메뉴 건너뛰기




Volumn , Issue , 2006, Pages 42-63

Kernel methods in genomics and computational biology

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84900616454     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.4018/978-1-59904-042-4.ch002     Document Type: Chapter
Times cited : (13)

References (106)
  • 1
    • 0037435030 scopus 로고    scopus 로고
    • Mass spectrometry-based proteomics
    • Aebersold, R., & Mann, M. (2003). Mass spectrometry-based proteomics. Nature, 422(6928), 198-207.
    • (2003) Nature , vol.422 , Issue.6928 , pp. 198-207
    • Aebersold, R.1    Mann, M.2
  • 3
    • 0037076322 scopus 로고    scopus 로고
    • Selection bias in gene extraction on the basis of microarray gene-expression data
    • Ambroise, C., & McLachlan, G. (2002). Selection bias in gene extraction on the basis of microarray gene-expression data. In Proceedings of the National Academy of Science USA, 99(10), 6562-6566.
    • (2002) Proceedings of the National Academy of Science USA , vol.99 , Issue.10 , pp. 6562-6566
    • Ambroise, C.1    McLachlan, G.2
  • 4
    • 0037134796 scopus 로고    scopus 로고
    • Identifying genes related to drug anticancer mechanisms using support vector machine
    • Bao, L., & Sun, Z. (2002). Identifying genes related to drug anticancer mechanisms using support vector machine. FEBS Letters, 521, 109-114.
    • (2002) FEBS Letters , vol.521 , pp. 109-114
    • Bao, L.1    Sun, Z.2
  • 6
    • 4944225083 scopus 로고    scopus 로고
    • Remote homology detection: A motif based approach
    • Ben-Hur, A., & Brutlag, D. (2003). Remote homology detection: A motif based approach. Bioinformatics, 19(Suppl. 1), i26-i33.
    • (2003) Bioinformatics , vol.19 , Issue.SUPPL. 1 , pp. 26-33
    • Ben-Hur, A.1    Brutlag, D.2
  • 7
    • 24744435534 scopus 로고    scopus 로고
    • Kernel methods for predicting protein-protein interactions
    • Ben-Hur, A., & Noble, W. S. (2005). Kernel methods for predicting protein-protein interactions. Bioinformatics, 21(1), i38-i46.
    • (2005) Bioinformatics , vol.21 , Issue.1 , pp. 38-46
    • Ben-Hur, A.1    Noble, W.S.2
  • 8
    • 3843052528 scopus 로고    scopus 로고
    • Prediction of CTL epitopes using QM, SVM, and ANN techniques
    • Bhasin, M., & Raghava, G. P. S. (2004). Prediction of CTL epitopes using QM, SVM, and ANN techniques. Vaccine, 22(23-24), 3195-3204.
    • (2004) Vaccine , vol.22 , Issue.23-24 , pp. 3195-3204
    • Bhasin, M.1    Raghava, G.P.S.2
  • 9
    • 0035023445 scopus 로고    scopus 로고
    • Predicting protein-protein interactions from primary structure
    • Bock, J. R., & Gough, D. A. (2001). Predicting protein-protein interactions from primary structure. Bioinformatics, 17(5), 455-460.
    • (2001) Bioinformatics , vol.17 , Issue.5 , pp. 455-460
    • Bock, J.R.1    Gough, D.A.2
  • 10
    • 0042034151 scopus 로고    scopus 로고
    • A new method to estimate ligand-receptor energetics
    • Bock, J. R., & Gough, D. A. (2002). A new method to estimate ligand-receptor energetics. Mol Cell Proteomics, 1(11), 904-910.
    • (2002) Mol Cell Proteomics , vol.1 , Issue.11 , pp. 904-910
    • Bock, J.R.1    Gough, D.A.2
  • 12
    • 0041736652 scopus 로고    scopus 로고
    • Protein function classification via support vector machine approach
    • Cai, C., Wang, W., Sun, L., & Chen, Y. (2003). Protein function classification via support vector machine approach. Mathematical Biosciences, 185(2), 111-122.
    • (2003) Mathematical Biosciences , vol.185 , Issue.2 , pp. 111-122
    • Cai, C.1    Wang, W.2    Sun, L.3    Chen, Y.4
  • 14
    • 2542586190 scopus 로고    scopus 로고
    • Prediction of the bonding states of cysteines using the support vector machines based on multiple feature vectors and cysteine state sequences
    • Chen, Y., Lin, Y., Lin, C., & Hwang, J. (2004). Prediction of the bonding states of cysteines using the support vector machines based on multiple feature vectors and cysteine state sequences. Proteins, 55(4), 1036-1042.
    • (2004) Proteins , vol.55 , Issue.4 , pp. 1036-1042
    • Chen, Y.1    Lin, Y.2    Lin, C.3    Hwang, J.4
  • 15
    • 23244459989 scopus 로고    scopus 로고
    • The context-tree kernel for strings
    • Cuturi, M., & Vert, J.-P. (2005). The context-tree kernel for strings. Neural Networks, 18(4), 1111-1123.
    • (2005) Neural Networks , vol.18 , Issue.4 , pp. 1111-1123
    • Cuturi, M.1    Vert, J.-P.2
  • 16
    • 17444380495 scopus 로고    scopus 로고
    • SpliceMachine: Predicting splice sites from high-dimensional local context representations
    • Degroeve, S., Saeys, Y., De Baets, B., Rouze, P., & Van de Peer, Y. (2005). SpliceMachine: Predicting splice sites from high-dimensional local context representations. Bioinformatics, 21, 1332-1338.
