메뉴 건너뛰기




Volumn , Issue , 2012, Pages 72-102

Supervised classification with Bayesian networks: A review on models and applications

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84898110224     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.4018/978-1-4666-1806-0.ch005     Document Type: Chapter
Times cited : (23)

References (95)
  • 1
    • 79955912425 scopus 로고    scopus 로고
    • Hybrid Bayesian network classifiers: Application to species distribution models
    • doi:10.1016/j.envsoft.2010.04.016
    • Aguilera, P. A., Fernández, A., Reche, F., & Rumí, R. (2010). Hybrid Bayesian network classifiers: Application to species distribution models. Environmental Modelling & Software, 25(12), 1630-1639. doi:10.1016/j.envsoft.2010.04.016
    • (2010) Environmental Modelling & Software , vol.25 , Issue.12 , pp. 1630-1639
    • Aguilera, P.A.1    Fernández, A.2    Reche, F.3    Rumí, R.4
  • 2
    • 78650274493 scopus 로고    scopus 로고
    • Bayesian method for groundwater quality monitoring network analysis
    • doi:10.1061/(ASCE)WR.19435452.0000043
    • Ammar, K., McKee, M., & Kaluarachchi, J. (2011). Bayesian method for groundwater quality monitoring network analysis. Journal of Water Resources Planning and Management, 137(1), 51-61. doi:10.1061/(ASCE)WR.19435452.0000043
    • (2011) Journal of Water Resources Planning and Management , vol.137 , Issue.1 , pp. 51-61
    • Ammar, K.1    McKee, M.2    Kaluarachchi, J.3
  • 3
    • 0041334207 scopus 로고    scopus 로고
    • Bayesian applications of belief networks and multilayer perceptrons for ovarian tumor classification with rejection
    • doi:10.1016/S0933-3657(03)00053-8
    • Antal, P., Fannes, G., Timmerman, D., Moreau, Y., & DeMoor, B. (2003). Bayesian applications of belief networks and multilayer perceptrons for ovarian tumor classification with rejection. Artificial Intelligence in Medicine, 29, 39-60. doi:10.1016/S0933-3657(03)00053-8
    • (2003) Artificial Intelligence in Medicine , vol.29 , pp. 39-60
    • Antal, P.1    Fannes, G.2    Timmerman, D.3    Moreau, Y.4    Demoor, B.5
  • 5
    • 44949178280 scopus 로고    scopus 로고
    • Detecting reliable gene interactions by a hierarchy of Bayesian network classifiers
    • doi:10.1016/j.cmpb.2008.02.010
    • Armañanzas, R., Inza, I., & Larrañaga, P. (2008). Detecting reliable gene interactions by a hierarchy of Bayesian network classifiers. Computer Methods and Programs in Biomedicine, 91(2), 110-121. doi:10.1016/j.cmpb.2008.02.010
    • (2008) Computer Methods and Programs in Biomedicine , vol.91 , Issue.2 , pp. 110-121
    • Armañanzas, R.1    Inza, I.2    Larrañaga, P.3
  • 6
    • 0037877982 scopus 로고    scopus 로고
    • Dynamic Bayesian networks for visual recognition of dynamic gestures
    • Avilés-Arriaga, H. H., & Sucar, L. E. (2002). Dynamic Bayesian networks for visual recognition of dynamic gestures. Journal of Intelligent and Fuzzy Systems, 12(3-4), 243-250.
