메뉴 건너뛰기




Volumn 32, Issue 1, 2006, Pages 1-16

Bayesian network classifiers for mineral potential mapping

Author keywords

Aravalli Province; Bayesian networks; Conditional dependence; GIS; Naive classifiers

Indexed keywords

ALGORITHMS; GEOGRAPHIC INFORMATION SYSTEMS; MAPPING; MINERAL EXPLORATION; PATTERN RECOGNITION; PROBABILITY; SET THEORY;

EID: 28444439536     PISSN: 00983004     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cageo.2005.03.018     Document Type: Article
Times cited : (145)

References (43)
  • 3
    • 0042065037 scopus 로고
    • Application of a microcomputer-based geographic information system to mineral-potential mapping
    • J.T. Hanley D.F. Merriam (Eds.) Pergamon Press New York
    • G.F. Bonham-Carter F.P. Agterberg Application of a microcomputer-based geographic information system to mineral-potential mapping In: J.T. Hanley D.F. Merriam (Eds.) Microcomputer-based Applications in Geology, II, Petroleum 1990 Pergamon Press New York 49-74
    • (1990) Microcomputer-based Applications in Geology, II, Petroleum , pp. 49-74
    • Bonham-Carter, G.F.1    Agterberg, F.P.2
  • 5
    • 0019998697 scopus 로고
    • Recognition of a hidden mineral deposit by an artificial intelligence program
    • A.N. Campbell V.F. Hollister R.O. Duda Recognition of a hidden mineral deposit by an artificial intelligence program Science 217 3 1982 927-929
    • (1982) Science , vol.217 , Issue.3 , pp. 927-929
    • Campbell, A.N.1    Hollister, V.F.2    Duda, R.O.3
  • 6
    • 0003846047 scopus 로고
    • Learning Bayesian networks is NP-hard
    • Technical Report MSR-TR-94-l7, Microsoft Research, Microsoft Corporation
    • Chickering, D.M., Geiger, D., Heckerman, D., 1994. Learning Bayesian networks is NP-hard. Technical Report MSR-TR-94-l7, Microsoft Research, Microsoft Corporation, 22pp.
    • (1994) , pp. 22
    • Chickering, D.M.1    Geiger, D.2    Heckerman, D.3
  • 7
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • G.F. Cooper E. Herskovits A Bayesian method for the induction of probabilistic networks from data Machine Learning 9 1992 309-347
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 8
    • 0742330425 scopus 로고    scopus 로고
    • VMS deposits: Geological characteristics, genetic models and a review of their metallogenesis in the Aravalli range, NW India
    • M. Deb (Ed.) Narosa Publishing House New Delhi
    • M. Deb VMS deposits: Geological characteristics, genetic models and a review of their metallogenesis in the Aravalli range, NW India In: M. Deb (Ed.) Crustal Evolution and Metallogeny in the Northwestern Indian Shield 2000 Narosa Publishing House New Delhi 217-239
    • (2000) Crustal Evolution and Metallogeny in the Northwestern Indian Shield , pp. 217-239
    • Deb, M.1
  • 9
    • 0002419948 scopus 로고    scopus 로고
    • Beyond Independence: Conditions for optimality of the simple Bayesian classifier
    • Saitta L. (Ed.) Morgan Kaufmann San Francisco, CA
    • P. Domingos M. Pazzani Beyond Independence: Conditions for optimality of the simple Bayesian classifier In: Saitta L. (Ed.) Proceedings of the 13th International Conference on Machine Learning 1996 Morgan Kaufmann San Francisco, CA 105-112
    • (1996) Proceedings of the 13th International Conference on Machine Learning , pp. 105-112
    • Domingos, P.1    Pazzani, M.2
  • 10
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple Bayesian classifier under zero-one loss
    • P. Domingos M. Pazzani On the optimality of the simple Bayesian classifier under zero-one loss Machine Learning 29 1997 103-130
    • (1997) Machine Learning , vol.29 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 12
    • 0342293607 scopus 로고
    • Semantic network representations in rule-based interference systems
    • D.A. Waterman F. Hayes-Roth (Eds.) Academic Press New York
    • R.O. Duda P.E. Hart N.J. Nilsson G.L. Sutherland Semantic network representations in rule-based interference systems In: D.A. Waterman F. Hayes-Roth (Eds.) Pattern-Directed Inference Systems 1978 Academic Press New York 203-221
    • (1978) Pattern-Directed Inference Systems , pp. 203-221
    • Duda, R.O.1    Hart, P.E.2    Nilsson, N.J.3    Sutherland, G.L.4
  • 14
    • 0030125397 scopus 로고    scopus 로고
    • Knowledge representation and inference in similarity networks and Bayesian multinets
    • D. Geiger D. Heckerman Knowledge representation and inference in similarity networks and Bayesian multinets Artificial Intelligence 82 1996 45-74
    • (1996) Artificial Intelligence , vol.82 , pp. 45-74
    • Geiger, D.1    Heckerman, D.2
  • 16
    • 85039585340 scopus 로고
    • Total intensity aeromagnetic map and map showing the magnetic zones of the Aravalli Region, southern Rajasthan and northwestern Gujarat, India (1:253,440)
    • GSI, Hyderabad, India, 4 sheets
    • GSI, 1981. Total intensity aeromagnetic map and map showing the magnetic zones of the Aravalli Region, southern Rajasthan and northwestern Gujarat, India (1:253,440). Geological Survey of India, Hyderabad, India, 4 sheets.