    • (2005) Bioinformatics , vol.21 , pp. 1332-1338
    • Degroeve, S.1    Saeys, Y.2    de Baets, B.3    Rouze, P.4    Van de Peer, Y.5
  • 17
    • 0030669030 scopus 로고    scopus 로고
    • Exploring the metabolic and genetic control of gene expression on a genomic scale
    • DeRisi, J. L., Iyer, V. R., & Brown, P. O. (1997). Exploring the metabolic and genetic control of gene expression on a genomic scale. Science, 278(5338), 680-686.
    • (1997) Science , vol.278 , Issue.5338 , pp. 680-686
    • Derisi, J.L.1    Iyer, V.R.2    Brown, P.O.3
  • 18
    • 0035014847 scopus 로고    scopus 로고
    • Multi-class protein fold recognition using support vector machines and neural networks
    • Ding, C., & Dubchak, I. (2001). Multi-class protein fold recognition using support vector machines and neural networks. Bioinformatics, 17, 349-358.
    • (2001) Bioinformatics , vol.17 , pp. 349-358
    • Ding, C.1    Dubchak, I.2
  • 19
    • 0041743078 scopus 로고    scopus 로고
    • Distinguishing enzyme structures from non-enzymes without alignments
    • Dobson, P., & Doig, A. (2003). Distinguishing enzyme structures from non-enzymes without alignments. Journal of Molecular Biology, 330(4), 771-783.
    • (2003) Journal of Molecular Biology , vol.330 , Issue.4 , pp. 771-783
    • Dobson, P.1    Doig, A.2
  • 21
    • 16344396421 scopus 로고    scopus 로고
    • Accurate identification of alternatively spliced exons using support vector machine
    • Dror, G., Sorek, R., & Shamir, R. (2005). Accurate identification of alternatively spliced exons using support vector machine. Bioinformatics, 21(7), 897-901.
    • (2005) Bioinformatics , vol.21 , Issue.7 , pp. 897-901
    • Dror, G.1    Sorek, R.2    Shamir, R.3
  • 23
    • 17444396383 scopus 로고    scopus 로고
    • Support vector machines for separation of mixed plant-pathogen EST collections based on codon usage
    • Friedel, C. C., Jahn, K. H. V., Sommer, S., Rudd, S., Mewes, H. W., & Tetko, I. V. (2005). Support vector machines for separation of mixed plant-pathogen EST collections based on codon usage. Bioinformatics, 21, 1383-1388.
    • (2005) Bioinformatics , vol.21 , pp. 1383-1388
    • Friedel, C.C.1    Jahn, K.H.V.2    Sommer, S.3    Rudd, S.4    Mewes, H.W.5    Tetko, I.V.6
  • 24
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • Furey, T. S., Cristianini, N., Duffy, N., Bednarski, D. W., Schummer, M., & Haussler, D. (2000). Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics, 16(10), 906-914.
    • (2000) Bioinformatics , vol.16 , Issue.10 , pp. 906-914
    • Furey, T.S.1    Cristianini, N.2    Duffy, N.3    Bednarski, D.W.4    Schummer, M.5    Haussler, D.6
  • 25
    • 33748862070 scopus 로고    scopus 로고
    • A kernel for protein secondary structure prediction
    • In B. Schölkopf, K. Tsuda, & J. Vert (Eds.), MIT Press
    • Guermeur, Y., Lifschitz, A., & Vert, R. (2004). A kernel for protein secondary structure prediction. In B. Schölkopf, K. Tsuda, & J. Vert (Eds.), Kernel methods in computational biology(pp. 193-206). MIT Press.
    • (2004) Kernel Methods In Computational Biology , pp. 193-206
    • Guermeur, Y.1    Lifschitz, A.2    Vert, R.3
  • 26
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene selection for cancer classification using support vector machines. Machine Learning, 46(1-3), 389-422.
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 27
  • 28
    • 0035957531 scopus 로고    scopus 로고
    • A novel method of protein secondary structure prediction with high segment overlap measure: Support vector machine approach
    • Hua, S., & Sun, Z. (2001a). A novel method of protein secondary structure prediction with high segment overlap measure: Support vector machine approach. Journal of Molecular Biology, 308(2), 397-407.
    • (2001) Journal of Molecular Biology , vol.308 , Issue.2 , pp. 397-407
    • Hua, S.1    Sun, Z.2
  • 29
    • 0034843744 scopus 로고    scopus 로고
    • Support vector machine approach for protein subcellular localization prediction
    • Hua, S., & Sun, Z. (2001b). Support vector machine approach for protein subcellular localization prediction. Bioinformatics, 17(8), 721-728.
    • (2001) Bioinformatics , vol.17 , Issue.8 , pp. 721-728
    • Hua, S.1    Sun, Z.2
  • 31
    • 2042437650 scopus 로고    scopus 로고
    • Initial sequencing and analysis of the human genome
    • International Human Genome Sequencing Consortium
    • International Human Genome Sequencing Consortium. (2001). Initial sequencing and analysis of the human genome. Nature, 409(6822), 860-921.
    • (2001) Nature , vol.409 , Issue.6822 , pp. 860-921
  • 32
    • 0034048878 scopus 로고    scopus 로고
    • A discriminative framework for detecting remote protein homologies
    • Jaakkola, T., Diekhans, M., & Haussler, D. (2000). A discriminative framework for detecting remote protein homologies. Journal of Computational Biology, 7(1-2), 95-114.
    • (2000) Journal of Computational Biology , vol.7 , Issue.1-2 , pp. 95-114
    • Jaakkola, T.1    Diekhans, M.2    Haussler, D.3
  • 34
    • 0036166451 scopus 로고    scopus 로고
    • Classifying G-protein coupled receptors with support vector machines
    • Karchin, R., Karplus, K., & Haussler, D. (2002). Classifying G-protein coupled receptors with support vector machines. Bioinformatics, 18, 147-159.
    • (2002) Bioinformatics , vol.18 , pp. 147-159
    • Karchin, R.1    Karplus, K.2    Haussler, D.3
  • 35
    • 15944416431 scopus 로고    scopus 로고
    • Classification of non-coding RNA using graph representations of secondary structure
    • Karklin, Y., Meraz, R. F., & Holbrook, S. R. (2005). Classification of non-coding RNA using graph representations of secondary structure. In Pacific Symposium on Biocomputing (pp. 4-15).
    • (2005) Pacific Symposium On Biocomputing , pp. 4-15
    • Karklin, Y.1    Meraz, R.F.2    Holbrook, S.R.3
  • 36
    • 33750317385 scopus 로고    scopus 로고
    • Kernels for graphs
    • In B. Schölkopf, K. Tsuda, & J. Vert (Eds.), MIT Press
    • Kashima, H., Tsuda, K., & Inokuchi, A.(2004). Kernels for graphs. In B. Schölkopf, K. Tsuda, & J. Vert (Eds.),Kernel methods in computational biology (pp. 155-170). MIT Press.
    • (2004) Kernel Methods In Computational Biology , pp. 155-170
    • Kashima, H.1    Tsuda, K.2    Inokuchi, A.3
  • 37
    • 8844219516 scopus 로고    scopus 로고
    • Prediction of phosphorylation sites using SVMs
    • Kim, J. H., Lee, J., Oh, B., Kimm, K., & Koh, I. (2004). Prediction of phosphorylation sites using SVMs. Bioinformatics, 20(17), 3179-3184.
    • (2004) Bioinformatics , vol.20 , Issue.17 , pp. 3179-3184
    • Kim, J.H.1    Lee, J.2    Oh, B.3    Kimm, K.4    Koh, I.5
  • 38
    • 0642374409 scopus 로고    scopus 로고
    • Marginalized kernels for RNA sequence data analysis
    • In R. Lathtop, K. Nakai, S. Miyano, T. Takagi, & M. Kanehisa (Eds.), Universal Academic Press
    • Kin, T., Tsuda, K., & Asai, K. (2002). Marginalized kernels for RNA sequence data analysis. In R. Lathtop, K. Nakai, S. Miyano, T. Takagi, & M. Kanehisa (Eds.), Genome informatics 2002 (pp. 112-122). Universal Academic Press.
    • (2002) Genome Informatics 2002 , pp. 112-122
    • Kin, T.1    Tsuda, K.2    Asai, K.3
  • 39
    • 14644441659 scopus 로고    scopus 로고
    • Multidimensional support vector machines for visualization of gene expression data
    • Komura, D., Nakamura, H., Tsutsumi, S., Aburatani, H., & Ihara, S. (2005). Multidimensional support vector machines for visualization of gene expression data. Bioinformatics, 21(4), 439-444.
    • (2005) Bioinformatics , vol.21 , Issue.4 , pp. 439-444
    • Komura, D.1    Nakamura, H.2    Tsutsumi, S.3    Aburatani, H.4    Ihara, S.5
  • 40
    • 33747330394 scopus 로고    scopus 로고
    • Diffusion kernels
    • In B. Schölkopf, K. Tsuda, & J. Vert, (Eds.), MIT Press
    • Kondor, R., & Vert, J.-P. (2004). Diffusion kernels. In B. Schölkopf, K. Tsuda, & J. Vert, (Eds.), Kernel methods in computational biology (pp. 171-192). MIT Press.
    • (2004) Kernel Methods In Computational Biology , pp. 171-192
    • Kondor, R.1    Vert, J.-P.2
  • 41
    • 3142521566 scopus 로고    scopus 로고
    • Joint classifier and feature optimization for comprehensive cancer diagnosis using gene expression data
    • Krishnapuram, B., Carin, L., & Hartemink, A. (2004). Joint classifier and feature optimization for comprehensive cancer diagnosis using gene expression data. Journal of Computational Biology, 11(2-3), 227-242.
    • (2004) Journal of Computational Biology , vol.11 , Issue.2-3 , pp. 227-242
    • Krishnapuram, B.1    Carin, L.2    Hartemink, A.3
  • 44
    • 1542714925 scopus 로고    scopus 로고
    • Mismatch string kernels for discriminative protein classification
    • Leslie, C. S., Eskin, E., Cohen, A., Weston, J., & Noble, W. S. (2004). Mismatch string kernels for discriminative protein classification. Bioinformatics, 20(4), 467-476.
