메뉴 건너뛰기




Volumn 29, Issue 1-2, 2003, Pages 39-60

Bayesian applications of belief networks and multilayer perceptrons for ovarian tumor classification with rejection

Author keywords

Bayesian multilayer perceptron; Belief network; Classification with rejection; Informative prior distribution; Knowledge acquisition

Indexed keywords

MEDICINE; MULTILAYER NEURAL NETWORKS; STATISTICAL METHODS; TUMORS;

EID: 0041334207     PISSN: 09333657     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0933-3657(03)00053-8     Document Type: Conference Paper
Times cited : (48)

References (61)
  • 1
    • 0000918302 scopus 로고
    • Hints and the VC dimension
    • Abu-Mostafa Y.S., Hints and the VC dimension. Neural Comput. 5(2):1993;278-288.
    • (1993) Neural Comput. , vol.5 , Issue.2 , pp. 278-288
    • Abu-Mostafa, Y.S.1
  • 3
    • 0035521560 scopus 로고    scopus 로고
    • Challenges for intelligent systems in biology
    • Altman R.B., Challenges for intelligent systems in biology. IEEE Intell. Syst. 16(6):2002;14-18.
    • (2002) IEEE Intell. Syst. , vol.16 , Issue.6 , pp. 14-18
    • Altman, R.B.1
  • 5
    • 85031066611 scopus 로고    scopus 로고
    • Using literature and data to learn Bayesian networks as clinical models of ovarian tumors
    • in press. Special issue on Bayesian Models Med
    • Antal P, Fannes G, Moreau Y, Timmerman D, De Moor B. Using literature and data to learn Bayesian networks as clinical models of ovarian tumors. Artif Intell Med, 2003, in press. Special issue on Bayesian Models Med.
    • (2003) Artif Intell Med
    • Antal, P.1    Fannes, G.2    Moreau, Y.3    Timmerman, D.4    De Moor, B.5
  • 14
    • 0024750852 scopus 로고
    • Learnability and the Vapnik-Chervonenkis dimension
    • