPS
    • Negahban, S.1    Ravikumar, P.2    Wainwright, M.J.3    Yu, B.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.