    • (2004) Bioinformatics , vol.20 , Issue.4 , pp. 467-476
    • Leslie, C.S.1    Eskin, E.2    Cohen, A.3    Weston, J.4    Noble, W.S.5
  • 45
    • 7244248755 scopus 로고    scopus 로고
    • A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression
    • Li, T., Zhang, C., & Ogihara, M. (2004). A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression. Bioinformatics, 20(15), 2429-2437.
    • (2004) Bioinformatics , vol.20 , Issue.15 , pp. 2429-2437
    • Li, T.1    Zhang, C.2    Ogihara, M.3
  • 46
    • 0742287001 scopus 로고    scopus 로고
    • Combining pairwise sequence similarity and support vector machines for detecting remote protein evolutionary and structural relationships
    • Liao, L., & Noble, W. (2003). Combining pairwise sequence similarity and support vector machines for detecting remote protein evolutionary and structural relationships. Journal of Computational Biology, 10(6), 857-868.
    • (2003) Journal of Computational Biology , vol.10 , Issue.6 , pp. 857-868
    • Liao, L.1    Noble, W.2
  • 47
    • 0036606072 scopus 로고    scopus 로고
    • Conserved codon composition of ribosomal protein coding genes in Escherichia coli, mycobacterium tuberculosis and saccharomyces cerevisiae: Lessons from supervised machine learning in functional genomics
    • Lin, K., Kuang, Y., Joseph, J. S., & Kolatkar, P. R. (2002). Conserved codon composition of ribosomal protein coding genes in Escherichia coli, mycobacterium tuberculosis and saccharomyces cerevisiae: Lessons from supervised machine learning in functional genomics. Nucleic Acids Research, 30(11), 2599-2607.
    • (2002) Nucleic Acids Research , vol.30 , Issue.11 , pp. 2599-2607
    • Lin, K.1    Kuang, Y.2    Joseph, J.S.3    Kolatkar, P.R.4
  • 48
    • 11144355509 scopus 로고    scopus 로고
    • Predictive models for breast cancer susceptibility from multiple single nucleotide polymorphisms
    • Listgarten, J., Damaraju, S., Poulin, B., Cook, L., Dufour, J., Driga, A., et al. (2004). Predictive models for breast cancer susceptibility from multiple single nucleotide polymorphisms. Clinical Cancer Research, 10(8), 2725-2737.
    • (2004) Clinical Cancer Research , vol.10 , Issue.8 , pp. 2725-2737
    • Listgarten, J.1    Damaraju, S.2    Poulin, B.3    Cook, L.4    Dufour, J.5    Driga, A.6
  • 50
    • 23844458045 scopus 로고    scopus 로고
    • Graph kernels for molecular structure-activity relationship analysis with support vector machines
    • Mahé, P., Ueda, N., Akutsu, T., Perret, J.-L., & Vert, J.-P. (2005). Graph kernels for molecular structure-activity relationship analysis with support vector machines. Journal of Chemical Information and Modeling, 45(4), 939-951.
    • (2005) Journal of Chemical Information and Modeling , vol.45 , Issue.4 , pp. 939-951
    • Mahé, P.1    Ueda, N.2    Akutsu, T.3    Perret, J.-L.4    Vert, J.-P.5
  • 51
    • 13444262436 scopus 로고    scopus 로고
    • Predicting protein-protein interactions using signature products
    • Martin, S., Roe, D., & Faulon, J.-L. (2005). Predicting protein-protein interactions using signature products. Bioinformatics, 21(2), 218-226.
    • (2005) Bioinformatics , vol.21 , Issue.2 , pp. 218-226
    • Martin, S.1    Roe, D.2    Faulon, J.-L.3
  • 52
    • 27644504110 scopus 로고    scopus 로고
    • A novel representation of protein sequences for prediction of subcellular location using support vector machines
    • Matsuda, A., Vert, J.-P., Saigo, H., Ueda, N., Toh, H., & Akutsu, T. (2005). A novel representation of protein sequences for prediction of subcellular location using support vector machines. Protein Science, 14(11), 2804-2813.
    • (2005) Protein Science , vol.14 , Issue.11 , pp. 2804-2813
    • Matsuda, A.1    Vert, J.-P.2    Saigo, H.3    Ueda, N.4    Toh, H.5    Akutsu, T.6
  • 53
    • 13244260800 scopus 로고    scopus 로고
    • Oligo kernels for datamining on biological sequences: A case study on prokaryotic translation initiation sites
    • Meinicke, P., Tech, M., Morgenstern, B., & Merkl, R. (2004). Oligo kernels for datamining on biological sequences: A case study on prokaryotic translation initiation sites. BMC Bioinformatics, 5, 169.
    • (2004) BMC Bioinformatics , vol.5 , pp. 169
    • Meinicke, P.1    Tech, M.2    Morgenstern, B.3    Merkl, R.4
  • 54
    • 0037455922 scopus 로고    scopus 로고
    • Differentially expressed genes in gastric tumors identified by cDNA array
    • Meireles, S., Carvalho, A., Hirata, R., Montagnini, A., Martins, W., Runza, F., et al. (2003). Differentially expressed genes in gastric tumors identified by cDNA array. Cancer Letters, 190(2), 199-211.
