메뉴 건너뛰기




Volumn 1311, Issue 1, 2014, Pages 124-137

Generation of β cells from human pluripotent stem cells: Are we there yet?

Author keywords

Diabetes; Differentiation; Endoderm; Pancreas; Pluripotent stem cell; cell

Indexed keywords

ARTICLE; CELL DIFFERENTIATION; CELL STRUCTURE; CELL THERAPY; ENDODERM; ENDOTHELIUM; HUMAN; IN VITRO STUDY; INSULIN DEPENDENT DIABETES MELLITUS; NEURAL CREST; NONHUMAN; PANCREAS ISLET BETA CELL; PLURIPOTENT STEM CELL; STEM CELL;

EID: 84898446784     PISSN: 00778923     EISSN: 17496632     Source Type: Book Series    
DOI: 10.1111/nyas.12369     Document Type: Article
Times cited : (42)

References (121)
  • 1
    • 0032491416 scopus 로고    scopus 로고
    • Embryonic stem cell lines derived from human blastocysts
    • Thomson, J.A. et al. 1998. Embryonic stem cell lines derived from human blastocysts. Science 282: 1145-1147.
    • (1998) Science , vol.282 , pp. 1145-1147
    • Thomson, J.A.1
  • 2
    • 0034101804 scopus 로고    scopus 로고
    • Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro
    • Reubinoff, B.E. et al. 2000. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat. Biotechnol. 18: 399-404.
    • (2000) Nat. Biotechnol. , vol.18 , pp. 399-404
    • Reubinoff, B.E.1
  • 3
    • 36248966518 scopus 로고    scopus 로고
    • Induction of pluripotent stem cells from adult human fibroblasts by defined factors
    • Takahashi, K. et al. 2007. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131: 861-872.
    • (2007) Cell , vol.131 , pp. 861-872
    • Takahashi, K.1
  • 4
    • 27644504639 scopus 로고    scopus 로고
    • Characterization of mesendoderm: a diverging point of the definitive endoderm and mesoderm in embryonic stem cell differentiation culture
    • Tada, S. et al. 2005. Characterization of mesendoderm: a diverging point of the definitive endoderm and mesoderm in embryonic stem cell differentiation culture. Development 132: 4363-4374.
    • (2005) Development , vol.132 , pp. 4363-4374
    • Tada, S.1
  • 5
    • 0023627388 scopus 로고
    • Cell fate, morphogenetic movement and population kinetics of embryonic endoderm at the time of germ layer formation in the mouse
    • Lawson, K.A. & R.A. Pedersen. 1987. Cell fate, morphogenetic movement and population kinetics of embryonic endoderm at the time of germ layer formation in the mouse. Development 101: 627-652.
    • (1987) Development , vol.101 , pp. 627-652
    • Lawson, K.A.1    Pedersen, R.A.2
  • 6
    • 0025942116 scopus 로고
    • Clonal analysis of epiblast fate during germ layer formation in the mouse embryo
    • Lawson, K.A., J.J. Meneses & R.A. Pedersen. 1991. Clonal analysis of epiblast fate during germ layer formation in the mouse embryo. Development 113: 891-911.
    • (1991) Development , vol.113 , pp. 891-911
    • Lawson, K.A.1    Meneses, J.J.2    Pedersen, R.A.3
  • 7
    • 0025054992 scopus 로고
    • Expression pattern of the mouse T gene and its role in mesoderm formation
    • Wilkinson, D.G., S. Bhatt & B.G. Herrmann. 1990. Expression pattern of the mouse T gene and its role in mesoderm formation. Nature 343: 657-659.
    • (1990) Nature , vol.343 , pp. 657-659
    • Wilkinson, D.G.1    Bhatt, S.2    Herrmann, B.G.3
  • 8
    • 0032821417 scopus 로고    scopus 로고
    • Mml, a mouse Mix-like gene expressed in the primitive streak
    • Pearce, J.J. & M.J. Evans. 1999. Mml, a mouse Mix-like gene expressed in the primitive streak. Mech. Dev. 87: 189-192.
    • (1999) Mech. Dev. , vol.87 , pp. 189-192
    • Pearce, J.J.1    Evans, M.J.2
  • 9
    • 0033662267 scopus 로고    scopus 로고
    • Cloning, expression analysis, and chromosomal localization of murine and human homologues of a Xenopus mix gene
    • Robb, L. et al. 2000. Cloning, expression analysis, and chromosomal localization of murine and human homologues of a Xenopus mix gene. Dev. Dyn. 219: 497-504.
    • (2000) Dev. Dyn. , vol.219 , pp. 497-504
    • Robb, L.1
  • 10
    • 0026649645 scopus 로고
    • Gastrulation in the mouse: the role of the homeobox gene goosecoid
    • Blum, M. et al. 1992. Gastrulation in the mouse: the role of the homeobox gene goosecoid. Cell 69: 1097-1106.
    • (1992) Cell , vol.69 , pp. 1097-1106
    • Blum, M.1
  • 11
    • 0027425136 scopus 로고
    • The formation and maintenance of the definitive endoderm lineage in the mouse: involvement of HNF3/forkhead proteins
    • Ang, S.L. et al. 1993. The formation and maintenance of the definitive endoderm lineage in the mouse: involvement of HNF3/forkhead proteins. Development 119: 1301-1315.
    • (1993) Development , vol.119 , pp. 1301-1315
    • Ang, S.L.1
  • 12
    • 0027318791 scopus 로고
    • Differential expression of multiple fork head related genes during gastrulation and axial pattern formation in the mouse embryo
    • Sasaki, H. & B.L. Hogan. 1993. Differential expression of multiple fork head related genes during gastrulation and axial pattern formation in the mouse embryo. Development 118: 47-59.
    • (1993) Development , vol.118 , pp. 47-59
    • Sasaki, H.1    Hogan, B.L.2
  • 13
    • 0030613759 scopus 로고    scopus 로고
    • Xsox17alpha and -beta mediate endoderm formation in Xenopus
    • Hudson, C. et al. 1997. Xsox17alpha and -beta mediate endoderm formation in Xenopus. Cell 91: 397-405.
    • (1997) Cell , vol.91 , pp. 397-405
    • Hudson, C.1
  • 14
    • 28644442419 scopus 로고    scopus 로고
    • Induction and monitoring of definitive and visceral endoderm differentiation of mouse ES cells
    • Yasunaga, M. et al. 2005. Induction and monitoring of definitive and visceral endoderm differentiation of mouse ES cells. Nat. Biotechnol. 23: 1542-1550.
