-
1
-
-
0032491416
-
Embryonic stem cell lines derived from human blastocysts
-
Thomson, J.A. et al. 1998. Embryonic stem cell lines derived from human blastocysts. Science 282: 1145-1147.
-
(1998)
Science
, vol.282
, pp. 1145-1147
-
-
Thomson, J.A.1
-
2
-
-
0034101804
-
Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro
-
Reubinoff, B.E. et al. 2000. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat. Biotechnol. 18: 399-404.
-
(2000)
Nat. Biotechnol.
, vol.18
, pp. 399-404
-
-
Reubinoff, B.E.1
-
3
-
-
36248966518
-
Induction of pluripotent stem cells from adult human fibroblasts by defined factors
-
Takahashi, K. et al. 2007. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131: 861-872.
-
(2007)
Cell
, vol.131
, pp. 861-872
-
-
Takahashi, K.1
-
4
-
-
27644504639
-
Characterization of mesendoderm: a diverging point of the definitive endoderm and mesoderm in embryonic stem cell differentiation culture
-
Tada, S. et al. 2005. Characterization of mesendoderm: a diverging point of the definitive endoderm and mesoderm in embryonic stem cell differentiation culture. Development 132: 4363-4374.
-
(2005)
Development
, vol.132
, pp. 4363-4374
-
-
Tada, S.1
-
5
-
-
0023627388
-
Cell fate, morphogenetic movement and population kinetics of embryonic endoderm at the time of germ layer formation in the mouse
-
Lawson, K.A. & R.A. Pedersen. 1987. Cell fate, morphogenetic movement and population kinetics of embryonic endoderm at the time of germ layer formation in the mouse. Development 101: 627-652.
-
(1987)
Development
, vol.101
, pp. 627-652
-
-
Lawson, K.A.1
Pedersen, R.A.2
-
6
-
-
0025942116
-
Clonal analysis of epiblast fate during germ layer formation in the mouse embryo
-
Lawson, K.A., J.J. Meneses & R.A. Pedersen. 1991. Clonal analysis of epiblast fate during germ layer formation in the mouse embryo. Development 113: 891-911.
-
(1991)
Development
, vol.113
, pp. 891-911
-
-
Lawson, K.A.1
Meneses, J.J.2
Pedersen, R.A.3
-
7
-
-
0025054992
-
Expression pattern of the mouse T gene and its role in mesoderm formation
-
Wilkinson, D.G., S. Bhatt & B.G. Herrmann. 1990. Expression pattern of the mouse T gene and its role in mesoderm formation. Nature 343: 657-659.
-
(1990)
Nature
, vol.343
, pp. 657-659
-
-
Wilkinson, D.G.1
Bhatt, S.2
Herrmann, B.G.3
-
8
-
-
0032821417
-
Mml, a mouse Mix-like gene expressed in the primitive streak
-
Pearce, J.J. & M.J. Evans. 1999. Mml, a mouse Mix-like gene expressed in the primitive streak. Mech. Dev. 87: 189-192.
-
(1999)
Mech. Dev.
, vol.87
, pp. 189-192
-
-
Pearce, J.J.1
Evans, M.J.2
-
9
-
-
0033662267
-
Cloning, expression analysis, and chromosomal localization of murine and human homologues of a Xenopus mix gene
-
Robb, L. et al. 2000. Cloning, expression analysis, and chromosomal localization of murine and human homologues of a Xenopus mix gene. Dev. Dyn. 219: 497-504.
-
(2000)
Dev. Dyn.
, vol.219
, pp. 497-504
-
-
Robb, L.1
-
10
-
-
0026649645
-
Gastrulation in the mouse: the role of the homeobox gene goosecoid
-
Blum, M. et al. 1992. Gastrulation in the mouse: the role of the homeobox gene goosecoid. Cell 69: 1097-1106.
-
(1992)
Cell
, vol.69
, pp. 1097-1106
-
-
Blum, M.1
-
11
-
-
0027425136
-
The formation and maintenance of the definitive endoderm lineage in the mouse: involvement of HNF3/forkhead proteins
-
Ang, S.L. et al. 1993. The formation and maintenance of the definitive endoderm lineage in the mouse: involvement of HNF3/forkhead proteins. Development 119: 1301-1315.
-
(1993)
Development
, vol.119
, pp. 1301-1315
-
-
Ang, S.L.1
-
12
-
-
0027318791
-
Differential expression of multiple fork head related genes during gastrulation and axial pattern formation in the mouse embryo
-
Sasaki, H. & B.L. Hogan. 1993. Differential expression of multiple fork head related genes during gastrulation and axial pattern formation in the mouse embryo. Development 118: 47-59.
-
(1993)
Development
, vol.118
, pp. 47-59
-
-
Sasaki, H.1
Hogan, B.L.2
-
13
-
-
0030613759
-
Xsox17alpha and -beta mediate endoderm formation in Xenopus
-
Hudson, C. et al. 1997. Xsox17alpha and -beta mediate endoderm formation in Xenopus. Cell 91: 397-405.
-
(1997)
Cell
, vol.91
, pp. 397-405
-
-
Hudson, C.1
-
14
-
-
28644442419
-
Induction and monitoring of definitive and visceral endoderm differentiation of mouse ES cells
-
Yasunaga, M. et al. 2005. Induction and monitoring of definitive and visceral endoderm differentiation of mouse ES cells. Nat. Biotechnol. 23: 1542-1550.
-
(2005)
Nat. Biotechnol.
, vol.23
, pp. 1542-1550
-
-
Yasunaga, M.1
-
15
-
-
79952397747
-
Generation of anterior foregut endoderm from human embryonic and induced pluripotent stem cells
-
Green, M.D. et al. 2011. Generation of anterior foregut endoderm from human embryonic and induced pluripotent stem cells. Nat. Biotechnol. 29: 267-272.
-
(2011)
Nat. Biotechnol.
, vol.29
, pp. 267-272
-
-
Green, M.D.1
-
16
-
-
34047181087
-
Molecular basis of vertebrate endoderm development
-
Zorn, A.M. & J.M. Wells. 2007. Molecular basis of vertebrate endoderm development. Int. Rev. Cytol. 259: 49-111.