    • (2002) Journal of Intelligent and Fuzzy Systems , vol.12 , Issue.3-4 , pp. 243-250
    • Avilés-Arriaga, H.H.1    Sucar, L.E.2
  • 8
    • 69949155701 scopus 로고    scopus 로고
    • Classification of wild and farmed salmon using Bayesian belief networks and gas chromatography-derived fatty acid distributions
    • doi:10.1021/jf9013235
    • Axelson, D. E., Standal, I. B., Martinez, I., & Aursand, M. (2009). Classification of wild and farmed salmon using Bayesian belief networks and gas chromatography-derived fatty acid distributions. Journal of Agricultural and Food Chemistry, 57(17), 7634-7639. doi:10.1021/jf9013235
    • (2009) Journal of Agricultural and Food Chemistry , vol.57 , Issue.17 , pp. 7634-7639
    • Axelson, D.E.1    Standal, I.B.2    Martinez, I.3    Aursand, M.4
  • 9
    • 79955550286 scopus 로고    scopus 로고
    • Multi-dimensional classification with Bayesian networks
    • doi:10.1016/j.ijar.2011.01.007
    • Bielza, C., Li, G., & Larrañaga, P. (2011). Multi-dimensional classification with Bayesian networks. International Journal of Approximate Reasoning, 52(6). doi:10.1016/j.ijar.2011.01.007
    • (2011) International Journal of Approximate Reasoning , vol.52 , Issue.6
    • Bielza, C.1    Li, G.2    Larrañaga, P.3
  • 12
    • 65749103406 scopus 로고    scopus 로고
    • Using Bayesian networks with rule extraction to infer the risk of weed infestation in a corn-crop
    • doi:10.1016/j.engappai.2009.03.006
    • Bressan, G. M., Oliveira, V. A., Hruschka, E. R. Jr, & Nicoletti, M. C. (2009). Using Bayesian networks with rule extraction to infer the risk of weed infestation in a corn-crop. Engineering Applications of Artificial Intelligence, 22(4-5), 579-592. doi:10.1016/j.engappai.2009.03.006
    • (2009) Engineering Applications of Artificial Intelligence , vol.22 , Issue.4-5 , pp. 579-592
    • Bressan, G.M.1    Oliveira, V.A.2    Hruschka Jr., E.R.3    Nicoletti, M.C.4
  • 13
    • 0000864105 scopus 로고    scopus 로고
    • Global discretization of continuous attributes as preprocessing for machine learning
    • doi:10.1016/S0888-613X(96)00074-6
    • Chmielewski, M. R., & Jerzy. (1996). Global discretization of continuous attributes as preprocessing for machine learning. International Journal of Approximate Reasoning, 15(4), 319-331. doi:10.1016/S0888-613X(96)00074-6
    • (1996) International Journal of Approximate Reasoning , vol.15 , Issue.4 , pp. 319-331
    • Chmielewski, M.R.1    Jerzy2
  • 14
    • 84933530882 scopus 로고
    • Approximating discrete probability distributions with dependence trees
    • doi:10.1109/TIT.1968.1054142
    • Chow, C. I., & Liu, C. N. (1968). Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory, 14, 462-467. doi:10.1109/TIT.1968.1054142
    • (1968) IEEE Transactions on Information Theory , vol.14 , pp. 462-467
    • Chow, C.I.1    Liu, C.N.2
  • 15
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • doi:10.1007/BF00994110
    • Cooper, G. F., & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9, 309-347. doi:10.1007/BF00994110
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 24
    • 70549106591 scopus 로고    scopus 로고
    • Fish recruitment prediction, using robust supervised classification methods
    • doi:10.1016/j.ecolmodel.2009.09.020
    • Fernandes, J. A., Irigoien, X., Goikoetxea, N., Lozano, J. A., Inza, I., & Perez, A. (2010). Fish recruitment prediction, using robust supervised classification methods. Ecological Modelling, 221(2), 338-352. doi:10.1016/j.ecolmodel.2009.09.020
    • (2010) Ecological Modelling , vol.221 , Issue.2 , pp. 338-352
    • Fernandes, J.A.1    Irigoien, X.2    Goikoetxea, N.3    Lozano, J.A.4    Inza, I.5    Perez, A.6
  • 25
    • 42049122307 scopus 로고    scopus 로고
    • Bayes-Chess: A computer chess program based on Bayesian networks
    • doi:10.1016/j.patrec.2007.06.013
    • Fernandez, A., & Salmeron, A. (2008). Bayes-Chess: A computer chess program based on Bayesian networks. Pattern Recognition Letters, 29(8), 1154-1159. doi:10.1016/j.patrec.2007.06.013
    • (2008) Pattern Recognition Letters , vol.29 , Issue.8 , pp. 1154-1159
    • Fernandez, A.1    Salmeron, A.2
  • 28
    • 41749119664 scopus 로고    scopus 로고
    • Wrapper discretization by means of estimation of distribution algorithms
    • Flores, J. L., Inza, I., & Larrañaga, P. (2007). Wrapper discretization by means of estimation of distribution algorithms. Intelligent Data Analysis, 11(5), 525-545.