    • (2005) Nat. Biotechnol. , vol.23 , pp. 1542-1550
    • Yasunaga, M.1
  • 15
    • 79952397747 scopus 로고    scopus 로고
    • Generation of anterior foregut endoderm from human embryonic and induced pluripotent stem cells
    • Green, M.D. et al. 2011. Generation of anterior foregut endoderm from human embryonic and induced pluripotent stem cells. Nat. Biotechnol. 29: 267-272.
    • (2011) Nat. Biotechnol. , vol.29 , pp. 267-272
    • Green, M.D.1
  • 16
    • 34047181087 scopus 로고    scopus 로고
    • Molecular basis of vertebrate endoderm development
    • Zorn, A.M. & J.M. Wells. 2007. Molecular basis of vertebrate endoderm development. Int. Rev. Cytol. 259: 49-111.
    • (2007) Int. Rev. Cytol. , vol.259 , pp. 49-111
    • Zorn, A.M.1    Wells, J.M.2
  • 17
    • 0041854281 scopus 로고    scopus 로고
    • Control of early anterior-posterior patterning in the mouse embryo by TGF-beta signalling
    • discussion 1357.
    • Robertson, E.J. et al. 2003. Control of early anterior-posterior patterning in the mouse embryo by TGF-beta signalling. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358: 1351-1357; discussion 1357.
    • (2003) Philos. Trans. R. Soc. Lond. B Biol. Sci. , vol.358 , pp. 1351-1357
    • Robertson, E.J.1
  • 18
    • 2342424743 scopus 로고    scopus 로고
    • Development of definitive endoderm from embryonic stem cells in culture
    • Kubo, A. et al. 2004. Development of definitive endoderm from embryonic stem cells in culture. Development 131: 1651-1662.
    • (2004) Development , vol.131 , pp. 1651-1662
    • Kubo, A.1
  • 19
    • 33845996144 scopus 로고    scopus 로고
    • Activin a efficiently specifies definitive endoderm from human embryonic stem cells only when phosphatidylinositol 3-kinase signaling is suppressed
    • McLean, A.B. et al. 2007. Activin a efficiently specifies definitive endoderm from human embryonic stem cells only when phosphatidylinositol 3-kinase signaling is suppressed. Stem Cells 25: 29-38.
    • (2007) Stem Cells , vol.25 , pp. 29-38
    • McLean, A.B.1
  • 20
    • 64149118087 scopus 로고    scopus 로고
    • Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells
    • Zhang, D. et al. 2009. Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells. Cell Res. 19: 429-438.
    • (2009) Cell Res. , vol.19 , pp. 429-438
    • Zhang, D.1
  • 21
    • 62949210744 scopus 로고    scopus 로고
    • Small molecules efficiently direct endodermal differentiation of mouse and human embryonic stem cells
    • Borowiak, M. et al. 2009. Small molecules efficiently direct endodermal differentiation of mouse and human embryonic stem cells. Cell Stem Cell 4: 348-358.
    • (2009) Cell Stem Cell , vol.4 , pp. 348-358
    • Borowiak, M.1
  • 22
    • 0029149656 scopus 로고
    • Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse
    • Winnier, G. et al. 1995. Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev. 9: 2105-2116.
    • (1995) Genes Dev. , vol.9 , pp. 2105-2116
    • Winnier, G.1
  • 23
    • 79551580013 scopus 로고    scopus 로고
    • Stage-specific signaling through TGFbeta family members and WNT regulates patterning and pancreatic specification of human pluripotent stem cells
    • Nostro, M.C. et al. 2011. Stage-specific signaling through TGFbeta family members and WNT regulates patterning and pancreatic specification of human pluripotent stem cells. Development 138: 861-871.
    • (2011) Development , vol.138 , pp. 861-871
    • Nostro, M.C.1
  • 24
    • 84856696056 scopus 로고    scopus 로고
    • The functional and molecular characterisation of human embryonic stem cell-derived insulin-positive cells compared with adult pancreatic beta cells
    • Basford, C.L. et al. 2012. The functional and molecular characterisation of human embryonic stem cell-derived insulin-positive cells compared with adult pancreatic beta cells. Diabetologia 55: 358-371.
    • (2012) Diabetologia , vol.55 , pp. 358-371
    • Basford, C.L.1
  • 25
    • 84856705882 scopus 로고    scopus 로고
    • INS (GFP/w derived insulin-producing cells
    • Micallef, S.J. et al. 2012. INS (GFP/w derived insulin-producing cells. Diabetologia 55: 694-706.
    • (2012) Diabetologia , vol.55 , pp. 694-706
    • Micallef, S.J.1
  • 26
    • 84859483446 scopus 로고    scopus 로고
    • Activin and BMP4 synergistically promote formation of definitive endoderm in human embryonic stem cells
    • Teo, A.K. et al. 2012. Activin and BMP4 synergistically promote formation of definitive endoderm in human embryonic stem cells. Stem Cells 30: 631-642.
    • (2012) Stem Cells , vol.30 , pp. 631-642
    • Teo, A.K.1
  • 27
    • 0032776833 scopus 로고    scopus 로고
    • Requirement for Wnt3 in vertebrate axis formation
    • Liu, P. et al. 1999. Requirement for Wnt3 in vertebrate axis formation. Nat. Genet. 22: 361-365.
    • (1999) Nat. Genet. , vol.22 , pp. 361-365
    • Liu, P.1
  • 28
    • 33750936779 scopus 로고    scopus 로고
    • Wnt and TGF-beta signaling are required for the induction of an in vitro model of primitive streak formation using embryonic stem cells
    • Gadue, P. et al. 2006. Wnt and TGF-beta signaling are required for the induction of an in vitro model of primitive streak formation using embryonic stem cells. Proc. Natl. Acad. Sci. U. S. A. 103: 16806-16811.
    • (2006) Proc. Natl. Acad. Sci. U. S. A. , vol.103 , pp. 16806-16811
    • Gadue, P.1
  • 29
    • 77956271471 scopus 로고    scopus 로고
    • Differentiating embryonic stem cells pass through 'temporal windows' that mark responsiveness to exogenous and paracrine mesendoderm inducing signals
    • Jackson, S.A. et al. 2010. Differentiating embryonic stem cells pass through 'temporal windows' that mark responsiveness to exogenous and paracrine mesendoderm inducing signals. PLoS One 5: e10706.
