메뉴 건너뛰기




Volumn 88, Issue 10, 2010, Pages 1381-1392

Statistical analysis and adaptive technique for dynamical process monitoring

Author keywords

Process monitoring; Two dimensional dynamic kernel Hebbian Algorithm (2 D DKHA); Two dimensional dynamic kernel PCA (2 D DKPCA)

Indexed keywords

ADAPTIVE TECHNIQUE; BASIC IDEA; BATCH PROCESS; BATCH PROCESS MONITORING; D-ALGORITHM; HEBBIAN ALGORITHM; KERNEL MATRICES; KERNEL PCA; MULTIVARIATE STATISTICAL PROCESS MONITORING; NON-LINEAR DYNAMIC SYSTEMS; NON-LINEAR DYNAMICS; NONLINEAR COMPONENTS; PRINCIPAL COMPONENTS; SIMULATION RESULT; STATISTICAL ANALYSIS;

EID: 77957303678     PISSN: 02638762     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cherd.2010.03.002     Document Type: Article
Times cited : (11)

References (39)
  • 1
    • 0035253422 scopus 로고    scopus 로고
    • Multivariate statistical monitoring of batch processes: an industrial case study of fermentation supervision
    • Albert S., Kinley R.D. Multivariate statistical monitoring of batch processes: an industrial case study of fermentation supervision. Trends Biotechnol 2001, 19:53-62.
    • (2001) Trends Biotechnol , vol.19 , pp. 53-62
    • Albert, S.1    Kinley, R.D.2
  • 2
    • 33644990573 scopus 로고    scopus 로고
    • On-line batch process monitoring using MHMT-based MPCA
    • Chen J.H., Chen H.-H. On-line batch process monitoring using MHMT-based MPCA. Chem Eng Sci 2006, 61:3223-3239.
    • (2006) Chem Eng Sci , vol.61 , pp. 3223-3239
    • Chen, J.H.1    Chen, H.-H.2
  • 4
    • 10244238854 scopus 로고    scopus 로고
    • Fault identification for process monitoring using kernel principal component analysis
    • Cho J.-H., Lee J.-M., Choi S.W., Lee D., Lee I.-B. Fault identification for process monitoring using kernel principal component analysis. Chem Eng Sci 2005, 60:279-288.
    • (2005) Chem Eng Sci , vol.60 , pp. 279-288
    • Cho, J.-H.1    Lee, J.-M.2    Choi, S.W.3    Lee, D.4    Lee, I.-B.5
  • 5
    • 10044259622 scopus 로고    scopus 로고
    • Nonlinear dynamic process monitoring based on dynamic kernel PCA
    • Choi S.W., Lee I.-B. Nonlinear dynamic process monitoring based on dynamic kernel PCA. Chem Eng Sci 2004, 59:5897-5908.
    • (2004) Chem Eng Sci , vol.59 , pp. 5897-5908
    • Choi, S.W.1    Lee, I.-B.2
  • 7
    • 0030211997 scopus 로고    scopus 로고
    • Batch tracking via nonlinear principal component analysis
    • Dong D., McAvoy T.J. Batch tracking via nonlinear principal component analysis. AIChE J 1996, 42:2199-2208.
    • (1996) AIChE J , vol.42 , pp. 2199-2208
    • Dong, D.1    McAvoy, T.J.2
  • 8
    • 0029720138 scopus 로고    scopus 로고
    • Application of multi-way principal component analysis to nuclear waste storage tank monitoring
    • Gallagher N.B., Wise B.M. Application of multi-way principal component analysis to nuclear waste storage tank monitoring. Comput Chem Eng 1996, 20:739-744.
    • (1996) Comput Chem Eng , vol.20 , pp. 739-744
    • Gallagher, N.B.1    Wise, B.M.2
  • 9
    • 0032694625 scopus 로고    scopus 로고
    • Supervision of fed-batch fermentations
    • Gregersen L., Jorgensen S.B. Supervision of fed-batch fermentations. Chem Eng J 1999, 75:69-76.
    • (1999) Chem Eng J , vol.75 , pp. 69-76
    • Gregersen, L.1    Jorgensen, S.B.2
  • 10
    • 25844445939 scopus 로고    scopus 로고
    • Iterative kernel principal component analysis for image modeling
    • Kim K.I., Franz M.O., Schölkopf B. Iterative kernel principal component analysis for image modeling. IEEE Trans Pattern Anal Mach Intell 2005, 27(9):1351-1364.
    • (2005) IEEE Trans Pattern Anal Mach Intell , vol.27 , Issue.9 , pp. 1351-1364
    • Kim, K.I.1    Franz, M.O.2    Schölkopf, B.3
  • 11
    • 0029703047 scopus 로고    scopus 로고
    • Experiences with industrial applications of projection methods for multivariate statistical process control
    • Kourti T., Lee J., MacGregor J.F. Experiences with industrial applications of projection methods for multivariate statistical process control. Comput Chem Eng 1996, 20:745-750.
    • (1996) Comput Chem Eng , vol.20 , pp. 745-750
    • Kourti, T.1    Lee, J.2    MacGregor, J.F.3
  • 12
    • 0028892168 scopus 로고