-
(2007)
Int. Rev. Cytol.
, vol.259
, pp. 49-111
-
-
Zorn, A.M.1
Wells, J.M.2
-
17
-
-
0041854281
-
Control of early anterior-posterior patterning in the mouse embryo by TGF-beta signalling
-
discussion 1357.
-
Robertson, E.J. et al. 2003. Control of early anterior-posterior patterning in the mouse embryo by TGF-beta signalling. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358: 1351-1357; discussion 1357.
-
(2003)
Philos. Trans. R. Soc. Lond. B Biol. Sci.
, vol.358
, pp. 1351-1357
-
-
Robertson, E.J.1
-
18
-
-
2342424743
-
Development of definitive endoderm from embryonic stem cells in culture
-
Kubo, A. et al. 2004. Development of definitive endoderm from embryonic stem cells in culture. Development 131: 1651-1662.
-
(2004)
Development
, vol.131
, pp. 1651-1662
-
-
Kubo, A.1
-
19
-
-
33845996144
-
Activin a efficiently specifies definitive endoderm from human embryonic stem cells only when phosphatidylinositol 3-kinase signaling is suppressed
-
McLean, A.B. et al. 2007. Activin a efficiently specifies definitive endoderm from human embryonic stem cells only when phosphatidylinositol 3-kinase signaling is suppressed. Stem Cells 25: 29-38.
-
(2007)
Stem Cells
, vol.25
, pp. 29-38
-
-
McLean, A.B.1
-
20
-
-
64149118087
-
Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells
-
Zhang, D. et al. 2009. Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells. Cell Res. 19: 429-438.
-
(2009)
Cell Res.
, vol.19
, pp. 429-438
-
-
Zhang, D.1
-
21
-
-
62949210744
-
Small molecules efficiently direct endodermal differentiation of mouse and human embryonic stem cells
-
Borowiak, M. et al. 2009. Small molecules efficiently direct endodermal differentiation of mouse and human embryonic stem cells. Cell Stem Cell 4: 348-358.
-
(2009)
Cell Stem Cell
, vol.4
, pp. 348-358
-
-
Borowiak, M.1
-
22
-
-
0029149656
-
Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse
-
Winnier, G. et al. 1995. Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev. 9: 2105-2116.
-
(1995)
Genes Dev.
, vol.9
, pp. 2105-2116
-
-
Winnier, G.1
-
23
-
-
79551580013
-
Stage-specific signaling through TGFbeta family members and WNT regulates patterning and pancreatic specification of human pluripotent stem cells
-
Nostro, M.C. et al. 2011. Stage-specific signaling through TGFbeta family members and WNT regulates patterning and pancreatic specification of human pluripotent stem cells. Development 138: 861-871.
-
(2011)
Development
, vol.138
, pp. 861-871
-
-
Nostro, M.C.1
-
24
-
-
84856696056
-
The functional and molecular characterisation of human embryonic stem cell-derived insulin-positive cells compared with adult pancreatic beta cells
-
Basford, C.L. et al. 2012. The functional and molecular characterisation of human embryonic stem cell-derived insulin-positive cells compared with adult pancreatic beta cells. Diabetologia 55: 358-371.
-
(2012)
Diabetologia
, vol.55
, pp. 358-371
-
-
Basford, C.L.1
-
25
-
-
84856705882
-
INS (GFP/w derived insulin-producing cells
-
Micallef, S.J. et al. 2012. INS (GFP/w derived insulin-producing cells. Diabetologia 55: 694-706.
-
(2012)
Diabetologia
, vol.55
, pp. 694-706
-
-
Micallef, S.J.1
-
26
-
-
84859483446
-
Activin and BMP4 synergistically promote formation of definitive endoderm in human embryonic stem cells
-
Teo, A.K. et al. 2012. Activin and BMP4 synergistically promote formation of definitive endoderm in human embryonic stem cells. Stem Cells 30: 631-642.
-
(2012)
Stem Cells
, vol.30
, pp. 631-642
-
-
Teo, A.K.1
-
27
-
-
0032776833
-
Requirement for Wnt3 in vertebrate axis formation
-
Liu, P. et al. 1999. Requirement for Wnt3 in vertebrate axis formation. Nat. Genet. 22: 361-365.
-
(1999)
Nat. Genet.
, vol.22
, pp. 361-365
-
-
Liu, P.1
-
28
-
-
33750936779
-
Wnt and TGF-beta signaling are required for the induction of an in vitro model of primitive streak formation using embryonic stem cells
-
Gadue, P. et al. 2006. Wnt and TGF-beta signaling are required for the induction of an in vitro model of primitive streak formation using embryonic stem cells. Proc. Natl. Acad. Sci. U. S. A. 103: 16806-16811.
-
(2006)
Proc. Natl. Acad. Sci. U. S. A.
, vol.103
, pp. 16806-16811
-
-
Gadue, P.1
-
29
-
-
77956271471
-
Differentiating embryonic stem cells pass through 'temporal windows' that mark responsiveness to exogenous and paracrine mesendoderm inducing signals
-
Jackson, S.A. et al. 2010. Differentiating embryonic stem cells pass through 'temporal windows' that mark responsiveness to exogenous and paracrine mesendoderm inducing signals. PLoS One 5: e10706.
-
(2010)
PLoS One
, vol.5
-
-
Jackson, S.A.1
-
30
-
-
79958090845
-
A novel chemically directed route for the generation of definitive endoderm from human embryonic stem cells based on inhibition of GSK-3
-
Bone, H.K. et al. 2011. A novel chemically directed route for the generation of definitive endoderm from human embryonic stem cells based on inhibition of GSK-3. J. Cell Sci. 124: 1992-2000.
-
(2011)
J. Cell Sci.
, vol.124
, pp. 1992-2000
-
-
Bone, H.K.1
-
31
-
-
84865156321
-
Molecular pathways controlling pancreas induction
-
McCracken, K.W. & J.M. Wells. 2012. Molecular pathways controlling pancreas induction. Semin. Cell Dev. Biol. 23: 656-662.