    • (2003) Cancer Letters , vol.190 , Issue.2 , pp. 199-211
    • Meireles, S.1    Carvalho, A.2    Hirata, R.3    Montagnini, A.4    Martins, W.5    Runza, F.6
  • 56
    • 0035224384 scopus 로고    scopus 로고
    • Feature selection for DNA methylation based cancer classification
    • Model, F., Adorjan, P., Olek, A., & Piepenbrock, C. (2001). Feature selection for DNA methylation based cancer classification. Bioinformatics, 17(1), S157-S164.
    • (2001) Bioinformatics , vol.17 , Issue.1
    • Model, F.1    Adorjan, P.2    Olek, A.3    Piepenbrock, C.4
  • 57
    • 0347079826 scopus 로고    scopus 로고
    • Analysis of molecular profile data using generative and discriminative methods
    • Moler, E. J., Chow, M. L., & Mian, I. S. (2000). Analysis of molecular profile data using generative and discriminative methods. Physiological Genomics, 4(2), 109-126.
    • (2000) Physiological Genomics , vol.4 , Issue.2 , pp. 109-126
    • Moler, E.J.1    Chow, M.L.2    Mian, I.S.3
  • 59
    • 20044363080 scopus 로고    scopus 로고
    • Gene expression signature predicts lymphatic metastasis in squamous cell carcinoma of the oral cavity
    • O'Donnell, R. K., Kupferman, M., Wei, S.J., Singhal, S., Weber, R., O'Malley, B., et al. (2005). Gene expression signature predicts lymphatic metastasis in squamous cell carcinoma of the oral cavity. Oncogene, 24(7), 1244-1251.
    • (2005) Oncogene , vol.24 , Issue.7 , pp. 1244-1251
    • O'Donnell, R.K.1    Kupferman, M.2    Wei, S.J.3    Singhal, S.4    Weber, R.5    O'Malley, B.6
  • 61
    • 0141515750 scopus 로고    scopus 로고
    • Prediction of protein subcellular locations by support vector machines using compositions of amino acids and amino acid pairs
    • Park, K.-J., & Kanehisa, M. (2003). Prediction of protein subcellular locations by support vector machines using compositions of amino acids and amino acid pairs. Bioinformatics, 19(13), 1656-1663.
    • (2003) Bioinformatics , vol.19 , Issue.13 , pp. 1656-1663
    • Park, K.-J.1    Kanehisa, M.2
  • 62
    • 4143139761 scopus 로고    scopus 로고
    • Learning to discriminate between ligand-bound and disulfide-bound cysteines
    • Passerini, A., & Frasconi, P. (2004). Learning to discriminate between ligand-bound and disulfide-bound cysteines. Protein Engineering Design and Selection, 17(4), 367-373.
    • (2004) Protein Engineering Design and Selection , vol.17 , Issue.4 , pp. 367-373
    • Passerini, A.1    Frasconi, P.2
  • 63
    • 0036100116 scopus 로고    scopus 로고
    • Learning gene functional classifications from multiple data types
    • Pavlidis, P., Weston, J., Cai, J., & Noble, W. (2002). Learning gene functional classifications from multiple data types. Journal of Computational Biology, 9(2), 401-411.
    • (2002) Journal of Computational Biology , vol.9 , Issue.2 , pp. 401-411
    • Pavlidis, P.1    Weston, J.2    Cai, J.3    Noble, W.4
  • 64
    • 10244252786 scopus 로고    scopus 로고
    • Systematic benchmarking of microarray data classification: Assessing the role of non-linearity and dimensionality reduction
    • Pochet, N., De Smet, F., Suykens, J. A. K., & De Moor, B. L. R. (2004). Systematic benchmarking of microarray data classification: Assessing the role of non-linearity and dimensionality reduction. Bioinformatics, 20(17), 3185-3195.
    • (2004) Bioinformatics , vol.20 , Issue.17 , pp. 3185-3195
    • Pochet, N.1    de Smet, F.2    Suykens, J.A.K.3    de Moor, B.L.R.4
  • 65
    • 0242475337 scopus 로고    scopus 로고
    • Kernel hierarchical gene clustering from microarray expression data
    • Qin, J., Lewis, D. P., & Noble, W. S. (2003). Kernel hierarchical gene clustering from microarray expression data. Bioinformatics, 19(16), 2097-2104.
    • (2003) Bioinformatics , vol.19 , Issue.16 , pp. 2097-2104
    • Qin, J.1    Lewis, D.P.2    Noble, W.S.3
  • 67
    • 29144512262 scopus 로고    scopus 로고
    • RASE: Recognition of alternatively spliced exons in c. elegans
    • Rätsch, G., Sonnenburg, S., & Schölkopf, B. (2005). RASE: Recognition of alternatively spliced exons in c. elegans. Bioinformatics, 21(Suppl. 1), i369-i377.
    • (2005) Bioinformatics , vol.21 , Issue.SUPPL. 1 , pp. 369-377
    • Rätsch, G.1    Sonnenburg, S.2    Schölkopf, B.3
  • 68
    • 19544369864 scopus 로고    scopus 로고
    • An evolution based classifier for prediction of protein interfaces without using protein structures
    • 24962501
    • Res, I., Mihalek, I., & Lichtarge, O. (2005). An evolution based classifier for prediction of protein interfaces without using protein structures. Bioinformatics, 21(10), 24962501rx.
    • (2005) Bioinformatics , vol.21 , Issue.10
    • Res, I.1    Mihalek, I.2    Lichtarge, O.3
  • 69
    • 17444395262 scopus 로고    scopus 로고
    • Correlation of amino acid preference and mammalian viral genome type
    • Rose, J. R., Turkett, W. H. J., Oroian, I. C., Laegreid, W. W., & Keele, J. (2005). Correlation of amino acid preference and mammalian viral genome type. Bioinformatics, 21(8), 1349-1357.
    • (2005) Bioinformatics , vol.21 , Issue.8 , pp. 1349-1357
    • Rose, J.R.1    Turkett, W.H.J.2    Oroian, I.C.3    Laegreid, W.W.4    Keele, J.5
  • 70
    • 4444273377 scopus 로고    scopus 로고
    • Protein homology detection using string alignment kernels
    • Saigo, H., Vert, J.-P., Ueda, N., & Akutsu, T. (2004). Protein homology detection using string alignment kernels. Bioinformatics, 20(11), 1682-1689.
    • (2004) Bioinformatics , vol.20 , Issue.11 , pp. 1682-1689
    • Saigo, H.1    Vert, J.-P.2    Ueda, N.3    Akutsu, T.4
  • 71
    • 0028806048 scopus 로고
    • Quantitative monitoring of gene expression patterns with a complimentary DNA microarray
    • Schena, M., Shalon, D., Davis, R., & Brown, P. (1995). Quantitative monitoring of gene expression patterns with a complimentary DNA microarray. Science, 270, 467-470.
    • (1995) Science , vol.270 , pp. 467-470
    • Schena, M.1    Shalon, D.2    Davis, R.3    Brown, P.4
  • 76
    • 29144503056 scopus 로고    scopus 로고
    • A motif-based framework for recognizing sequence families
    • Sharan, R., & Myers, E. W. (2005). A motif-based framework for recognizing sequence families. Bioinformatics, 21(Suppl. 1), i387-i393.
    • (2005) Bioinformatics , vol.21 , Issue.SUPPL. 1 , pp. 387-393
    • Sharan, R.1    Myers, E.W.2
  • 78
    • 18244409933 scopus 로고    scopus 로고
    • Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning
    • Shipp, M. A., Ross, K. N., Tamayo, P., Weng, A. P., Kutok, J. L., Aguiar, R. C. T., et al. (2002). Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nature Medicine, 8(1), 68-74.
    • (2002) Nature Medicine , vol.8 , Issue.1 , pp. 68-74
    • Shipp, M.A.1    Ross, K.N.2    Tamayo, P.3    Weng, A.P.4    Kutok, J.L.5    Aguiar, R.C.T.6
  • 79
    • 0019887799 scopus 로고
    • Identification of common molecular subsequences
    • Smith, T., & Waterman, M. (1981). Identification of common molecular subsequences. Journal of Molecular Biology, 147, 195-197.
    • (1981) Journal of Molecular Biology , vol.147 , pp. 195-197
    • Smith, T.1    Waterman, M.2
  • 81
    • 0042388208 scopus 로고    scopus 로고
    • RankGene: Identification of diagnostic genes based on expression data
    • Su, Y., Murali, T., Pavlovic, V., Schaffer, M., & Kasif, S. (2003). RankGene: Identification of diagnostic genes based on expression data. Bioinformatics, 19(12), 1578-1579.
    • (2003) Bioinformatics , vol.19 , Issue.12 , pp. 1578-1579
    • Su, Y.1    Murali, T.2    Pavlovic, V.3    Schaffer, M.4    Kasif, S.5
  • 82
    • 26944486424 scopus 로고    scopus 로고
    • Kernels for small molecules and the prediction of mutagenicity, toxicity and anti-cancer activity
    • Swamidass, S. J., Chen, J., Bruand, J., Phung, P., Ralaivola, L., & Baldi, P. (2005). Kernels for small molecules and the prediction of mutagenicity, toxicity and anti-cancer activity. Bioinformatics, 21(Suppl. 1), i359-i368.
    • (2005) Bioinformatics , vol.21 , Issue.SUPPL. 1 , pp. 359-368
    • Swamidass, S.J.1    Chen, J.2    Bruand, J.3    Phung, P.4    Ralaivola, L.5    Baldi, P.6
  • 83
    • 19444386649 scopus 로고    scopus 로고
    • Prediction of siRNA functionality using generalized string kernel and support vector machine
    • Teramoto, R., Aoki, M., Kimura, T., & Kanaoka, M. (2005). Prediction of siRNA functionality using generalized string kernel and support vector machine. FEBS Letters, 579(13), 2878-2882.
    • (2005) FEBS Letters , vol.579 , Issue.13 , pp. 2878-2882
    • Teramoto, R.1    Aoki, M.2    Kimura, T.3    Kanaoka, M.4
  • 84
    • 1642338802 scopus 로고    scopus 로고
    • Marginalized kernels for biological sequences
    • Tsuda, K., Kin, T., & Asai, K. (2002). Marginalized kernels for biological sequences. Bioinformatics, 18, S268-S275.
    • (2002) Bioinformatics , vol.18
    • Tsuda, K.1    Kin, T.2    Asai, K.3
  • 85
    • 19544368196 scopus 로고    scopus 로고
    • Learning kernels from biological networks by maximizing entropy
    • Tsuda, K., & Noble, W. (2004). Learning kernels from biological networks by maximizing entropy. Bioinformatics, 20, i326-i333.