    • (2007) Intelligent Data Analysis , vol.11 , Issue.5 , pp. 525-545
    • Flores, J.L.1    Inza, I.2    Larrañaga, P.3
  • 31
    • 79956106290 scopus 로고    scopus 로고
    • Handling numeric attributes when comparing Bayesian classifiers: Does the discretization method matter?
    • doi:10.1007/s10489011-0286-z
    • Flores, M. J., Gámez, J. A., Martínez, A. M., & Puerta, J. M. (2011). Handling numeric attributes when comparing Bayesian classifiers: Does the discretization method matter? Applied Intelligence, 34(3), 372-385. doi:10.1007/s10489011-0286-z
    • (2011) Applied Intelligence , vol.34 , Issue.3 , pp. 372-385
    • Flores, M.J.1    Gámez, J.A.2    Martínez, A.M.3    Puerta, J.M.4
  • 32
    • 0031276011 scopus 로고    scopus 로고
    • Bayesian network classifiers
    • doi:10.1023/A:1007465528199
    • Friedman, N., Geiger, D., & Goldszmidt, M. (1997). Bayesian network classifiers. Machine Learning, 29, 131-163. doi:10.1023/A:1007465528199
    • (1997) Machine Learning , vol.29 , pp. 131-163
    • Friedman, N.1    Geiger, D.2    Goldszmidt, M.3
  • 37
    • 0030125397 scopus 로고    scopus 로고
    • Knowledge representation and inference in similarity networks and Bayesian multinets
    • doi:10.1016/0004-3702(95)00014-3
    • Geiger, D., & Heckerman, D. (1996). Knowledge representation and inference in similarity networks and Bayesian multinets. Artificial Intelligence, 82, 45-74. doi:10.1016/0004-3702(95)00014-3
    • (1996) Artificial Intelligence , vol.82 , pp. 45-74
    • Geiger, D.1    Heckerman, D.2
  • 40
    • 8444244893 scopus 로고    scopus 로고
    • Probabilistic decision graphs - Combining verification and AI techniques for probabilistic inference
    • Jaeger, M. (2004). Probabilistic decision graphs - Combining verification and AI techniques for probabilistic inference. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 12(Supplement-1), 19-42.
    • (2004) International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems , vol.12 , Issue.1 , pp. 19-42
    • Jaeger, M.1
  • 42
    • 24644512467 scopus 로고    scopus 로고
    • Learning tree augmented naïve Bayes for ranking
    • 992-992, doi:10.1007/11408079_63
    • Jiang, L., Zhang, H., Cai, Z., & Su, J. (2005). Learning tree augmented naïve Bayes for ranking. Database Systems for Advanced Applications, 3453, 992-992. doi:10.1007/11408079_63
    • (2005) Database Systems for Advanced Applications , vol.3453
    • Jiang, L.1    Zhang, H.2    Cai, Z.3    Su, J.4
  • 45
    • 0002610991 scopus 로고    scopus 로고
    • Learning augmented Bayesian classifiers: A comparison of distribution-based and classification-based approaches
    • Keogh, E., & Pazzani, M. (1999). Learning augmented Bayesian classifiers: A comparison of distribution-based and classification-based approaches. Proceedings of the 7th International Workshop on AI and Statistics (pp. 225-230).