-
(2012)
Semin. Cell Dev. Biol.
, vol.23
, pp. 656-662
-
-
McCracken, K.W.1
Wells, J.M.2
-
32
-
-
0034093614
-
Early mouse endoderm is patterned by soluble factors from adjacent germ layers
-
Wells, J.M. & D.A. Melton. 2000. Early mouse endoderm is patterned by soluble factors from adjacent germ layers. Development 127: 1563-1572.
-
(2000)
Development
, vol.127
, pp. 1563-1572
-
-
Wells, J.M.1
Melton, D.A.2
-
33
-
-
29744461931
-
FGF signaling is necessary for establishing gut tube domains along the anterior-posterior axis in vivo
-
Dessimoz, J. et al. 2006. FGF signaling is necessary for establishing gut tube domains along the anterior-posterior axis in vivo. Mech. Dev. 123: 42-55.
-
(2006)
Mech. Dev.
, vol.123
, pp. 42-55
-
-
Dessimoz, J.1
-
34
-
-
0035072545
-
A bipotential precursor population for pancreas and liver within the embryonic endoderm
-
Deutsch, G. et al. 2001. A bipotential precursor population for pancreas and liver within the embryonic endoderm. Development 128: 871-881.
-
(2001)
Development
, vol.128
, pp. 871-881
-
-
Deutsch, G.1
-
35
-
-
0030681247
-
Notochord to endoderm signaling is required for pancreas development
-
Kim, S.K., M. Hebrok & D.A. Melton. 1997. Notochord to endoderm signaling is required for pancreas development. Development 124: 4243-4252.
-
(1997)
Development
, vol.124
, pp. 4243-4252
-
-
Kim, S.K.1
Hebrok, M.2
Melton, D.A.3
-
36
-
-
2642589990
-
Notochord repression of endodermal Sonic hedgehog permits pancreas development
-
Hebrok, M., S.K. Kim & D.A. Melton. 1998. Notochord repression of endodermal Sonic hedgehog permits pancreas development. Genes Dev. 12: 1705-1713.
-
(1998)
Genes Dev.
, vol.12
, pp. 1705-1713
-
-
Hebrok, M.1
Kim, S.K.2
Melton, D.A.3
-
37
-
-
84856745520
-
Retinoic acid signalling during development
-
Rhinn, M. & P. Dolle. 2012. Retinoic acid signalling during development. Development 139: 843-858.
-
(2012)
Development
, vol.139
, pp. 843-858
-
-
Rhinn, M.1
Dolle, P.2
-
38
-
-
23944453381
-
Dorsal pancreas agenesis in retinoic acid-deficient Raldh2 mutant mice
-
Martin, M. et al. 2005. Dorsal pancreas agenesis in retinoic acid-deficient Raldh2 mutant mice. Dev. Biol. 284: 399-411.
-
(2005)
Dev. Biol.
, vol.284
, pp. 399-411
-
-
Martin, M.1
-
39
-
-
0037162287
-
Retinoic acid signaling is required for a critical early step in zebrafish pancreatic development
-
Stafford, D. & V.E. Prince. 2002. Retinoic acid signaling is required for a critical early step in zebrafish pancreatic development. Curr. Biol. 12: 1215-1220.
-
(2002)
Curr. Biol.
, vol.12
, pp. 1215-1220
-
-
Stafford, D.1
Prince, V.E.2
-
40
-
-
5744240610
-
A conserved role for retinoid signaling in vertebrate pancreas development
-
Stafford, D. et al. 2004. A conserved role for retinoid signaling in vertebrate pancreas development. Dev. Genes Evol. 214: 432-441.
-
(2004)
Dev. Genes Evol.
, vol.214
, pp. 432-441
-
-
Stafford, D.1
-
41
-
-
2942542776
-
Retinoic acid signaling is essential for pancreas development and promotes endocrine at the expense of exocrine cell differentiation in Xenopus
-
Chen, Y. et al. 2004. Retinoic acid signaling is essential for pancreas development and promotes endocrine at the expense of exocrine cell differentiation in Xenopus. Dev. Biol. 271: 144-160.
-
(2004)
Dev. Biol.
, vol.271
, pp. 144-160
-
-
Chen, Y.1
-
42
-
-
34547326050
-
Retinoic acid-mediated patterning of the pre-pancreatic endoderm in Xenopus operates via direct and indirect mechanisms
-
Pan, F.C. et al. 2007. Retinoic acid-mediated patterning of the pre-pancreatic endoderm in Xenopus operates via direct and indirect mechanisms. Mech. Dev. 124: 518-531.
-
(2007)
Mech. Dev.
, vol.124
, pp. 518-531
-
-
Pan, F.C.1
-
43
-
-
16244406880
-
Retinoic acid generated by Raldh2 in mesoderm is required for mouse dorsal endodermal pancreas development
-
Molotkov, A., N. Molotkova & G. Duester. 2005. Retinoic acid generated by Raldh2 in mesoderm is required for mouse dorsal endodermal pancreas development. Dev. Dyn. 232: 950-957.
-
(2005)
Dev. Dyn.
, vol.232
, pp. 950-957
-
-
Molotkov, A.1
Molotkova, N.2
Duester, G.3
-
44
-
-
12744279327
-
Retinoic acid induces Pdx1-positive endoderm in differentiating mouse embryonic stem cells
-
Micallef, S.J. et al. 2005. Retinoic acid induces Pdx1-positive endoderm in differentiating mouse embryonic stem cells. Diabetes 54: 301-305.
-
(2005)
Diabetes
, vol.54
, pp. 301-305
-
-
Micallef, S.J.1
-
45
-
-
18444407829
-
Inducing embryonic stem cells to differentiate into pancreatic beta cells by a novel three-step approach with activin A and all-trans retinoic acid
-
Shi, Y. et al. 2005. Inducing embryonic stem cells to differentiate into pancreatic beta cells by a novel three-step approach with activin A and all-trans retinoic acid. Stem Cells 23: 656-662.