    • (2004) Bioinformatics , vol.20 , pp. 326-333
    • Tsuda, K.1    Noble, W.2
  • 86
    • 0036851381 scopus 로고    scopus 로고
    • Gene expression data analysis of human lymphoma using support vector machines and output coding ensembles
    • Valentini, G. (2002). Gene expression data analysis of human lymphoma using support vector machines and output coding ensembles. Artificial Intelligence in Medicine, 26(3), 281-304.
    • (2002) Artificial Intelligence In Medicine , vol.26 , Issue.3 , pp. 281-304
    • Valentini, G.1
  • 87
    • 0035895505 scopus 로고    scopus 로고
    • The sequence of the human genome
    • Venter, J.C.e a. (2001). The sequence of the human genome. Science, 291(5507), 1304-1351.
    • (2001) Science , vol.291 , Issue.5507 , pp. 1304-1351
    • Venter, J.C.E.A.1
  • 88
    • 11244331236 scopus 로고    scopus 로고
    • A tree kernel to analyze phylogenetic profiles
    • Vert, J.-P. (2002). A tree kernel to analyze phylogenetic profiles. Bioinformatics, 18, S276-S284.
    • (2002) Bioinformatics , vol.18
    • Vert, J.-P.1
  • 90
    • 10844256122 scopus 로고    scopus 로고
    • Local alignment kernels for biological sequences
    • In B. Schölkopf, K. Tsuda, & J. Vert, (Eds.), Cambridge, MA: MIT Press
    • Vert, J.-P., Saigo, H., & Akutsu, T. (2004). Local alignment kernels for biological sequences. In B. Schölkopf, K. Tsuda, & J. Vert, (Eds.), Kernel methods in computational biology (pp. 131-154). Cambridge, MA: MIT Press.
    • (2004) Kernel Methods In Computational Biology , pp. 131-154
    • Vert, J.-P.1    Saigo, H.2    Akutsu, T.3
  • 91
    • 36448954367 scopus 로고    scopus 로고
    • Kernels for gene regulatory regions
    • In Y. Weiss, B. Schölkopf, & J. Platt (Eds.), Cambridge, MA: MIT Press
    • Vert, J.-P., Thurman, R., & Noble, W. S. (2006). Kernels for gene regulatory regions. In Y. Weiss, B. Schölkopf, & J. Platt (Eds.), Advances in Neural Information Processing Systems 18 (pp. 1401-1408). Cambridge, MA: MIT Press.
    • (2006) Advances In Neural Information Processing Systems 18 , pp. 1401-1408
    • Vert, J.-P.1    Thurman, R.2    Noble, W.S.3
  • 93
    • 0141631754 scopus 로고    scopus 로고
    • Protocols for disease classification from mass spectrometry data
    • Wagner, M., Naik, D., & Pothen, A. (2003). Protocols for disease classification from mass spectrometry data. Proteomics, 3(9), 1692-1698.
    • (2003) Proteomics , vol.3 , Issue.9 , pp. 1692-1698
    • Wagner, M.1    Naik, D.2    Pothen, A.3
  • 94
    • 8444248846 scopus 로고    scopus 로고
    • Weighted-support vector machines for predicting membrane protein types based on pseudo-amino acid composition
    • Wang, M., Yang, J., Liu, G.-P., Xu, Z.-J., & Chou, K.-C. (2004). Weighted-support vector machines for predicting membrane protein types based on pseudo-amino acid composition. Protein Engineering Design and Selection, 17(6), 509-516.
    • (2004) Protein Engineering Design and Selection , vol.17 , Issue.6 , pp. 509-516
    • Wang, M.1    Yang, J.2    Liu, G.-P.3    Xu, Z.-J.4    Chou, K.-C.5
  • 95
    • 0002531715 scopus 로고    scopus 로고
    • Dynamic alignment kernels
    • In A. J. Smola, P. L. Bartlett, B. Schölkopf, & D. Schuurmans (Eds.), Cambridge, MA: MIT Press
    • Watkins, C. (2000). Dynamic alignment kernels. In A. J. Smola, P. L. Bartlett, B. Schölkopf, & D. Schuurmans (Eds.), Advances in large margin classifiers (pp. 39-50). Cambridge, MA: MIT Press.
    • (2000) Advances In Large Margin Classifiers , pp. 39-50
    • Watkins, C.1
  • 96
    • 3342939836 scopus 로고    scopus 로고
    • Prognostic classification of relapsing favorable histology Wilms tumor using cDNA microarray expression profiling and support vector machines
    • Williams, R., Hing, S., Greer, B., Whiteford, C., Wei, J., Natrajan, R., et al. (2004). Prognostic classification of relapsing favorable histology Wilms tumor using cDNA microarray expression profiling and support vector machines. Genes Chromosomes Cancer, 41(1), 65-79.
    • (2004) Genes Chromosomes Cancer , vol.41 , Issue.1 , pp. 65-79
    • Williams, R.1    Hing, S.2    Greer, B.3    Whiteford, C.4    Wei, J.5    Natrajan, R.6
  • 97
    • 0141738784 scopus 로고    scopus 로고
    • Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data
    • Wu, B., Abbott, T., Fishman, D., McMurray, W., Mor, G., Stone, K., et al. (2003). Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data. Bioinformatics, 19(13), 1636-1643.
