-
1
-
-
0036567524
-
Learning Bayesian networks from data: An information-theory based approach
-
Cheng, J., Greiner, R., Kelly, J., Bell, D., & Liu, W. (2002). Learning Bayesian networks from data: An information-theory based approach. Artificial Intelligence Journal, 137:1-2, 43-90.
-
(2002)
Artificial Intelligence Journal
, vol.137
, Issue.1-2
, pp. 43-90
-
-
Cheng, J.1
Greiner, R.2
Kelly, J.3
Bell, D.4
Liu, W.5
-
2
-
-
0002248815
-
A Bayesian approach to learning Bayesian networks with local structure
-
Morgan Kaufmann
-
Chickering, D., Heckerman, D., & Meek, C. (1997). A Bayesian approach to learning Bayesian networks with local structure. In Proceedings of Thirteenth conference on Uncertainty in Artificial Intelligence, 80-89. Morgan Kaufmann.
-
(1997)
Proceedings of Thirteenth Conference on Uncertainty in Artificial Intelligence
, pp. 80-89
-
-
Chickering, D.1
Heckerman, D.2
Meek, C.3
-
3
-
-
34249832377
-
A Bayesian method for the induction of probabilistic networks from data
-
Cooper, G., & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9, 309-347.
-
(1992)
Machine Learning
, vol.9
, pp. 309-347
-
-
Cooper, G.1
Herskovits, E.2
-
4
-
-
0031276011
-
Bayesian network classifiers
-
Friedman, N., Geiger, D., & Goldszmidt, M. (1997). Bayesian network classifiers. Machine Learning, 29, 131-163.
-
(1997)
Machine Learning
, vol.29
, pp. 131-163
-
-
Friedman, N.1
Geiger, D.2
Goldszmidt, M.3
-
8
-
-
0002370418
-
A tutorial on learning with Bayesian networks
-
M. I. Jordan (Ed.), MIT Press
-
Heckerman, D. (1999). A tutorial on learning with Bayesian networks. In M. I. Jordan (Ed.), Learning in Graphical Models, 301-354. MIT Press.
-
(1999)
Learning in Graphical Models
, pp. 301-354
-
-
Heckerman, D.1
-
9
-
-
34249761849
-
Learning Bayesian networks: The combination of knowledge and statistical data
-
Heckerman, D., Geiger, D., & Chickering, D. M. (1995). Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 20, 197-243.
-
(1995)
Machine Learning
, vol.20
, pp. 197-243
-
-
Heckerman, D.1
Geiger, D.2
Chickering, D.M.3
-
10
-
-
0000545946
-
Improvements to Platt's SMO algorithm for SVM classifier design
-
Keerthi, S., Shevade, S., Bhattacharyya, C., & Murthy, K. (2001). Improvements to Platt's SMO algorithm for SVM classifier design. Neural Computation, 13(3), 637-649.
-
(2001)
Neural Computation
, vol.13
, Issue.3
, pp. 637-649
-
-
Keerthi, S.1
Shevade, S.2
Bhattacharyya, C.3
Murthy, K.4
-
12
-
-
0028482006
-
Learning Bayesian belief networks: An approach based on the MDL principle
-
Lam, W., & Bacchus, F. (1994). Learning Bayesian belief networks: an approach based on the MDL principle. Computational Intelligence, 10(4), 269-293.
-
(1994)
Computational Intelligence
, vol.10
, Issue.4
, pp. 269-293
-
-
Lam, W.1
Bacchus, F.2
-
14
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
MIT Press
-
Platt, J. C. (1998). Fast training of support vector machines using sequential minimal optimization. Advances in Kernel Methods-Support Vector Learning. MIT Press.
-
(1998)
Advances in Kernel Methods-support Vector Learning
-
-
Platt, J.C.1
-
16
-
-
0042346121
-
Tree induction for probability-based ranking
-
Provost, F. J., & Domingos, P. (2003). Tree induction for probability-based ranking. Machine Learning, 52(3), 199-215.
-
(2003)
Machine Learning
, vol.52
, Issue.3
, pp. 199-215
-
-
Provost, F.J.1
Domingos, P.2
-
19
-
-
14844351034
-
Not so naive Bayes: Aggregating one-dependence estimators
-
Webb, G. I., Boughton, J., & Wang, Z. (2005). Not so naive Bayes: Aggregating one-dependence estimators. Journal of Machine Learning, 58(1), 5-24.
-
(2005)
Journal of Machine Learning
, vol.58
, Issue.1
, pp. 5-24
-
-
Webb, G.I.1
Boughton, J.2
Wang, Z.3
|