-
(2005)
Stem Cells
, vol.23
, pp. 656-662
-
-
Shi, Y.1
-
46
-
-
34547260843
-
Differentiation of mouse embryonic stem cells to insulin-producing cells
-
Schroeder, I.S. et al. 2006. Differentiation of mouse embryonic stem cells to insulin-producing cells. Nat. Protoc. 1: 495-507.
-
(2006)
Nat. Protoc.
, vol.1
, pp. 495-507
-
-
Schroeder, I.S.1
-
47
-
-
33750846133
-
Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells
-
D'Amour, K.A. et al. 2006. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat. Biotechnol. 24: 1392-1401.
-
(2006)
Nat. Biotechnol.
, vol.24
, pp. 1392-1401
-
-
D'Amour, K.A.1
-
48
-
-
34547857040
-
Generation of insulin-producing islet-like clusters from human embryonic stem cells
-
Jiang, J. et al. 2007. Generation of insulin-producing islet-like clusters from human embryonic stem cells. Stem Cells 25: 1940-1953.
-
(2007)
Stem Cells
, vol.25
, pp. 1940-1953
-
-
Jiang, J.1
-
49
-
-
34247898958
-
Directed differentiation of human embryonic stem cells towards a pancreatic cell fate
-
Shim, J.H. et al. 2007. Directed differentiation of human embryonic stem cells towards a pancreatic cell fate. Diabetologia 50: 1228-1238.
-
(2007)
Diabetologia
, vol.50
, pp. 1228-1238
-
-
Shim, J.H.1
-
50
-
-
56549098457
-
In vivo characterization of transplanted human embryonic stem cell-derived pancreatic endocrine islet cells
-
Eshpeter, A. et al. 2008. In vivo characterization of transplanted human embryonic stem cell-derived pancreatic endocrine islet cells. Cell Proliferation 41: 843-858.
-
(2008)
Cell Proliferation
, vol.41
, pp. 843-858
-
-
Eshpeter, A.1
-
51
-
-
58849146524
-
The reversal of hyperglycaemia in diabetic mice using PLGA scaffolds seeded with islet-like cells derived from human embryonic stem cells
-
Mao, G.H. et al. 2009. The reversal of hyperglycaemia in diabetic mice using PLGA scaffolds seeded with islet-like cells derived from human embryonic stem cells. Biomaterials 30: 1706-1714.
-
(2009)
Biomaterials
, vol.30
, pp. 1706-1714
-
-
Mao, G.H.1
-
52
-
-
79961175124
-
Cell-surface markers for the isolation of pancreatic cell types derived from human embryonic stem cells
-
Kelly, O.G. et al. 2011. Cell-surface markers for the isolation of pancreatic cell types derived from human embryonic stem cells. Nat. Biotechnol. 29: 750-756.
-
(2011)
Nat. Biotechnol.
, vol.29
, pp. 750-756
-
-
Kelly, O.G.1
-
53
-
-
84864390303
-
Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice
-
Rezania, A. et al. 2012. Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice. Diabetes 61: 2016-2029.
-
(2012)
Diabetes
, vol.61
, pp. 2016-2029
-
-
Rezania, A.1
-
54
-
-
79951648873
-
Pancreas organogenesis: from bud to plexus to gland
-
Pan, F.C. & C. Wright. 2011. Pancreas organogenesis: from bud to plexus to gland. Dev. Dyn. 240: 530-565.
-
(2011)
Dev. Dyn.
, vol.240
, pp. 530-565
-
-
Pan, F.C.1
Wright, C.2
-
55
-
-
0034652287
-
Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas
-
Gradwohl, G. et al. 2000. Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc. Natl. Acad. Sci. U. S. A. 97: 1607-1611.
-
(2000)
Proc. Natl. Acad. Sci. U. S. A.
, vol.97
, pp. 1607-1611
-
-
Gradwohl, G.1
-
56
-
-
0036340074
-
Direct evidence for the pancreatic lineage: NGN3 +cells are islet progenitors and are distinct from duct progenitors
-
Gu, G., J. Dubauskaite & D.A. Melton. 2002. Direct evidence for the pancreatic lineage: NGN3 +cells are islet progenitors and are distinct from duct progenitors. Development 129: 2447-2457.
-
(2002)
Development
, vol.129
, pp. 2447-2457
-
-
Gu, G.1
Dubauskaite, J.2
Melton, D.A.3
-
57
-
-
55549147549
-
Biphasic Ngn3 expression in the developing pancreas
-
Villasenor, A., D.C. Chong & O. Cleaver. 2008. Biphasic Ngn3 expression in the developing pancreas. Dev. Dyn. 237: 3270-3279.
-
(2008)
Dev. Dyn.
, vol.237
, pp. 3270-3279
-
-
Villasenor, A.1
Chong, D.C.2
Cleaver, O.3
-
58
-
-
79951590737
-
Neurogenin3 initiates stepwise delamination of differentiating endocrine cells during pancreas development
-
Gouzi, M. et al. 2011. Neurogenin3 initiates stepwise delamination of differentiating endocrine cells during pancreas development. Dev. Dyn. 240: 589-604.
-
(2011)
Dev. Dyn.
, vol.240
, pp. 589-604
-
-
Gouzi, M.1
-
59
-
-
84859739760
-
EphB3 marks delaminating endocrine progenitor cells in the developing pancreas
-
Villasenor, A. et al. 2012. EphB3 marks delaminating endocrine progenitor cells in the developing pancreas. Dev. Dyn. 241: 1008-1019.
-
(2012)
Dev. Dyn.
, vol.241
, pp. 1008-1019
-
-
Villasenor, A.1
-
60
-
-
0015446766
-
An ultrastructural analysis of the developing embryonic pancreas
-
Pictet, R.L. et al. 1972. An ultrastructural analysis of the developing embryonic pancreas. Dev. Biol. 29: 436-467.
-
(1972)
Dev. Biol.
, vol.29
, pp. 436-467
-
-
Pictet, R.L.1
-
61
-
-
0034121735
-
Adult insulin- and glucagon-producing cells differentiate from two independent cell lineages
-
Herrera, P.L. 2000. Adult insulin- and glucagon-producing cells differentiate from two independent cell lineages. Development 127: 2317-2322.