    • (2003) Bioinformatics , vol.19 , Issue.13 , pp. 1636-1643
    • Wu, B.1    Abbott, T.2    Fishman, D.3    McMurray, W.4    Mor, G.5    Stone, K.6
  • 98
    • 19544389868 scopus 로고    scopus 로고
    • Protein network inference from multiple genomic data: A supervised approach
    • Yamanishi, Y., Vert, J.-P., & Kanehisa, M. (2004). Protein network inference from multiple genomic data: A supervised approach. Bioinformatics, 20, i363-i370.
    • (2004) Bioinformatics , vol.20 , pp. 363-370
    • Yamanishi, Y.1    Vert, J.-P.2    Kanehisa, M.3
  • 99
    • 13244292990 scopus 로고    scopus 로고
    • A two-stage classifier for identification of proteinprotein interface residues
    • Yan, C., Dobbs, D., & Honavar, V. (2004). A two-stage classifier for identification of proteinprotein interface residues. Bioinformatics, 20(Suppl. 1), i371-i378.
    • (2004) Bioinformatics , vol.20 , Issue.SUPPL. 1 , pp. 371-378
    • Yan, C.1    Dobbs, D.2    Honavar, V.3
  • 100
    • 0038059014 scopus 로고    scopus 로고
    • Analysis of multiple single nucleotide polymorphisms of candidate genes related to coronary heart disease susceptibility by using support vector machines
    • Yoon, Y., Song, J., Hong, S., & Kim, J. (2003). Analysis of multiple single nucleotide polymorphisms of candidate genes related to coronary heart disease susceptibility by using support vector machines. Clinical Chemistry and Laboratory Medicine, 41(4), 529-534.
    • (2003) Clinical Chemistry and Laboratory Medicine , vol.41 , Issue.4 , pp. 529-534
    • Yoon, Y.1    Song, J.2    Hong, S.3    Kim, J.4
  • 101
    • 29144520514 scopus 로고    scopus 로고
    • Classifying noisy protein sequence data: A case study of immunoglobulin light chains
    • Yu, C., Zavaljevski, N., Stevens, F. J., Yackovich, K., & Reifman, J. (2005). Classifying noisy protein sequence data: A case study of immunoglobulin light chains. Bioinformatics, 21(Suppl. 1), i495-i501.
    • (2005) Bioinformatics , vol.21 , Issue.SUPPL. 1 , pp. 495-501
    • Yu, C.1    Zavaljevski, N.2    Stevens, F.J.3    Yackovich, K.4    Reifman, J.5
  • 102
    • 0037103004 scopus 로고    scopus 로고
    • Prediction of protein solvent accessibility using support vector machines
    • Yuan, Z., Burrage, K., & Mattick, J. (2002). Prediction of protein solvent accessibility using support vector machines. Proteins, 48(3), 566-570.
    • (2002) Proteins , vol.48 , Issue.3 , pp. 566-570
    • Yuan, Z.1    Burrage, K.2    Mattick, J.3
  • 103
    • 0036086337 scopus 로고    scopus 로고
    • Support vector machines with selective kernel scaling for protein classification and identification of key amino acid positions
    • Zavaljevski, N., Stevens, F., & Reifman, J. (2002). Support vector machines with selective kernel scaling for protein classification and identification of key amino acid positions. Bioinformatics, 18(5), 689-696.
    • (2002) Bioinformatics , vol.18 , Issue.5 , pp. 689-696
    • Zavaljevski, N.1    Stevens, F.2    Reifman, J.3
  • 104
    • 0346252360 scopus 로고    scopus 로고
    • Classification of protein quaternary structure with support vector machine
    • Zhang, S.-W., Pan, Q., Zhang, H.-C., Zhang, Y.-L., & Wang, H.-Y. (2003). Classification of protein quaternary structure with support vector machine. Bioinformatics, 19(18), 2390-2396.
    • (2003) Bioinformatics , vol.19 , Issue.18 , pp. 2390-2396
    • Zhang, S.-W.1    Pan, Q.2    Zhang, H.-C.3    Zhang, Y.-L.4    Wang, H.-Y.5
  • 105
    • 0346121460 scopus 로고    scopus 로고
    • Sequence information for the splicing of human pre-mRNA identified by support vector machine classification
    • Zhang, X.H.-F., Heller, K. A., Hefter, I., Leslie, C. S., & Chasin, L. A. (2003). Sequence information for the splicing of human pre-mRNA identified by support vector machine classification. Genome Research, 13(12), 2637-2650.
    • (2003) Genome Research , vol.13 , Issue.12 , pp. 2637-2650
    • Zhang, X.H.-F.1    Heller, K.A.2    Hefter, I.3    Leslie, C.S.4    Chasin, L.A.5
  • 106
    • 0033670134 scopus 로고    scopus 로고
    • Engineering support vector machine kernels that recognize translation initiation sites
    • Zien, A., Ratsch, G., Mika, S., Scholkopf, B., Lengauer, T., Müller, K.-R. (2000). Engineering support vector machine kernels that recognize translation initiation sites. Bioinformatics, 16(9), 799-807.
    • (2000) Bioinformatics , vol.16 , Issue.9 , pp. 799-807
    • Zien, A.1    Ratsch, G.2    Mika, S.3    Scholkopf, B.4    Lengauer, T.5    Müller, K.-R.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.