    • Disturbance detection and isolation by dynamic principal component analysis
    • Ku W.F., Storer R.H., Georgakis C. Disturbance detection and isolation by dynamic principal component analysis. Chem Intell Lab Syst 1995, 30:179-196.
    • (1995) Chem Intell Lab Syst , vol.30 , pp. 179-196
    • Ku, W.F.1    Storer, R.H.2    Georgakis, C.3
  • 13
    • 2442495227 scopus 로고    scopus 로고
    • Fault detection of batch processes using multiway kernel principal component analysis
    • Lee J.M., Yoo C.K., Lee I.B. Fault detection of batch processes using multiway kernel principal component analysis. Comput Chem Eng 2004, 28:1837-1847.
    • (2004) Comput Chem Eng , vol.28 , pp. 1837-1847
    • Lee, J.M.1    Yoo, C.K.2    Lee, I.B.3
  • 14
    • 0346911568 scopus 로고    scopus 로고
    • Nonlinear process monitoring using kernel principal component analysis
    • Lee J.M., Yoo C.K., Choi S.W., Vanrolleghem P.A., Lee I.-B. Nonlinear process monitoring using kernel principal component analysis. Chem Eng Sci 2004, 59:223-234.
    • (2004) Chem Eng Sci , vol.59 , pp. 223-234
    • Lee, J.M.1    Yoo, C.K.2    Choi, S.W.3    Vanrolleghem, P.A.4    Lee, I.-B.5
  • 16
    • 0035546347 scopus 로고    scopus 로고
    • Consistent dynamic PCA based on errors-in-variables subspace identification
    • Li W., Qin S.J. Consistent dynamic PCA based on errors-in-variables subspace identification. J Process Control 2001, 11:661-678.
    • (2001) J Process Control , vol.11 , pp. 661-678
    • Li, W.1    Qin, S.J.2
  • 17
    • 33645880467 scopus 로고    scopus 로고
    • Improved reliability in diagnosing faults using multivariate statistics
    • Lieftucht D., Kruger U., Irwin G.W. Improved reliability in diagnosing faults using multivariate statistics. Comput Chem Eng 2006, 30(5):901-912.
    • (2006) Comput Chem Eng , vol.30 , Issue.5 , pp. 901-912
    • Lieftucht, D.1    Kruger, U.2    Irwin, G.W.3
  • 18
    • 64249101035 scopus 로고    scopus 로고
    • Moving window kernel PCA for adaptive monitoring of nonlinear processes
    • Liu X., Kruger U., Littler T., Xie L., Wang S.-Q. Moving window kernel PCA for adaptive monitoring of nonlinear processes. Chemometr Intell Lab Syst 2009, 96:132-143.
    • (2009) Chemometr Intell Lab Syst , vol.96 , pp. 132-143
    • Liu, X.1    Kruger, U.2    Littler, T.3    Xie, L.4    Wang, S.-Q.5
  • 19
    • 30544445406 scopus 로고    scopus 로고
    • Two-dimensional dynamic PCA for batch process monitoring
    • Lu N., Yao Y., Gao F., Wang F. Two-dimensional dynamic PCA for batch process monitoring. AIChE J 2005, 51:3300-3304.
    • (2005) AIChE J , vol.51 , pp. 3300-3304
    • Lu, N.1    Yao, Y.2    Gao, F.3    Wang, F.4
  • 22
    • 0028483476 scopus 로고
    • Monitoring batch processes using multiway principal component analysis, American Institute of Chemical Engineers
    • Nomikos P., MacGregor J.F. Monitoring batch processes using multiway principal component analysis, American Institute of Chemical Engineers. AIChE J 1994, 40:1361-1375.
    • (1994) AIChE J , vol.40 , pp. 1361-1375
    • Nomikos, P.1    MacGregor, J.F.2
  • 23
    • 0029252734 scopus 로고
    • Multivariate SPC charts for monitoring batch processes
    • Nomikos P., MacGregor J.F. Multivariate SPC charts for monitoring batch processes. Technometrics 1995, 37:41-59.
    • (1995) Technometrics , vol.37 , pp. 41-59
    • Nomikos, P.1    MacGregor, J.F.2
  • 24
    • 0028825273 scopus 로고
    • Multi-way partial least squares in monitoring batch processes
    • Nomikos P., MacGregor J.F. Multi-way partial least squares in monitoring batch processes. Chem Intell Lab Syst 1995, 30:97-108.
    • (1995) Chem Intell Lab Syst , vol.30 , pp. 97-108
    • Nomikos, P.1    MacGregor, J.F.2
  • 25
    • 0242354134 scopus 로고    scopus 로고
    • Statistical process monitoring: basics and beyond
    • Qin S.J. Statistical process monitoring: basics and beyond. J Chemometr 2003, 17:480-502.
    • (2003) J Chemometr , vol.17 , pp. 480-502
    • Qin, S.J.1
  • 26
    • 28244475768 scopus 로고    scopus 로고
    • A semiconductor manufacturing process control and monitoring: a fab-wide framework