    • (1981) Geological Survey of India
  • 21
    • 84987031663 scopus 로고
    • Probabilistic similarity networks
    • D. Heckerman Probabilistic similarity networks Networks 20 1990 607-636
    • (1990) Networks , vol.20 , pp. 607-636
    • Heckerman, D.1
  • 22
  • 23
    • 0026359028 scopus 로고
    • Emulating the prospector expert system with a raster GIS
    • S.S. Katz Emulating the prospector expert system with a raster GIS Computers and Geosciences 17 1991 1033-1050
    • (1991) Computers and Geosciences , vol.17 , pp. 1033-1050
    • Katz, S.S.1
  • 24
    • 0242603260 scopus 로고    scopus 로고
    • Arc-SDM: ArcView extension for spatial data modelling using weights of evidence, logistic regression, fuzzy logic and neural network analysis
    • Kemp, L.D., Bonham-Carter, G.F., Raines, G.L., Looney, C.G., 2001. Arc-SDM: ArcView extension for spatial data modelling using weights of evidence, logistic regression, fuzzy logic and neural network analysis. http://ntserv.gis.nrcan.gc.ca/sdm/
    • (2001)
    • Kemp, L.D.1    Bonham-Carter, G.F.2    Raines, G.L.3    Looney, C.G.4
  • 27
    • 0031998121 scopus 로고    scopus 로고
    • Detection of oil spills in radar images of sea surface
    • M. Kubat R. Holte S. Matwin Detection of oil spills in radar images of sea surface Machine Learning 30 1998 195-215
    • (1998) Machine Learning , vol.30 , pp. 195-215
    • Kubat, M.1    Holte, R.2    Matwin, S.3
  • 31
    • 0742277772 scopus 로고
    • Grade and tonnage model of sedimentary exhalative Zn-Pb
    • Cox, D.P., Singer, D.A. (Eds.), US Geological Survey Bulletin
    • Menzie, W.D., Mosier, D.L., 1986. Grade and tonnage model of sedimentary exhalative Zn-Pb. In: Cox, D.P., Singer, D.A. (Eds.), Mineral Deposit Models. US Geological Survey Bulletin, vol. 1693, pp. 212-215.
    • (1986) Mineral Deposit Models , vol.1693 , pp. 212-215
    • Menzie, W.D.1    Mosier, D.L.2
  • 33
    • 0003391330 scopus 로고
    • Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference
    • Morgan Kaufmann, Palo Alto, CA
    • Pearl, J., 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, Palo Alto, CA, 383pp.
    • (1988) , pp. 383
    • Pearl, J.1
  • 35
    • 26844439018 scopus 로고    scopus 로고
    • Knowledge-driven and data-driven fuzzy models for predictive mineral potential mapping
    • A. Porwal E.J.M. Carranza M. Hale Knowledge-driven and data-driven fuzzy models for predictive mineral potential mapping Natural Resources Research 12 1 2003 1-25
    • (2003) Natural Resources Research , vol.12 , Issue.1 , pp. 1-25
    • Porwal, A.1    Carranza, E.J.M.2    Hale, M.3
  • 36
    • 23944502615 scopus 로고    scopus 로고
    • Artificial neural networks for mineral potential mapping: A case study from Aravalli Province, western India
    • A. Porwal E.J.M. Carranza M. Hale Artificial neural networks for mineral potential mapping: A case study from Aravalli Province, western India Natural Resources Research 12 3 2003 155-177
    • (2003) Natural Resources Research , vol.12 , Issue.3 , pp. 155-177
    • Porwal, A.1    Carranza, E.J.M.2    Hale, M.3
  • 38
    • 0026484340 scopus 로고
    • Developing a geographic expert system for regional mapping of VMS deposit potential
    • R.K. Reddy G.F. Bonham-Carter A.G. Galley Developing a geographic expert system for regional mapping of VMS deposit potential Nonrenewable Resources 1 2 1992 112-124
    • (1992) Nonrenewable Resources , vol.1 , Issue.2 , pp. 112-124
    • Reddy, R.K.1    Bonham-Carter, G.F.2    Galley, A.G.3
  • 39
    • 0023698385 scopus 로고
    • Stratigraphic and tectonic frame work of the Aravalli Mountain Range
    • Roy, A.B. (Ed.), Memoirs of Geological Society of India
    • Roy, A.B., 1988. Stratigraphic and tectonic frame work of the Aravalli Mountain Range. In: Roy, A.B. (Ed.), Precambrian of the Aravalli Mountain Rajasthan, India. Memoirs of Geological Society of India, vol. 7, pp. 3-31.
    • (1988) Precambrian of the Aravalli Mountain Rajasthan, India , vol.7 , pp. 3-31
    • Roy, A.B.1
  • 40
    • 0001393761 scopus 로고    scopus 로고
    • Comparison of weights of evidence and probabilistic neural networks
    • D.A. Singer R. Kouda Comparison of weights of evidence and probabilistic neural networks Natural Resources Research 8 4 1999 287-298
    • (1999) Natural Resources Research , vol.8 , Issue.4 , pp. 287-298
    • Singer, D.A.1    Kouda, R.2
  • 41
    • 77956792298 scopus 로고
    • The tectonic setting of mineralization in the Proterozoic Aravalli-Delhi orogenic belt, NW India
    • S.M. Naqvi (Ed.) Elsevier Amsterdam
    • T.J. Sugden M. Deb B.F. Windley The tectonic setting of mineralization in the Proterozoic Aravalli-Delhi orogenic belt, NW India In: S.M. Naqvi (Ed.) Precambrian Continental Crust and its Economic Resources 1990 Elsevier Amsterdam 367-390
    • (1990) Precambrian Continental Crust and Its Economic Resources , pp. 367-390
    • Sugden, T.J.1    Deb, M.2    Windley, B.F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.