-
(2000)
Development
, vol.127
, pp. 2317-2322
-
-
Herrera, P.L.1
-
62
-
-
0033606972
-
Notch signalling controls pancreatic cell differentiation
-
Apelqvist, A. et al. 1999. Notch signalling controls pancreatic cell differentiation. Nature 400: 877-881.
-
(1999)
Nature
, vol.400
, pp. 877-881
-
-
Apelqvist, A.1
-
63
-
-
19244372001
-
Transcription factor hepatocyte nuclear factor 6 regulates pancreatic endocrine cell differentiation and controls expression of the proendocrine gene ngn3
-
Jacquemin, P. et al. 2000. Transcription factor hepatocyte nuclear factor 6 regulates pancreatic endocrine cell differentiation and controls expression of the proendocrine gene ngn3. Mol. Cell Biol. 20: 4445-4454.
-
(2000)
Mol. Cell Biol.
, vol.20
, pp. 4445-4454
-
-
Jacquemin, P.1
-
64
-
-
0033984886
-
Independent development of pancreatic alpha- and beta-cells from neurogenin3-expressing precursors: a role for the notch pathway in repression of premature differentiation
-
Jensen, J. et al. 2000. Independent development of pancreatic alpha- and beta-cells from neurogenin3-expressing precursors: a role for the notch pathway in repression of premature differentiation. Diabetes 49: 163-176.
-
(2000)
Diabetes
, vol.49
, pp. 163-176
-
-
Jensen, J.1
-
65
-
-
0344736673
-
Notch signaling controls multiple steps of pancreatic differentiation
-
Murtaugh, L.C. et al. 2003. Notch signaling controls multiple steps of pancreatic differentiation. Proc. Natl. Acad. Sci. U. S. A. 100: 14920-14925.
-
(2003)
Proc. Natl. Acad. Sci. U. S. A.
, vol.100
, pp. 14920-14925
-
-
Murtaugh, L.C.1
-
66
-
-
4444277786
-
Notch inhibits Ptf1 function and acinar cell differentiation in developing mouse and zebrafish pancreas
-
Esni, F. et al. 2004. Notch inhibits Ptf1 function and acinar cell differentiation in developing mouse and zebrafish pancreas. Development 131: 4213-4224.
-
(2004)
Development
, vol.131
, pp. 4213-4224
-
-
Esni, F.1
-
67
-
-
0346727348
-
Conversion of biliary system to pancreatic tissue in Hes1-deficient mice
-
Sumazaki, R. et al. 2004. Conversion of biliary system to pancreatic tissue in Hes1-deficient mice. Nat. Genet. 36: 83-87.
-
(2004)
Nat. Genet.
, vol.36
, pp. 83-87
-
-
Sumazaki, R.1
-
68
-
-
33745214464
-
Ectopic pancreas formation in Hes1-knockout mice reveals plasticity of endodermal progenitors of the gut, bile duct, and pancreas
-
Fukuda, A. et al. 2006. Ectopic pancreas formation in Hes1-knockout mice reveals plasticity of endodermal progenitors of the gut, bile duct, and pancreas. J. Clin. Invest. 116: 1484-1493.
-
(2006)
J. Clin. Invest.
, vol.116
, pp. 1484-1493
-
-
Fukuda, A.1
-
69
-
-
0029930494
-
Neurogenic genes and vertebrate neurogenesis
-
Lewis, J. 1996. Neurogenic genes and vertebrate neurogenesis. Curr. Opin. Neurobiol. 6: 3-10.
-
(1996)
Curr. Opin. Neurobiol.
, vol.6
, pp. 3-10
-
-
Lewis, J.1
-
71
-
-
0035694459
-
FGF10 is essential for maintaining the proliferative capacity of epithelial progenitor cells during early pancreatic organogenesis
-
Bhushan, A. et al. 2001. FGF10 is essential for maintaining the proliferative capacity of epithelial progenitor cells during early pancreatic organogenesis. Development 128: 5109-5117.
-
(2001)
Development
, vol.128
, pp. 5109-5117
-
-
Bhushan, A.1
-
72
-
-
0141593480
-
FGF10 maintains notch activation, stimulates proliferation, and blocks differentiation of pancreatic epithelial cells
-
Hart, A., S. Papadopoulou & H. Edlund. 2003. FGF10 maintains notch activation, stimulates proliferation, and blocks differentiation of pancreatic epithelial cells. Dev. Dyn. 228: 185-193.
-
(2003)
Dev. Dyn.
, vol.228
, pp. 185-193
-
-
Hart, A.1
Papadopoulou, S.2
Edlund, H.3
-
73
-
-
0344063697
-
FGF10 signaling maintains the pancreatic progenitor cell state revealing a novel role of Notch in organ development
-
Norgaard, G.A., J.N. Jensen & J. Jensen. 2003. FGF10 signaling maintains the pancreatic progenitor cell state revealing a novel role of Notch in organ development. Dev. Biol. 264: 323-338.
-
(2003)
Dev. Biol.
, vol.264
, pp. 323-338
-
-
Norgaard, G.A.1
Jensen, J.N.2
Jensen, J.3
-
74
-
-
31344468846
-
Interplay between FGF10 and Notch signalling is required for the self-renewal of pancreatic progenitors
-
Miralles, F. et al. 2006. Interplay between FGF10 and Notch signalling is required for the self-renewal of pancreatic progenitors. Int. J. Dev. Biol. 50: 17-26.
-
(2006)
Int. J. Dev. Biol.
, vol.50
, pp. 17-26
-
-
Miralles, F.1
-
75
-
-
0032991511
-
Signaling through fibroblast growth factor receptor 2b plays a key role in the development of the exocrine pancreas
-
Miralles, F. et al. 1999. Signaling through fibroblast growth factor receptor 2b plays a key role in the development of the exocrine pancreas. Proc. Natl. Acad. Sci. U. S. A. 96: 6267-6272.
-
(1999)
Proc. Natl. Acad. Sci. U. S. A.
, vol.96
, pp. 6267-6272
-
-
Miralles, F.1
-
76
-
-
0028172289
-
TGF-beta 1 influences the relative development of the exocrine and endocrine pancreas in vitro
-
Sanvito, F. et al. 1994. TGF-beta 1 influences the relative development of the exocrine and endocrine pancreas in vitro. Development 120: 3451-3462.
-
(1994)
Development
, vol.120
, pp. 3451-3462
-
-
Sanvito, F.1
-
77
-
-
0031916664
-
Follistatin regulates the relative proportions of endocrine versus exocrine tissue during pancreatic development
-
Miralles, F., P. Czernichow & R. Scharfmann. 1998. Follistatin regulates the relative proportions of endocrine versus exocrine tissue during pancreatic development. Development 125: 1017-1024.
-
(1998)
Development
, vol.125
, pp. 1017-1024
-
-
Miralles, F.1
Czernichow, P.2
Scharfmann, R.3
-
78
-
-
34247638529
-
TGF-beta isoform signaling regulates secondary transition and mesenchymal-induced endocrine development in the embryonic mouse pancreas
-
Tulachan, S.S. et al. 2007. TGF-beta isoform signaling regulates secondary transition and mesenchymal-induced endocrine development in the embryonic mouse pancreas. Dev. Biol. 305: 508-521.
-
(2007)
Dev. Biol.
, vol.305
, pp. 508-521
-
-
Tulachan, S.S.1
-
79
-
-
84876539588
-
Factors expressed by murine embryonic pancreatic mesenchyme enhance generation of insulin-producing cells from hESCs
-
Guo, T. et al. 2013. Factors expressed by murine embryonic pancreatic mesenchyme enhance generation of insulin-producing cells from hESCs. Diabetes 62: 1581-1592.
-
(2013)
Diabetes
, vol.62
, pp. 1581-1592
-
-
Guo, T.1
-
80
-
-
44749087461
-
Transcription factor expression in the developing human fetal endocrine pancreas
-
Lyttle, B.M. et al. 2008. Transcription factor expression in the developing human fetal endocrine pancreas. Diabetologia 51: 1169-1180.
-
(2008)
Diabetologia
, vol.51
, pp. 1169-1180
-
-
Lyttle, B.M.1
-
81
-
-
84891514946
-
Development of the human pancreas from foregut to endocrine commitment
-
Jennings, R.E. et al. 2013. Development of the human pancreas from foregut to endocrine commitment. Diabetes 62: 3514-3522.
-
(2013)
Diabetes
, vol.62
, pp. 3514-3522
-
-
Jennings, R.E.1
-
82
-
-
33746093870
-
Mutant neurogenin-3 in congenital malabsorptive diarrhea
-
Wang, J. et al. 2006. Mutant neurogenin-3 in congenital malabsorptive diarrhea. N. Engl. J. Med. 355: 270-280.
-
(2006)
N. Engl. J. Med.
, vol.355
, pp. 270-280
-
-
Wang, J.1
-
83
-
-
79953219761
-
Permanent neonatal diabetes and enteric anendocrinosis associated with biallelic mutations in NEUROG3
-
Rubio-Cabezas, O. et al. 2011. Permanent neonatal diabetes and enteric anendocrinosis associated with biallelic mutations in NEUROG3. Diabetes 60: 1349-1353.
-
(2011)
Diabetes
, vol.60
, pp. 1349-1353
-
-
Rubio-Cabezas, O.1
-
84
-
-
0033960256
-
Early pattern of differentiation in the human pancreas
-
Polak, M. et al. 2000. Early pattern of differentiation in the human pancreas. Diabetes 49: 225-232.
-
(2000)
Diabetes
, vol.49
, pp. 225-232
-
-
Polak, M.1
-
85
-
-
70249089375
-
Endocrine cell clustering during human pancreas development
-
Jeon, J. et al. 2009. Endocrine cell clustering during human pancreas development. J. Histochem. Cytochem. 57: 811-824.
-
(2009)
J. Histochem. Cytochem.
, vol.57
, pp. 811-824
-
-
Jeon, J.1
-
86
-
-
2342457712
-
Beta cell differentiation during early human pancreas development
-
Piper, K. et al. 2004. Beta cell differentiation during early human pancreas development. J. Endocrinol. 181: 11-23.
-
(2004)
J. Endocrinol.
, vol.181
, pp. 11-23
-
-
Piper, K.1
-
87
-
-
0026745155
-
The midgestational human fetal pancreas contains cells coexpressing islet hormones
-
De Krijger, R.R. et al. 1992. The midgestational human fetal pancreas contains cells coexpressing islet hormones. Dev Biol. 153: 368-375.
-
(1992)
Dev Biol.
, vol.153
, pp. 368-375
-
-
De Krijger, R.R.1
-
88
-
-
0027987138
-
Pancreatic beta cells express a diverse set of homeobox genes
-
Rudnick, A. et al. 1994. Pancreatic beta cells express a diverse set of homeobox genes. Proc. Natl. Acad. Sci. U. S. A. 91: 12203-12207.
-
(1994)
Proc. Natl. Acad. Sci. U. S. A.
, vol.91
, pp. 12203-12207
-
-
Rudnick, A.1
-
89
-
-
0034524101
-
Homeobox gene Nkx6.1 lies downstream of Nkx2.2 in the major pathway of beta-cell formation in the pancreas
-
Sander, M. et al. 2000. Homeobox gene Nkx6.1 lies downstream of Nkx2.2 in the major pathway of beta-cell formation in the pancreas. Development 127: 5533-5540.
-
(2000)
Development
, vol.127
, pp. 5533-5540
-
-
Sander, M.1
-
90
-
-
84856715292
-
Immunohistochemical characterisation of cells co-producing insulin and glucagon in the developing human pancreas
-
Riedel, M.J. et al. 2012. Immunohistochemical characterisation of cells co-producing insulin and glucagon in the developing human pancreas. Diabetologia 55: 372-381.
-
(2012)
Diabetologia
, vol.55
, pp. 372-381
-
-
Riedel, M.J.1
-
91
-
-
43249122991
-
Stimulation of human and rat islet beta-cell proliferation with retention of function by the homeodomain transcription factor Nkx6.1
-
Schisler, J.C. et al. 2008. Stimulation of human and rat islet beta-cell proliferation with retention of function by the homeodomain transcription factor Nkx6.1. Mol. Cell Biol. 28: 3465-3476.