    • (1999) Proceedings of the 7th International Workshop on AI and Statistics , pp. 225-230
    • Keogh, E.1    Pazzani, M.2
  • 46
    • 85031799549 scopus 로고
    • Semi-naive Bayesian classifiers
    • doi:10.1007/BFb0017015
    • Kononenko, I. (1991). Semi-naive Bayesian classifiers. EWSL, 1991, 206-219. doi:10.1007/BFb0017015
    • (1991) EWSL, 1991 , pp. 206-219
    • Kononenko, I.1
  • 51
    • 84950442428 scopus 로고
    • Propagation of probabilities, means and variances in mixed graphical association models
    • Lauritzen, S. L. (1992). Propagation of probabilities, means and variances in mixed graphical association models. Journal of the American Statistical Association, 87, 1098-1108.
    • (1992) Journal of the American Statistical Association , vol.87 , pp. 1098-1108
    • Lauritzen, S.L.1
  • 52
    • 0041377763 scopus 로고    scopus 로고
    • Stable local computation with conditional Gaussian distributions
    • doi:10.1023/A:1008935617754
    • Lauritzen, S. L., & Jensen, F. (2001). Stable local computation with conditional Gaussian distributions. Statistics and Computing, 11(2), 191-203. doi:10.1023/A:1008935617754
    • (2001) Statistics and Computing , vol.11 , Issue.2 , pp. 191-203
    • Lauritzen, S.L.1    Jensen, F.2
  • 53
    • 0002480085 scopus 로고    scopus 로고
    • Graphical models for associations between variables, some of which are qualitative and some quantitative
    • doi:10.1214/aos/1176347003
    • Lauritzen, S. L., & Wermuth, N. (1998). Graphical models for associations between variables, some of which are qualitative and some quantitative. Annals of Statistics, 17(1), 31-57. doi:10.1214/aos/1176347003
    • (1998) Annals of Statistics , vol.17 , Issue.1 , pp. 31-57
    • Lauritzen, S.L.1    Wermuth, N.2
  • 55
    • 0141688369 scopus 로고    scopus 로고
    • Discretization: An enabling technique
    • doi:10.1023/A:1016304305535
    • Liu, H., Hussain, F., Tan, C. L., & Dash, M. (2002). Discretization: An enabling technique. Data Mining and Knowledge Discovery, 6(4), 393-423. doi:10.1023/A:1016304305535
    • (2002) Data Mining and Knowledge Discovery , vol.6 , Issue.4 , pp. 393-423
    • Liu, H.1    Hussain, F.2    Tan, C.L.3    Dash, M.4
  • 56
    • 4744353182 scopus 로고    scopus 로고
    • Restricted Bayesian network structure learning
    • Lucas, P. (2004). Restricted Bayesian network structure learning. Studies in Fuzziness and Soft Computing, 49, 217-232.
    • (2004) Studies in Fuzziness and Soft Computing , vol.49 , pp. 217-232
    • Lucas, P.1
  • 59
    • 84898226785 scopus 로고    scopus 로고
    • Paper presented at the ECSQARU '01: 6th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty
    • Moral, S., Rumí, R., & Salmerón, A. (2001). Mixtures of truncated exponentials in hybrid Bayesian networks. Paper presented at the ECSQARU '01: 6th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty.