    • Qin S.J., Cherry G., Good R., Wang J., Harrison C. A semiconductor manufacturing process control and monitoring: a fab-wide framework. J Process Control 2006, 16:179-191.
    • (2006) J Process Control , vol.16 , pp. 179-191
    • Qin, S.J.1    Cherry, G.2    Good, R.3    Wang, J.4    Harrison, C.5
  • 28
    • 0001452843 scopus 로고    scopus 로고
    • A multi-view nonlinear active shape model using KPCA
    • Romdhani S., Gong S., Psarrou A. A multi-view nonlinear active shape model using KPCA. Proceedings of BMVC 1999, 483-492.
    • (1999) Proceedings of BMVC , pp. 483-492
    • Romdhani, S.1    Gong, S.2    Psarrou, A.3
  • 29
    • 0034621334 scopus 로고    scopus 로고
    • Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis
    • Russell E.L., Chiang L.H., Braatz R.D. Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis. Chem Intell Lab Syst 2000, 51:81-93.
    • (2000) Chem Intell Lab Syst , vol.51 , pp. 81-93
    • Russell, E.L.1    Chiang, L.H.2    Braatz, R.D.3
  • 30
    • 0033404122 scopus 로고    scopus 로고
    • Monitoring a PVC batch process with multivariate statistical process control charts
    • Tates D.J., Louwerse A.A., Smilde A.K., Koot G.L.M., Berndt H. Monitoring a PVC batch process with multivariate statistical process control charts. Ind Eng Chem Res 1998, 38:4769-4776.
    • (1998) Ind Eng Chem Res , vol.38 , pp. 4769-4776
    • Tates, D.J.1    Louwerse, A.A.2    Smilde, A.K.3    Koot, G.L.M.4    Berndt, H.5
  • 31
    • 0344944150 scopus 로고    scopus 로고
    • Dynamic multivariate statistical process control using subspace identification
    • Treasure R., Kruger U., Cooper J.E. Dynamic multivariate statistical process control using subspace identification. J Process Control 2004, 14:279-292.
    • (2004) J Process Control , vol.14 , pp. 279-292
    • Treasure, R.1    Kruger, U.2    Cooper, J.E.3
  • 32
    • 34347209749 scopus 로고    scopus 로고
    • Modified kernel Hebbian Algorithm with application to modeling of hydro-dearomatization process
    • Wang H.Q., Song Z.H., Li P. Modified kernel Hebbian Algorithm with application to modeling of hydro-dearomatization process. J Chem Ind Eng 2007, 58(6):1518-1522.
    • (2007) J Chem Ind Eng , vol.58 , Issue.6 , pp. 1518-1522
    • Wang, H.Q.1    Song, Z.H.2    Li, P.3
  • 33
    • 0000609488 scopus 로고    scopus 로고
    • Comparing alternative approaches for multivariate statistical analysis of batch process data
    • Westerhuis J.A., Kourti T., MacGregor F.J. Comparing alternative approaches for multivariate statistical analysis of batch process data. J Chemometr 1999, 13:397-413.
    • (1999) J Chemometr , vol.13 , pp. 397-413
    • Westerhuis, J.A.1    Kourti, T.2    MacGregor, F.J.3
  • 35
    • 44749086556 scopus 로고    scopus 로고
    • Subspace identification for two-dimensional dynamic batch process statistical monitoring
    • Yao Y., Gao F. Subspace identification for two-dimensional dynamic batch process statistical monitoring. Chem Eng Sci 2008, 63:3411-3418.
    • (2008) Chem Eng Sci , vol.63 , pp. 3411-3418
    • Yao, Y.1    Gao, F.2
  • 37
    • 36348941124 scopus 로고    scopus 로고
    • Fault detection of nonlinear processes using multiway kernel independent analysis
    • Zhang Y., Qin S.J. Fault detection of nonlinear processes using multiway kernel independent analysis. Ind Eng Chem Res 2007, 46:7780-7787.
    • (2007) Ind Eng Chem Res , vol.46 , pp. 7780-7787
    • Zhang, Y.1    Qin, S.J.2
  • 38
    • 57049177632 scopus 로고    scopus 로고
    • Improved nonlinear fault detection technique and statistical analysis
    • Zhang Y., Qin S.J. Improved nonlinear fault detection technique and statistical analysis. AIChE J 2008, 12:3207-3220.
    • (2008) AIChE J , vol.12 , pp. 3207-3220
    • Zhang, Y.1    Qin, S.J.2
  • 39
    • 76849100172 scopus 로고    scopus 로고
    • Decentralized fault diagnosis of large-scale processes using multiblock kernel partial least squares
    • Zhang Y., Zhou H., Qin S.J., Chai T.Y. Decentralized fault diagnosis of large-scale processes using multiblock kernel partial least squares. IEEE Trans Ind Inform 2010, 6:3-10.
    • (2010) IEEE Trans Ind Inform , vol.6 , pp. 3-10
    • Zhang, Y.1    Zhou, H.2    Qin, S.J.3    Chai, T.Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.