-
(2008)
Mol. Cell Biol.
, vol.28
, pp. 3465-3476
-
-
Schisler, J.C.1
-
92
-
-
80054997189
-
Transgenic overexpression of the transcription factor Nkx6.1 in beta-cells of mice does not increase beta-cell proliferation, beta-cell mass, or improve glucose clearance
-
Schaffer, A.E. et al. 2011. Transgenic overexpression of the transcription factor Nkx6.1 in beta-cells of mice does not increase beta-cell proliferation, beta-cell mass, or improve glucose clearance. Mol. Endocrinol. 25: 1904-1914.
-
(2011)
Mol. Endocrinol.
, vol.25
, pp. 1904-1914
-
-
Schaffer, A.E.1
-
93
-
-
79955047283
-
Differentiation of human embryonic stem cells into pancreatic endoderm in patterned size-controlled clusters
-
Van Hoof, D. et al. 2011. Differentiation of human embryonic stem cells into pancreatic endoderm in patterned size-controlled clusters. Stem Cell Res. 6: 276-285.
-
(2011)
Stem Cell Res.
, vol.6
, pp. 276-285
-
-
Van Hoof, D.1
-
94
-
-
80755187146
-
Activin, BMP and FGF pathways cooperate to promote endoderm and pancreatic lineage cell differentiation from human embryonic stem cells
-
Xu, X., V.L. Browning & J.S. Odorico. 2011. Activin, BMP and FGF pathways cooperate to promote endoderm and pancreatic lineage cell differentiation from human embryonic stem cells. Mech. Dev. 128: 412-427.
-
(2011)
Mech. Dev.
, vol.128
, pp. 412-427
-
-
Xu, X.1
Browning, V.L.2
Odorico, J.S.3
-
95
-
-
84887940137
-
Enrichment of human embryonic stem cell-derived NKX6.1-expressing pancreatic progenitor cells accelerates the maturation of insulin-secreting cells in vivo
-
Rezania, A. et al. 2013. Enrichment of human embryonic stem cell-derived NKX6.1-expressing pancreatic progenitor cells accelerates the maturation of insulin-secreting cells in vivo. Stem Cells 31: 2432-2442.
-
(2013)
Stem Cells
, vol.31
, pp. 2432-2442
-
-
Rezania, A.1
-
96
-
-
33644765957
-
MafB: an activator of the glucagon gene expressed in developing islha- and beta-cells
-
Artner, I. et al. 2006. MafB: an activator of the glucagon gene expressed in developing islet alpha- and beta-cells. Diabetes 55: 297-304.
-
(2006)
Diabetes
, vol.55
, pp. 297-304
-
-
Artner, I.1
-
97
-
-
77957583357
-
MafA and MafB regulate genes critical to beta-cells in a unique temporal manner
-
Artner, I. et al. 2010. MafA and MafB regulate genes critical to beta-cells in a unique temporal manner. Diabetes 59: 2530-2539.
-
(2010)
Diabetes
, vol.59
, pp. 2530-2539
-
-
Artner, I.1
-
98
-
-
1542297749
-
The MafA transcription factor appears to be responsible for tissue-specific expression of insulin
-
Matsuoka, T.A. et al. 2004. The MafA transcription factor appears to be responsible for tissue-specific expression of insulin. Proc. Natl. Acad. Sci. U. S. A. 101: 2930-2933.
-
(2004)
Proc. Natl. Acad. Sci. U. S. A.
, vol.101
, pp. 2930-2933
-
-
Matsuoka, T.A.1
-
99
-
-
0041970072
-
Members of the large Maf transcription family regulate insulin gene transcription in islet beta cells
-
Matsuoka, T.A. et al. 2003. Members of the large Maf transcription family regulate insulin gene transcription in islet beta cells. Mol. Cell Biol. 23: 6049-6062.
-
(2003)
Mol. Cell Biol.
, vol.23
, pp. 6049-6062
-
-
Matsuoka, T.A.1
-
100
-
-
34447124165
-
MAFA controls genes implicated in insulin biosynthesis and secretion
-
Wang, H. et al. 2007. MAFA controls genes implicated in insulin biosynthesis and secretion. Diabetologia 50: 348-358.
-
(2007)
Diabetologia
, vol.50
, pp. 348-358
-
-
Wang, H.1
-
101
-
-
20344368579
-
MafA is a key regulator of glucose-stimulated insulin secretion
-
Zhang, C. et al. 2005. MafA is a key regulator of glucose-stimulated insulin secretion. Mol. Cell Biol. 25: 4969-4976.
-
(2005)
Mol. Cell Biol.
, vol.25
, pp. 4969-4976
-
-
Zhang, C.1
-
102
-
-
37549021136
-
Global gene expression profiling and histochemical analysis of the developing human fetal pancreas
-
Sarkar, S.A. et al. 2008. Global gene expression profiling and histochemical analysis of the developing human fetal pancreas. Diabetologia 51: 285-297.
-
(2008)
Diabetologia
, vol.51
, pp. 285-297
-
-
Sarkar, S.A.1
-
103
-
-
47649116417
-
Signals from the neural crest regulate beta-cell mass in the pancreas
-
Nekrep, N. et al. 2008. Signals from the neural crest regulate beta-cell mass in the pancreas. Development 135: 2151-2160.
-
(2008)
Development
, vol.135
, pp. 2151-2160
-
-
Nekrep, N.1
-
104
-
-
78650826185
-
Influence and timing of arrival of murine neural crest on pancreatic beta cell development and maturation
-
Plank, J.L. et al. 2011. Influence and timing of arrival of murine neural crest on pancreatic beta cell development and maturation. Dev. Biol. 349: 321-330.
-
(2011)
Dev. Biol.
, vol.349
, pp. 321-330
-
-
Plank, J.L.1
-
105
-
-
84866350357
-
Differentiating neural crest stem cells induce proliferation of cultured rodent islet beta cells
-
Grouwels, G. et al. 2012. Differentiating neural crest stem cells induce proliferation of cultured rodent islet beta cells. Diabetologia 55: 2016-2025.