    • (2001) Mixtures of Truncated Exponentials in Hybrid Bayesian Networks
    • Moral, S.1    Rumí, R.2    Salmerón, A.3
  • 61
    • 56349099699 scopus 로고    scopus 로고
    • Selection of human embryos for transfer by Bayesian classifiers
    • doi:10.1016/jcompbiomed.2008.09.002
    • Morales, D. A., Bengoetxea, E., & Larrañaga, P. (2008). Selection of human embryos for transfer by Bayesian classifiers. Computers in Biology and Medicine, 38, 1177-1186. doi:10.1016/jcompbiomed.2008.09.002
    • (2008) Computers in Biology and Medicine , vol.38 , pp. 1177-1186
    • Morales, D.A.1    Bengoetxea, E.2    Larrañaga, P.3
  • 62
    • 58549096270 scopus 로고    scopus 로고
    • Supervised classification using probabilistic decision graphs
    • doi:10.1016/j.csda.2008.11.003
    • Nielsen, J. D., Rumí, R., & Salmerón, A. (2009). Supervised classification using probabilistic decision graphs. Computational Statistics & Data Analysis, 53(4), 1299-1311. doi:10.1016/j.csda.2008.11.003
    • (2009) Computational Statistics & Data Analysis , vol.53 , Issue.4 , pp. 1299-1311
    • Nielsen, J.D.1    Rumí, R.2    Salmerón, A.3
  • 63
    • 0027558070 scopus 로고
    • Causal probabilistic networks with both discrete and continuous variables
    • doi:10.1109/34.204909
    • Olesen, K. G. (1993). Causal probabilistic networks with both discrete and continuous variables. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(3), 275-279. doi:10.1109/34.204909
    • (1993) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.15 , Issue.3 , pp. 275-279
    • Olesen, K.G.1
  • 64
    • 67650729385 scopus 로고    scopus 로고
    • Reforestation planning using Bayesian networks
    • doi:10.1016/j.envsoft.2009.05.009
    • Ordoñez, C., Matias, J. M., Rivas, T., & Bastante, F. G. (2009). Reforestation planning using Bayesian networks. Environmental Modelling & Software, 24(11), 1285-1292. doi:10.1016/j.envsoft.2009.05.009
    • (2009) Environmental Modelling & Software , vol.24 , Issue.11 , pp. 1285-1292
    • Ordoñez, C.1    Matias, J.M.2    Rivas, T.3    Bastante, F.G.4
  • 66
    • 77951878850 scopus 로고    scopus 로고
    • Evolutionary learning of dynamic naïve Bayesian classifiers
    • doi:10.1007/s10817009-9130-0
    • Palacios-Alonso, M. A., Brizuela, C. A., & Sucar, L. E. (2010). Evolutionary learning of dynamic naïve Bayesian classifiers. Journal of Automated Reasoning, 45(1), 21-37. doi:10.1007/s10817009-9130-0
    • (2010) Journal of Automated Reasoning , vol.45 , Issue.1 , pp. 21-37
    • Palacios-Alonso, M.A.1    Brizuela, C.A.2    Sucar, L.E.3
  • 67
    • 35649009030 scopus 로고    scopus 로고
    • Classifying environmentally significant urban land uses with satellite imagery
    • doi:10.1016/j.jenvman.2006.12.010
    • Park, M.-H., & Stenstrom, M. K. (2008). Classifying environmentally significant urban land uses with satellite imagery. Journal of Environmental Management, 86(1), 181-192. doi:10.1016/j.jenvman.2006.12.010
    • (2008) Journal of Environmental Management , vol.86 , Issue.1 , pp. 181-192
    • Park, M.-H.1    Stenstrom, M.K.2
  • 70
    • 33746334456 scopus 로고    scopus 로고
    • Supervised classification with conditional Gaussian networks: Increasing the structure complexity from naïve Bayes
    • doi:10.1016/j.ijar.2006.01.002
    • Pérez, A., Larrañaga, P., & Inza, I. (2006). Supervised classification with conditional Gaussian networks: Increasing the structure complexity from naïve Bayes. International Journal of Approximate Reasoning, 43(1), 1-25. doi:10.1016/j.ijar.2006.01.002
    • (2006) International Journal of Approximate Reasoning , vol.43 , Issue.1 , pp. 1-25
    • Pérez, A.1    Larrañaga, P.2    Inza, I.3
  • 71