    • (2010) PLoS One , vol.5
    • Jackson, S.A.1
  • 30
    • 79958090845 scopus 로고    scopus 로고
    • A novel chemically directed route for the generation of definitive endoderm from human embryonic stem cells based on inhibition of GSK-3
    • Bone, H.K. et al. 2011. A novel chemically directed route for the generation of definitive endoderm from human embryonic stem cells based on inhibition of GSK-3. J. Cell Sci. 124: 1992-2000.
    • (2011) J. Cell Sci. , vol.124 , pp. 1992-2000
    • Bone, H.K.1
  • 31
    • 84865156321 scopus 로고    scopus 로고
    • Molecular pathways controlling pancreas induction
    • McCracken, K.W. & J.M. Wells. 2012. Molecular pathways controlling pancreas induction. Semin. Cell Dev. Biol. 23: 656-662.
    • (2012) Semin. Cell Dev. Biol. , vol.23 , pp. 656-662
    • McCracken, K.W.1    Wells, J.M.2
  • 32
    • 0034093614 scopus 로고    scopus 로고
    • Early mouse endoderm is patterned by soluble factors from adjacent germ layers
    • Wells, J.M. & D.A. Melton. 2000. Early mouse endoderm is patterned by soluble factors from adjacent germ layers. Development 127: 1563-1572.
    • (2000) Development , vol.127 , pp. 1563-1572
    • Wells, J.M.1    Melton, D.A.2
  • 33
    • 29744461931 scopus 로고    scopus 로고
    • FGF signaling is necessary for establishing gut tube domains along the anterior-posterior axis in vivo
    • Dessimoz, J. et al. 2006. FGF signaling is necessary for establishing gut tube domains along the anterior-posterior axis in vivo. Mech. Dev. 123: 42-55.
    • (2006) Mech. Dev. , vol.123 , pp. 42-55
    • Dessimoz, J.1
  • 34
    • 0035072545 scopus 로고    scopus 로고
    • A bipotential precursor population for pancreas and liver within the embryonic endoderm
    • Deutsch, G. et al. 2001. A bipotential precursor population for pancreas and liver within the embryonic endoderm. Development 128: 871-881.
    • (2001) Development , vol.128 , pp. 871-881
    • Deutsch, G.1
  • 35
    • 0030681247 scopus 로고    scopus 로고
    • Notochord to endoderm signaling is required for pancreas development
    • Kim, S.K., M. Hebrok & D.A. Melton. 1997. Notochord to endoderm signaling is required for pancreas development. Development 124: 4243-4252.
    • (1997) Development , vol.124 , pp. 4243-4252
    • Kim, S.K.1    Hebrok, M.2    Melton, D.A.3
  • 36
    • 2642589990 scopus 로고    scopus 로고
    • Notochord repression of endodermal Sonic hedgehog permits pancreas development
    • Hebrok, M., S.K. Kim & D.A. Melton. 1998. Notochord repression of endodermal Sonic hedgehog permits pancreas development. Genes Dev. 12: 1705-1713.
    • (1998) Genes Dev. , vol.12 , pp. 1705-1713
    • Hebrok, M.1    Kim, S.K.2    Melton, D.A.3
  • 37
    • 84856745520 scopus 로고    scopus 로고
    • Retinoic acid signalling during development
    • Rhinn, M. & P. Dolle. 2012. Retinoic acid signalling during development. Development 139: 843-858.
    • (2012) Development , vol.139 , pp. 843-858
    • Rhinn, M.1    Dolle, P.2
  • 38
    • 23944453381 scopus 로고    scopus 로고
    • Dorsal pancreas agenesis in retinoic acid-deficient Raldh2 mutant mice
    • Martin, M. et al. 2005. Dorsal pancreas agenesis in retinoic acid-deficient Raldh2 mutant mice. Dev. Biol. 284: 399-411.
    • (2005) Dev. Biol. , vol.284 , pp. 399-411
    • Martin, M.1
  • 39
    • 0037162287 scopus 로고    scopus 로고
    • Retinoic acid signaling is required for a critical early step in zebrafish pancreatic development
    • Stafford, D. & V.E. Prince. 2002. Retinoic acid signaling is required for a critical early step in zebrafish pancreatic development. Curr. Biol. 12: 1215-1220.
    • (2002) Curr. Biol. , vol.12 , pp. 1215-1220
    • Stafford, D.1    Prince, V.E.2
  • 40
    • 5744240610 scopus 로고    scopus 로고
    • A conserved role for retinoid signaling in vertebrate pancreas development
    • Stafford, D. et al. 2004. A conserved role for retinoid signaling in vertebrate pancreas development. Dev. Genes Evol. 214: 432-441.
    • (2004) Dev. Genes Evol. , vol.214 , pp. 432-441
    • Stafford, D.1
  • 41
    • 2942542776 scopus 로고    scopus 로고
    • Retinoic acid signaling is essential for pancreas development and promotes endocrine at the expense of exocrine cell differentiation in Xenopus
    • Chen, Y. et al. 2004. Retinoic acid signaling is essential for pancreas development and promotes endocrine at the expense of exocrine cell differentiation in Xenopus. Dev. Biol. 271: 144-160.
    • (2004) Dev. Biol. , vol.271 , pp. 144-160
    • Chen, Y.1
  • 42
    • 34547326050 scopus 로고    scopus 로고
    • Retinoic acid-mediated patterning of the pre-pancreatic endoderm in Xenopus operates via direct and indirect mechanisms
    • Pan, F.C. et al. 2007. Retinoic acid-mediated patterning of the pre-pancreatic endoderm in Xenopus operates via direct and indirect mechanisms. Mech. Dev. 124: 518-531.
    • (2007) Mech. Dev. , vol.124 , pp. 518-531
    • Pan, F.C.1
  • 43
    • 16244406880 scopus 로고    scopus 로고
    • Retinoic acid generated by Raldh2 in mesoderm is required for mouse dorsal endodermal pancreas development
    • Molotkov, A., N. Molotkova & G. Duester. 2005. Retinoic acid generated by Raldh2 in mesoderm is required for mouse dorsal endodermal pancreas development. Dev. Dyn. 232: 950-957.
    • (2005) Dev. Dyn. , vol.232 , pp. 950-957
    • Molotkov, A.1    Molotkova, N.2    Duester, G.3
  • 44
    • 12744279327 scopus 로고    scopus 로고
    • Retinoic acid induces Pdx1-positive endoderm in differentiating mouse embryonic stem cells
    • Micallef, S.J. et al. 2005. Retinoic acid induces Pdx1-positive endoderm in differentiating mouse embryonic stem cells. Diabetes 54: 301-305.