-
(2012)
Diabetologia
, vol.55
, pp. 2016-2025
-
-
Grouwels, G.1
-
106
-
-
0035913986
-
Induction of pancreatic differentiation by signals from blood vessels
-
Lammert, E., O. Cleaver & D. Melton. 2001. Induction of pancreatic differentiation by signals from blood vessels. Science 294: 564-567.
-
(2001)
Science
, vol.294
, pp. 564-567
-
-
Lammert, E.1
Cleaver, O.2
Melton, D.3
-
107
-
-
1342263524
-
Endothelial cell interactions initiate dorsal pancreas development by selectively inducing the transcription factor Ptf1a
-
Yoshitomi, H. & K.S. Zaret. 2004. Endothelial cell interactions initiate dorsal pancreas development by selectively inducing the transcription factor Ptf1a. Development 131: 807-817.
-
(2004)
Development
, vol.131
, pp. 807-817
-
-
Yoshitomi, H.1
Zaret, K.S.2
-
108
-
-
79955570050
-
Endoderm and mesoderm reciprocal signaling mediated by CXCL12 and CXCR4 regulates the migration of angioblasts and establishes the pancreatic fate
-
Katsumoto, K. & S. Kume. 2011. Endoderm and mesoderm reciprocal signaling mediated by CXCL12 and CXCR4 regulates the migration of angioblasts and establishes the pancreatic fate. Development 138: 1947-1955.
-
(2011)
Development
, vol.138
, pp. 1947-1955
-
-
Katsumoto, K.1
Kume, S.2
-
109
-
-
84883152107
-
The role of CXCL12-CXCR4 signaling pathway in pancreatic development
-
Katsumoto, K. & S. Kume. 2013. The role of CXCL12-CXCR4 signaling pathway in pancreatic development. Theranostics 3: 11-17.
-
(2013)
Theranostics
, vol.3
, pp. 11-17
-
-
Katsumoto, K.1
Kume, S.2
-
110
-
-
33845540482
-
Pancreatic islet production of vascular endothelial growth factor-a is essential for islet vascularization, revascularization, and function
-
Brissova, M. et al. 2006. Pancreatic islet production of vascular endothelial growth factor-a is essential for islet vascularization, revascularization, and function. Diabetes 55: 2974-2985.
-
(2006)
Diabetes
, vol.55
, pp. 2974-2985
-
-
Brissova, M.1
-
111
-
-
33644537403
-
The vascular basement membrane: a niche for insulin gene expression and Beta cell proliferation
-
Nikolova, G. et al. 2006. The vascular basement membrane: a niche for insulin gene expression and Beta cell proliferation. Dev. Cell. 10: 397-405.
-
(2006)
Dev. Cell.
, vol.10
, pp. 397-405
-
-
Nikolova, G.1
-
112
-
-
34548507937
-
Directed differentiation of human embryonic stem cells into the pancreatic endocrine lineage
-
Phillips, B.W. et al. 2007. Directed differentiation of human embryonic stem cells into the pancreatic endocrine lineage. Stem Cells Dev. 16: 561-578.
-
(2007)
Stem Cells Dev.
, vol.16
, pp. 561-578
-
-
Phillips, B.W.1
-
113
-
-
78751502673
-
Production of functional glucagon-secreting alpha-cells from human embryonic stem cells
-
Rezania, A. et al. 2011. Production of functional glucagon-secreting alpha-cells from human embryonic stem cells. Diabetes 60: 239-247.
-
(2011)
Diabetes
, vol.60
, pp. 239-247
-
-
Rezania, A.1
-
114
-
-
41849151748
-
Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo
-
Kroon, E. et al. 2008. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat. Biotechnol. 26: 443-452.
-
(2008)
Nat. Biotechnol.
, vol.26
, pp. 443-452
-
-
Kroon, E.1
-
115
-
-
34247353657
-
In vitro derivation of functional insulin-producing cells from human embryonic stem cells
-
Jiang, W. et al. 2007. In vitro derivation of functional insulin-producing cells from human embryonic stem cells. Cell Res. 17: 333-344.
-
(2007)
Cell Res.
, vol.17
, pp. 333-344
-
-
Jiang, W.1
-
116
-
-
84862059081
-
A scalable system for production of functional pancreatic progenitors from human embryonic stem cells
-
Schulz, T.C. et al. 2012. A scalable system for production of functional pancreatic progenitors from human embryonic stem cells. PLoS One 7: e37004.
-
(2012)
PLoS One
, vol.7
-
-
Schulz, T.C.1
-
117
-
-
79551686425
-
Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro
-
Spence, J.R. et al. 2011. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470: 105-109.
-
(2011)
Nature
, vol.470
, pp. 105-109
-
-
Spence, J.R.1
-
118
-
-
23844475078
-
Generation of Rx+/Pax6+ neural retinal precursors from embryonic stem cells
-
Ikeda, H. et al. 2005. Generation of Rx+/Pax6+ neural retinal precursors from embryonic stem cells. Proc. Natl. Acad. Sci. U. S. A. 102: 11331-11336.
-
(2005)
Proc. Natl. Acad. Sci. U. S. A.
, vol.102
, pp. 11331-11336
-
-
Ikeda, H.1
-
119
-
-
79953749322
-
Self-organizing optic-cup morphogenesis in three-dimensional culture
-
Eiraku, M. et al. 2011. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472: 51-56.
-
(2011)
Nature
, vol.472
, pp. 51-56
-
-
Eiraku, M.1
-
120
-
-
82555187011
-
Self-formation of functional adenohypophysis in three-dimensional culture
-
Suga, H. et al. 2011. Self-formation of functional adenohypophysis in three-dimensional culture. Nature 480: 57-62.
-
(2011)
Nature
, vol.480
, pp. 57-62
-
-
Suga, H.1
-
121
-
-
84881184980
-
Vascularized and functional human liver from an iPSC-derived organ bud transplant
-
Takebe, T. et al. 2013. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 499: 481-484.
-
(2013)
Nature
, vol.499
, pp. 481-484
-
-
Takebe, T.1
|