    • 59749084739 scopus 로고    scopus 로고
    • Bayesian classifiers based on kernel density estimation: Flexible classifiers
    • doi:10.1016/j.ijar.2008.08.008
    • Pérez, A., Larrañaga, P., & Inza, I. (2009). Bayesian classifiers based on kernel density estimation: Flexible classifiers. International Journal of Approximate Reasoning, 50, 341-362. doi:10.1016/j.ijar.2008.08.008
    • (2009) International Journal of Approximate Reasoning , vol.50 , pp. 341-362
    • Pérez, A.1    Larrañaga, P.2    Inza, I.3
  • 72
    • 28444439536 scopus 로고    scopus 로고
    • Bayesian network classifiers for mineral potential mapping
    • doi:10.1016/j.cageo.2005.03.018
    • Porwal, A., Carranza, E. J. M., & Hale, M. (2006). Bayesian network classifiers for mineral potential mapping. Computers & Geosciences, 32, 1-16. doi:10.1016/j.cageo.2005.03.018
    • (2006) Computers & Geosciences , vol.32 , pp. 1-16
    • Porwal, A.1    Carranza, E.J.M.2    Hale, M.3
  • 74
    • 33744584654 scopus 로고
    • Induction of decision trees
    • doi:10.1007/BF00116251
    • Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81-106. doi:10.1007/BF00116251
    • (1986) Machine Learning , vol.1 , Issue.1 , pp. 81-106
    • Quinlan, J.R.1
  • 80
    • 0000987741 scopus 로고
    • Gaussian influence diagrams
    • doi:10.1287/mnsc.35.5.527
    • Shachter, R. D., & Kenley, C. R. (1989). Gaussian influence diagrams. Management Science, 35(5), 527-550. doi:10.1287/mnsc.35.5.527
    • (1989) Management Science , vol.35 , Issue.5 , pp. 527-550
    • Shachter, R.D.1    Kenley, C.R.2
  • 85
    • 34548293679 scopus 로고    scopus 로고
    • Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy
    • doi:10.1128/AEM.00062-07
    • Wang, Q., Garrity, G. M., Tiedje, J. M., & Cole, R. J. (2007). Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 73(16), 5261-5267. doi:10.1128/AEM.00062-07
    • (2007) Applied and Environmental Microbiology , vol.73 , Issue.16 , pp. 5261-5267
    • Wang, Q.1    Garrity, G.M.2    Tiedje, J.M.3    Cole, R.J.4
  • 86
    • 14844351034 scopus 로고    scopus 로고
    • Not so naïve Bayes: Aggregating one-dependence estimators
    • doi:10.1007/s10994-005-4258-6
    • Webb, G. I., Boughton, J. R., & Wang, Z. (2005). Not so naïve Bayes: Aggregating one-dependence estimators. Machine Learning, 58(1), 5-24. doi:10.1007/s10994-005-4258-6
    • (2005) Machine Learning , vol.58 , Issue.1 , pp. 5-24
    • Webb, G.I.1    Boughton, J.R.2    Wang, Z.3
  • 87
    • 58149195307 scopus 로고    scopus 로고
    • Discretization for naïve-Bayes learning: Managing discretization bias and variance
    • doi:10.1007/s10994-008-5083-5
    • Yang, Y., & Webb, G. I. (2009). Discretization for naïve-Bayes learning: Managing discretization bias and variance. Machine Learning, 74(1), 39-74. doi:10.1007/s10994-008-5083-5
    • (2009) Machine Learning , vol.74 , Issue.1 , pp. 39-74
    • Yang, Y.1    Webb, G.I.2
  • 89
    • 13744252663 scopus 로고    scopus 로고
    • Credible classification for environmental problems
    • doi:10.1016/j.envsoft.2004.10.006
    • Zaffalon, M. (2005). Credible classification for environmental problems. Environmental Modelling & Software, 20(8), 1003-1012. doi:10.1016/j.envsoft.2004.10.006
    • (2005) Environmental Modelling & Software , vol.20 , Issue.8 , pp. 1003-1012
    • Zaffalon, M.1
  • 94
    • 0034301677 scopus 로고    scopus 로고
    • Lazy learning of Bayesian rules
    • doi:10.1023/A:1007613203719
    • Zheng, Z., & Webb, G. I. (2000). Lazy learning of Bayesian rules. Machine Learning, 41(1), 53-84. doi:10.1023/A:1007613203719
    • (2000) Machine Learning , vol.41 , Issue.1 , pp. 53-84
    • Zheng, Z.1    Webb, G.I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.