    • (2005) Diabetes , vol.54 , pp. 301-305
    • Micallef, S.J.1
  • 45
    • 18444407829 scopus 로고    scopus 로고
    • Inducing embryonic stem cells to differentiate into pancreatic beta cells by a novel three-step approach with activin A and all-trans retinoic acid
    • Shi, Y. et al. 2005. Inducing embryonic stem cells to differentiate into pancreatic beta cells by a novel three-step approach with activin A and all-trans retinoic acid. Stem Cells 23: 656-662.
    • (2005) Stem Cells , vol.23 , pp. 656-662
    • Shi, Y.1
  • 46
    • 34547260843 scopus 로고    scopus 로고
    • Differentiation of mouse embryonic stem cells to insulin-producing cells
    • Schroeder, I.S. et al. 2006. Differentiation of mouse embryonic stem cells to insulin-producing cells. Nat. Protoc. 1: 495-507.
    • (2006) Nat. Protoc. , vol.1 , pp. 495-507
    • Schroeder, I.S.1
  • 47
    • 33750846133 scopus 로고    scopus 로고
    • Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells
    • D'Amour, K.A. et al. 2006. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat. Biotechnol. 24: 1392-1401.
    • (2006) Nat. Biotechnol. , vol.24 , pp. 1392-1401
    • D'Amour, K.A.1
  • 48
    • 34547857040 scopus 로고    scopus 로고
    • Generation of insulin-producing islet-like clusters from human embryonic stem cells
    • Jiang, J. et al. 2007. Generation of insulin-producing islet-like clusters from human embryonic stem cells. Stem Cells 25: 1940-1953.
    • (2007) Stem Cells , vol.25 , pp. 1940-1953
    • Jiang, J.1
  • 49
    • 34247898958 scopus 로고    scopus 로고
    • Directed differentiation of human embryonic stem cells towards a pancreatic cell fate
    • Shim, J.H. et al. 2007. Directed differentiation of human embryonic stem cells towards a pancreatic cell fate. Diabetologia 50: 1228-1238.
    • (2007) Diabetologia , vol.50 , pp. 1228-1238
    • Shim, J.H.1
  • 50
    • 56549098457 scopus 로고    scopus 로고
    • In vivo characterization of transplanted human embryonic stem cell-derived pancreatic endocrine islet cells
    • Eshpeter, A. et al. 2008. In vivo characterization of transplanted human embryonic stem cell-derived pancreatic endocrine islet cells. Cell Proliferation 41: 843-858.
    • (2008) Cell Proliferation , vol.41 , pp. 843-858
    • Eshpeter, A.1
  • 51
    • 58849146524 scopus 로고    scopus 로고
    • The reversal of hyperglycaemia in diabetic mice using PLGA scaffolds seeded with islet-like cells derived from human embryonic stem cells
    • Mao, G.H. et al. 2009. The reversal of hyperglycaemia in diabetic mice using PLGA scaffolds seeded with islet-like cells derived from human embryonic stem cells. Biomaterials 30: 1706-1714.
    • (2009) Biomaterials , vol.30 , pp. 1706-1714
    • Mao, G.H.1
  • 52
    • 79961175124 scopus 로고    scopus 로고
    • Cell-surface markers for the isolation of pancreatic cell types derived from human embryonic stem cells
    • Kelly, O.G. et al. 2011. Cell-surface markers for the isolation of pancreatic cell types derived from human embryonic stem cells. Nat. Biotechnol. 29: 750-756.
    • (2011) Nat. Biotechnol. , vol.29 , pp. 750-756
    • Kelly, O.G.1
  • 53
    • 84864390303 scopus 로고    scopus 로고
    • Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice
    • Rezania, A. et al. 2012. Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice. Diabetes 61: 2016-2029.
    • (2012) Diabetes , vol.61 , pp. 2016-2029
    • Rezania, A.1
  • 54
    • 79951648873 scopus 로고    scopus 로고
    • Pancreas organogenesis: from bud to plexus to gland
    • Pan, F.C. & C. Wright. 2011. Pancreas organogenesis: from bud to plexus to gland. Dev. Dyn. 240: 530-565.
    • (2011) Dev. Dyn. , vol.240 , pp. 530-565
    • Pan, F.C.1    Wright, C.2
  • 55
    • 0034652287 scopus 로고    scopus 로고
    • Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas
    • Gradwohl, G. et al. 2000. Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc. Natl. Acad. Sci. U. S. A. 97: 1607-1611.
    • (2000) Proc. Natl. Acad. Sci. U. S. A. , vol.97 , pp. 1607-1611
    • Gradwohl, G.1
  • 56
    • 0036340074 scopus 로고    scopus 로고
    • Direct evidence for the pancreatic lineage: NGN3 +cells are islet progenitors and are distinct from duct progenitors
    • Gu, G., J. Dubauskaite & D.A. Melton. 2002. Direct evidence for the pancreatic lineage: NGN3 +cells are islet progenitors and are distinct from duct progenitors. Development 129: 2447-2457.
    • (2002) Development , vol.129 , pp. 2447-2457
    • Gu, G.1    Dubauskaite, J.2    Melton, D.A.3
  • 57
    • 55549147549 scopus 로고    scopus 로고
    • Biphasic Ngn3 expression in the developing pancreas
    • Villasenor, A., D.C. Chong & O. Cleaver. 2008. Biphasic Ngn3 expression in the developing pancreas. Dev. Dyn. 237: 3270-3279.
    • (2008) Dev. Dyn. , vol.237 , pp. 3270-3279
    • Villasenor, A.1    Chong, D.C.2    Cleaver, O.3
  • 58
    • 79951590737 scopus 로고    scopus 로고
    • Neurogenin3 initiates stepwise delamination of differentiating endocrine cells during pancreas development
    • Gouzi, M. et al. 2011. Neurogenin3 initiates stepwise delamination of differentiating endocrine cells during pancreas development. Dev. Dyn. 240: 589-604.
    • (2011) Dev. Dyn. , vol.240 , pp. 589-604
    • Gouzi, M.1
  • 59
    • 84859739760 scopus 로고    scopus 로고
    • EphB3 marks delaminating endocrine progenitor cells in the developing pancreas
    • Villasenor, A. et al. 2012. EphB3 marks delaminating endocrine progenitor cells in the developing pancreas. Dev. Dyn. 241: 1008-1019.
    • (2012) Dev. Dyn. , vol.241 , pp. 1008-1019
    • Villasenor, A.1
  • 60
    • 0015446766 scopus 로고
    • An ultrastructural analysis of the developing embryonic pancreas
    • Pictet, R.L. et al. 1972. An ultrastructural analysis of the developing embryonic pancreas. Dev. Biol. 29: 436-467.
    • (1972) Dev. Biol. , vol.29 , pp. 436-467
    • Pictet, R.L.1
  • 61
    • 0034121735 scopus 로고    scopus 로고
    • Adult insulin- and glucagon-producing cells differentiate from two independent cell lineages
    • Herrera, P.L. 2000. Adult insulin- and glucagon-producing cells differentiate from two independent cell lineages. Development 127: 2317-2322.
    • (2000) Development , vol.127 , pp. 2317-2322
    • Herrera, P.L.1
  • 62
    • 0033606972 scopus 로고    scopus 로고
    • Notch signalling controls pancreatic cell differentiation
    • Apelqvist, A. et al. 1999. Notch signalling controls pancreatic cell differentiation. Nature 400: 877-881.
    • (1999) Nature , vol.400 , pp. 877-881
    • Apelqvist, A.1
  • 63
    • 19244372001 scopus 로고    scopus 로고
    • Transcription factor hepatocyte nuclear factor 6 regulates pancreatic endocrine cell differentiation and controls expression of the proendocrine gene ngn3
    • Jacquemin, P. et al. 2000. Transcription factor hepatocyte nuclear factor 6 regulates pancreatic endocrine cell differentiation and controls expression of the proendocrine gene ngn3. Mol. Cell Biol. 20: 4445-4454.
    • (2000) Mol. Cell Biol. , vol.20 , pp. 4445-4454
    • Jacquemin, P.1
  • 64
    • 0033984886 scopus 로고    scopus 로고
    • Independent development of pancreatic alpha- and beta-cells from neurogenin3-expressing precursors: a role for the notch pathway in repression of premature differentiation
    • Jensen, J. et al. 2000. Independent development of pancreatic alpha- and beta-cells from neurogenin3-expressing precursors: a role for the notch pathway in repression of premature differentiation. Diabetes 49: 163-176.
    • (2000) Diabetes , vol.49 , pp. 163-176
    • Jensen, J.1
  • 65
    • 0344736673 scopus 로고    scopus 로고
    • Notch signaling controls multiple steps of pancreatic differentiation
    • Murtaugh, L.C. et al. 2003. Notch signaling controls multiple steps of pancreatic differentiation. Proc. Natl. Acad. Sci. U. S. A. 100: 14920-14925.
    • (2003) Proc. Natl. Acad. Sci. U. S. A. , vol.100 , pp. 14920-14925
    • Murtaugh, L.C.1
  • 66
    • 4444277786 scopus 로고    scopus 로고
    • Notch inhibits Ptf1 function and acinar cell differentiation in developing mouse and zebrafish pancreas
    • Esni, F. et al. 2004. Notch inhibits Ptf1 function and acinar cell differentiation in developing mouse and zebrafish pancreas. Development 131: 4213-4224.
    • (2004) Development , vol.131 , pp. 4213-4224
    • Esni, F.1
  • 67
    • 0346727348 scopus 로고    scopus 로고
    • Conversion of biliary system to pancreatic tissue in Hes1-deficient mice
    • Sumazaki, R. et al. 2004. Conversion of biliary system to pancreatic tissue in Hes1-deficient mice. Nat. Genet. 36: 83-87.
    • (2004) Nat. Genet. , vol.36 , pp. 83-87
    • Sumazaki, R.1
  • 68
    • 33745214464 scopus 로고    scopus 로고
    • Ectopic pancreas formation in Hes1-knockout mice reveals plasticity of endodermal progenitors of the gut, bile duct, and pancreas
    • Fukuda, A. et al. 2006. Ectopic pancreas formation in Hes1-knockout mice reveals plasticity of endodermal progenitors of the gut, bile duct, and pancreas. J. Clin. Invest. 116: 1484-1493.
    • (2006) J. Clin. Invest. , vol.116 , pp. 1484-1493
    • Fukuda, A.1
  • 69
    • 0029930494 scopus 로고    scopus 로고
    • Neurogenic genes and vertebrate neurogenesis
    • Lewis, J. 1996. Neurogenic genes and vertebrate neurogenesis. Curr. Opin. Neurobiol. 6: 3-10.
    • (1996) Curr. Opin. Neurobiol. , vol.6 , pp. 3-10
    • Lewis, J.1
  • 71
    • 0035694459 scopus 로고    scopus 로고
    • FGF10 is essential for maintaining the proliferative capacity of epithelial progenitor cells during early pancreatic organogenesis
    • Bhushan, A. et al. 2001. FGF10 is essential for maintaining the proliferative capacity of epithelial progenitor cells during early pancreatic organogenesis. Development 128: 5109-5117.
    • (2001) Development , vol.128 , pp. 5109-5117
    • Bhushan, A.1
  • 72
    • 0141593480 scopus 로고    scopus 로고
    • FGF10 maintains notch activation, stimulates proliferation, and blocks differentiation of pancreatic epithelial cells
    • Hart, A., S. Papadopoulou & H. Edlund. 2003. FGF10 maintains notch activation, stimulates proliferation, and blocks differentiation of pancreatic epithelial cells. Dev. Dyn. 228: 185-193.
    • (2003) Dev. Dyn. , vol.228 , pp. 185-193
    • Hart, A.1    Papadopoulou, S.2    Edlund, H.3
  • 73
    • 0344063697 scopus 로고    scopus 로고
    • FGF10 signaling maintains the pancreatic progenitor cell state revealing a novel role of Notch in organ development
    • Norgaard, G.A., J.N. Jensen & J. Jensen. 2003. FGF10 signaling maintains the pancreatic progenitor cell state revealing a novel role of Notch in organ development. Dev. Biol. 264: 323-338.
    • (2003) Dev. Biol. , vol.264 , pp. 323-338
    • Norgaard, G.A.1    Jensen, J.N.2    Jensen, J.3
  • 74
    • 31344468846 scopus 로고    scopus 로고
    • Interplay between FGF10 and Notch signalling is required for the self-renewal of pancreatic progenitors
    • Miralles, F. et al. 2006. Interplay between FGF10 and Notch signalling is required for the self-renewal of pancreatic progenitors. Int. J. Dev. Biol. 50: 17-26.
    • (2006) Int. J. Dev. Biol. , vol.50 , pp. 17-26
    • Miralles, F.1
  • 75
    • 0032991511 scopus 로고    scopus 로고
    • Signaling through fibroblast growth factor receptor 2b plays a key role in the development of the exocrine pancreas
    • Miralles, F. et al. 1999. Signaling through fibroblast growth factor receptor 2b plays a key role in the development of the exocrine pancreas. Proc. Natl. Acad. Sci. U. S. A. 96: 6267-6272.
    • (1999) Proc. Natl. Acad. Sci. U. S. A. , vol.96 , pp. 6267-6272
    • Miralles, F.1
  • 76
    • 0028172289 scopus 로고
    • TGF-beta 1 influences the relative development of the exocrine and endocrine pancreas in vitro
    • Sanvito, F. et al. 1994. TGF-beta 1 influences the relative development of the exocrine and endocrine pancreas in vitro. Development 120: 3451-3462.
    • (1994) Development , vol.120 , pp. 3451-3462
    • Sanvito, F.1
  • 77
    • 0031916664 scopus 로고    scopus 로고
    • Follistatin regulates the relative proportions of endocrine versus exocrine tissue during pancreatic development
    • Miralles, F., P. Czernichow & R. Scharfmann. 1998. Follistatin regulates the relative proportions of endocrine versus exocrine tissue during pancreatic development. Development 125: 1017-1024.
    • (1998) Development , vol.125 , pp. 1017-1024
    • Miralles, F.1    Czernichow, P.2    Scharfmann, R.3
  • 78
    • 34247638529 scopus 로고    scopus 로고
    • TGF-beta isoform signaling regulates secondary transition and mesenchymal-induced endocrine development in the embryonic mouse pancreas
    • Tulachan, S.S. et al. 2007. TGF-beta isoform signaling regulates secondary transition and mesenchymal-induced endocrine development in the embryonic mouse pancreas. Dev. Biol. 305: 508-521.
    • (2007) Dev. Biol. , vol.305 , pp. 508-521
    • Tulachan, S.S.1
  • 79
    • 84876539588 scopus 로고    scopus 로고
    • Factors expressed by murine embryonic pancreatic mesenchyme enhance generation of insulin-producing cells from hESCs
    • Guo, T. et al. 2013. Factors expressed by murine embryonic pancreatic mesenchyme enhance generation of insulin-producing cells from hESCs. Diabetes 62: 1581-1592.
    • (2013) Diabetes , vol.62 , pp. 1581-1592
    • Guo, T.1
  • 80
    • 44749087461 scopus 로고    scopus 로고
    • Transcription factor expression in the developing human fetal endocrine pancreas
    • Lyttle, B.M. et al. 2008. Transcription factor expression in the developing human fetal endocrine pancreas. Diabetologia 51: 1169-1180.
    • (2008) Diabetologia , vol.51 , pp. 1169-1180
    • Lyttle, B.M.1
  • 81
    • 84891514946 scopus 로고    scopus 로고
    • Development of the human pancreas from foregut to endocrine commitment
    • Jennings, R.E. et al. 2013. Development of the human pancreas from foregut to endocrine commitment. Diabetes 62: 3514-3522.
    • (2013) Diabetes , vol.62 , pp. 3514-3522
    • Jennings, R.E.1
  • 82
    • 33746093870 scopus 로고    scopus 로고
    • Mutant neurogenin-3 in congenital malabsorptive diarrhea
    • Wang, J. et al. 2006. Mutant neurogenin-3 in congenital malabsorptive diarrhea. N. Engl. J. Med. 355: 270-280.
    • (2006) N. Engl. J. Med. , vol.355 , pp. 270-280
    • Wang, J.1
  • 83
    • 79953219761 scopus 로고    scopus 로고
    • Permanent neonatal diabetes and enteric anendocrinosis associated with biallelic mutations in NEUROG3
    • Rubio-Cabezas, O. et al. 2011. Permanent neonatal diabetes and enteric anendocrinosis associated with biallelic mutations in NEUROG3. Diabetes 60: 1349-1353.
    • (2011) Diabetes , vol.60 , pp. 1349-1353
    • Rubio-Cabezas, O.1
  • 84
    • 0033960256 scopus 로고    scopus 로고
    • Early pattern of differentiation in the human pancreas
    • Polak, M. et al. 2000. Early pattern of differentiation in the human pancreas. Diabetes 49: 225-232.
    • (2000) Diabetes , vol.49 , pp. 225-232
    • Polak, M.1
  • 85
    • 70249089375 scopus 로고    scopus 로고
    • Endocrine cell clustering during human pancreas development
    • Jeon, J. et al. 2009. Endocrine cell clustering during human pancreas development. J. Histochem. Cytochem. 57: 811-824.
    • (2009) J. Histochem. Cytochem. , vol.57 , pp. 811-824
    • Jeon, J.1
  • 86
    • 2342457712 scopus 로고    scopus 로고
    • Beta cell differentiation during early human pancreas development
    • Piper, K. et al. 2004. Beta cell differentiation during early human pancreas development. J. Endocrinol. 181: 11-23.
    • (2004) J. Endocrinol. , vol.181 , pp. 11-23
    • Piper, K.1
  • 87
    • 0026745155 scopus 로고
    • The midgestational human fetal pancreas contains cells coexpressing islet hormones
    • De Krijger, R.R. et al. 1992. The midgestational human fetal pancreas contains cells coexpressing islet hormones. Dev Biol. 153: 368-375.
    • (1992) Dev Biol. , vol.153 , pp. 368-375
    • De Krijger, R.R.1
  • 88
    • 0027987138 scopus 로고
    • Pancreatic beta cells express a diverse set of homeobox genes
    • Rudnick, A. et al. 1994. Pancreatic beta cells express a diverse set of homeobox genes. Proc. Natl. Acad. Sci. U. S. A. 91: 12203-12207.
    • (1994) Proc. Natl. Acad. Sci. U. S. A. , vol.91 , pp. 12203-12207
    • Rudnick, A.1
  • 89
    • 0034524101 scopus 로고    scopus 로고
    • Homeobox gene Nkx6.1 lies downstream of Nkx2.2 in the major pathway of beta-cell formation in the pancreas
    • Sander, M. et al. 2000. Homeobox gene Nkx6.1 lies downstream of Nkx2.2 in the major pathway of beta-cell formation in the pancreas. Development 127: 5533-5540.
    • (2000) Development , vol.127 , pp. 5533-5540
    • Sander, M.1
  • 90
    • 84856715292 scopus 로고    scopus 로고
    • Immunohistochemical characterisation of cells co-producing insulin and glucagon in the developing human pancreas
    • Riedel, M.J. et al. 2012. Immunohistochemical characterisation of cells co-producing insulin and glucagon in the developing human pancreas. Diabetologia 55: 372-381.
    • (2012) Diabetologia , vol.55 , pp. 372-381
    • Riedel, M.J.1
  • 91
    • 43249122991 scopus 로고    scopus 로고
    • Stimulation of human and rat islet beta-cell proliferation with retention of function by the homeodomain transcription factor Nkx6.1
    • Schisler, J.C. et al. 2008. Stimulation of human and rat islet beta-cell proliferation with retention of function by the homeodomain transcription factor Nkx6.1. Mol. Cell Biol. 28: 3465-3476.
    • (2008) Mol. Cell Biol. , vol.28 , pp. 3465-3476
    • Schisler, J.C.1
  • 92
    • 80054997189 scopus 로고    scopus 로고
    • Transgenic overexpression of the transcription factor Nkx6.1 in beta-cells of mice does not increase beta-cell proliferation, beta-cell mass, or improve glucose clearance
    • Schaffer, A.E. et al. 2011. Transgenic overexpression of the transcription factor Nkx6.1 in beta-cells of mice does not increase beta-cell proliferation, beta-cell mass, or improve glucose clearance. Mol. Endocrinol. 25: 1904-1914.
    • (2011) Mol. Endocrinol. , vol.25 , pp. 1904-1914
    • Schaffer, A.E.1
  • 93
    • 79955047283 scopus 로고    scopus 로고
    • Differentiation of human embryonic stem cells into pancreatic endoderm in patterned size-controlled clusters
    • Van Hoof, D. et al. 2011. Differentiation of human embryonic stem cells into pancreatic endoderm in patterned size-controlled clusters. Stem Cell Res. 6: 276-285.
    • (2011) Stem Cell Res. , vol.6 , pp. 276-285
    • Van Hoof, D.1
  • 94
    • 80755187146 scopus 로고    scopus 로고
    • Activin, BMP and FGF pathways cooperate to promote endoderm and pancreatic lineage cell differentiation from human embryonic stem cells
    • Xu, X., V.L. Browning & J.S. Odorico. 2011. Activin, BMP and FGF pathways cooperate to promote endoderm and pancreatic lineage cell differentiation from human embryonic stem cells. Mech. Dev. 128: 412-427.
    • (2011) Mech. Dev. , vol.128 , pp. 412-427
    • Xu, X.1    Browning, V.L.2    Odorico, J.S.3
  • 95
    • 84887940137 scopus 로고    scopus 로고
    • Enrichment of human embryonic stem cell-derived NKX6.1-expressing pancreatic progenitor cells accelerates the maturation of insulin-secreting cells in vivo
    • Rezania, A. et al. 2013. Enrichment of human embryonic stem cell-derived NKX6.1-expressing pancreatic progenitor cells accelerates the maturation of insulin-secreting cells in vivo. Stem Cells 31: 2432-2442.
    • (2013) Stem Cells , vol.31 , pp. 2432-2442
    • Rezania, A.1
  • 96
    • 33644765957 scopus 로고    scopus 로고
    • MafB: an activator of the glucagon gene expressed in developing islha- and beta-cells
    • Artner, I. et al. 2006. MafB: an activator of the glucagon gene expressed in developing islet alpha- and beta-cells. Diabetes 55: 297-304.
    • (2006) Diabetes , vol.55 , pp. 297-304
    • Artner, I.1
  • 97
    • 77957583357 scopus 로고    scopus 로고
    • MafA and MafB regulate genes critical to beta-cells in a unique temporal manner
    • Artner, I. et al. 2010. MafA and MafB regulate genes critical to beta-cells in a unique temporal manner. Diabetes 59: 2530-2539.
    • (2010) Diabetes , vol.59 , pp. 2530-2539
    • Artner, I.1
  • 98
    • 1542297749 scopus 로고    scopus 로고
    • The MafA transcription factor appears to be responsible for tissue-specific expression of insulin
    • Matsuoka, T.A. et al. 2004. The MafA transcription factor appears to be responsible for tissue-specific expression of insulin. Proc. Natl. Acad. Sci. U. S. A. 101: 2930-2933.
    • (2004) Proc. Natl. Acad. Sci. U. S. A. , vol.101 , pp. 2930-2933
    • Matsuoka, T.A.1
  • 99
    • 0041970072 scopus 로고    scopus 로고
    • Members of the large Maf transcription family regulate insulin gene transcription in islet beta cells
    • Matsuoka, T.A. et al. 2003. Members of the large Maf transcription family regulate insulin gene transcription in islet beta cells. Mol. Cell Biol. 23: 6049-6062.
    • (2003) Mol. Cell Biol. , vol.23 , pp. 6049-6062
    • Matsuoka, T.A.1
  • 100
    • 34447124165 scopus 로고    scopus 로고
    • MAFA controls genes implicated in insulin biosynthesis and secretion
    • Wang, H. et al. 2007. MAFA controls genes implicated in insulin biosynthesis and secretion. Diabetologia 50: 348-358.
    • (2007) Diabetologia , vol.50 , pp. 348-358
    • Wang, H.1
  • 101
    • 20344368579 scopus 로고    scopus 로고
    • MafA is a key regulator of glucose-stimulated insulin secretion
    • Zhang, C. et al. 2005. MafA is a key regulator of glucose-stimulated insulin secretion. Mol. Cell Biol. 25: 4969-4976.
    • (2005) Mol. Cell Biol. , vol.25 , pp. 4969-4976
    • Zhang, C.1
  • 102
    • 37549021136 scopus 로고    scopus 로고
    • Global gene expression profiling and histochemical analysis of the developing human fetal pancreas
    • Sarkar, S.A. et al. 2008. Global gene expression profiling and histochemical analysis of the developing human fetal pancreas. Diabetologia 51: 285-297.
    • (2008) Diabetologia , vol.51 , pp. 285-297
    • Sarkar, S.A.1
  • 103
    • 47649116417 scopus 로고    scopus 로고
    • Signals from the neural crest regulate beta-cell mass in the pancreas
    • Nekrep, N. et al. 2008. Signals from the neural crest regulate beta-cell mass in the pancreas. Development 135: 2151-2160.
    • (2008) Development , vol.135 , pp. 2151-2160
    • Nekrep, N.1
  • 104
    • 78650826185 scopus 로고    scopus 로고
    • Influence and timing of arrival of murine neural crest on pancreatic beta cell development and maturation
    • Plank, J.L. et al. 2011. Influence and timing of arrival of murine neural crest on pancreatic beta cell development and maturation. Dev. Biol. 349: 321-330.
    • (2011) Dev. Biol. , vol.349 , pp. 321-330
    • Plank, J.L.1
  • 105
    • 84866350357 scopus 로고    scopus 로고
    • Differentiating neural crest stem cells induce proliferation of cultured rodent islet beta cells
    • Grouwels, G. et al. 2012. Differentiating neural crest stem cells induce proliferation of cultured rodent islet beta cells. Diabetologia 55: 2016-2025.
    • (2012) Diabetologia , vol.55 , pp. 2016-2025
    • Grouwels, G.1
  • 106
    • 0035913986 scopus 로고    scopus 로고
    • Induction of pancreatic differentiation by signals from blood vessels
    • Lammert, E., O. Cleaver & D. Melton. 2001. Induction of pancreatic differentiation by signals from blood vessels. Science 294: 564-567.
    • (2001) Science , vol.294 , pp. 564-567
    • Lammert, E.1    Cleaver, O.2    Melton, D.3
  • 107
    • 1342263524 scopus 로고    scopus 로고
    • Endothelial cell interactions initiate dorsal pancreas development by selectively inducing the transcription factor Ptf1a
    • Yoshitomi, H. & K.S. Zaret. 2004. Endothelial cell interactions initiate dorsal pancreas development by selectively inducing the transcription factor Ptf1a. Development 131: 807-817.
    • (2004) Development , vol.131 , pp. 807-817
    • Yoshitomi, H.1    Zaret, K.S.2
  • 108
    • 79955570050 scopus 로고    scopus 로고
    • Endoderm and mesoderm reciprocal signaling mediated by CXCL12 and CXCR4 regulates the migration of angioblasts and establishes the pancreatic fate
    • Katsumoto, K. & S. Kume. 2011. Endoderm and mesoderm reciprocal signaling mediated by CXCL12 and CXCR4 regulates the migration of angioblasts and establishes the pancreatic fate. Development 138: 1947-1955.
    • (2011) Development , vol.138 , pp. 1947-1955
    • Katsumoto, K.1    Kume, S.2
  • 109
    • 84883152107 scopus 로고    scopus 로고
    • The role of CXCL12-CXCR4 signaling pathway in pancreatic development
    • Katsumoto, K. & S. Kume. 2013. The role of CXCL12-CXCR4 signaling pathway in pancreatic development. Theranostics 3: 11-17.
    • (2013) Theranostics , vol.3 , pp. 11-17
    • Katsumoto, K.1    Kume, S.2
  • 110
    • 33845540482 scopus 로고    scopus 로고
    • Pancreatic islet production of vascular endothelial growth factor-a is essential for islet vascularization, revascularization, and function
    • Brissova, M. et al. 2006. Pancreatic islet production of vascular endothelial growth factor-a is essential for islet vascularization, revascularization, and function. Diabetes 55: 2974-2985.
    • (2006) Diabetes , vol.55 , pp. 2974-2985
    • Brissova, M.1
  • 111
    • 33644537403 scopus 로고    scopus 로고
    • The vascular basement membrane: a niche for insulin gene expression and Beta cell proliferation
    • Nikolova, G. et al. 2006. The vascular basement membrane: a niche for insulin gene expression and Beta cell proliferation. Dev. Cell. 10: 397-405.
    • (2006) Dev. Cell. , vol.10 , pp. 397-405
    • Nikolova, G.1
  • 112
    • 34548507937 scopus 로고    scopus 로고
    • Directed differentiation of human embryonic stem cells into the pancreatic endocrine lineage
    • Phillips, B.W. et al. 2007. Directed differentiation of human embryonic stem cells into the pancreatic endocrine lineage. Stem Cells Dev. 16: 561-578.
    • (2007) Stem Cells Dev. , vol.16 , pp. 561-578
    • Phillips, B.W.1
  • 113
    • 78751502673 scopus 로고    scopus 로고
    • Production of functional glucagon-secreting alpha-cells from human embryonic stem cells
    • Rezania, A. et al. 2011. Production of functional glucagon-secreting alpha-cells from human embryonic stem cells. Diabetes 60: 239-247.
    • (2011) Diabetes , vol.60 , pp. 239-247
    • Rezania, A.1
  • 114
    • 41849151748 scopus 로고    scopus 로고
    • Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo
    • Kroon, E. et al. 2008. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat. Biotechnol. 26: 443-452.
    • (2008) Nat. Biotechnol. , vol.26 , pp. 443-452
    • Kroon, E.1
  • 115
    • 34247353657 scopus 로고    scopus 로고
    • In vitro derivation of functional insulin-producing cells from human embryonic stem cells
    • Jiang, W. et al. 2007. In vitro derivation of functional insulin-producing cells from human embryonic stem cells. Cell Res. 17: 333-344.
    • (2007) Cell Res. , vol.17 , pp. 333-344
    • Jiang, W.1
  • 116
    • 84862059081 scopus 로고    scopus 로고
    • A scalable system for production of functional pancreatic progenitors from human embryonic stem cells
    • Schulz, T.C. et al. 2012. A scalable system for production of functional pancreatic progenitors from human embryonic stem cells. PLoS One 7: e37004.
    • (2012) PLoS One , vol.7
    • Schulz, T.C.1
  • 117
    • 79551686425 scopus 로고    scopus 로고
    • Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro
    • Spence, J.R. et al. 2011. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470: 105-109.
    • (2011) Nature , vol.470 , pp. 105-109
    • Spence, J.R.1
  • 118
    • 23844475078 scopus 로고    scopus 로고
    • Generation of Rx+/Pax6+ neural retinal precursors from embryonic stem cells
    • Ikeda, H. et al. 2005. Generation of Rx+/Pax6+ neural retinal precursors from embryonic stem cells. Proc. Natl. Acad. Sci. U. S. A. 102: 11331-11336.
    • (2005) Proc. Natl. Acad. Sci. U. S. A. , vol.102 , pp. 11331-11336
    • Ikeda, H.1
  • 119
    • 79953749322 scopus 로고    scopus 로고
    • Self-organizing optic-cup morphogenesis in three-dimensional culture
    • Eiraku, M. et al. 2011. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472: 51-56.
    • (2011) Nature , vol.472 , pp. 51-56
    • Eiraku, M.1
  • 120
    • 82555187011 scopus 로고    scopus 로고
    • Self-formation of functional adenohypophysis in three-dimensional culture
    • Suga, H. et al. 2011. Self-formation of functional adenohypophysis in three-dimensional culture. Nature 480: 57-62.
    • (2011) Nature , vol.480 , pp. 57-62
    • Suga, H.1
  • 121
    • 84881184980 scopus 로고    scopus 로고
    • Vascularized and functional human liver from an iPSC-derived organ bud transplant
    • Takebe, T. et al. 2013. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 499: 481-484.
    • (2013) Nature , vol.499 , pp. 481-484
    • Takebe, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.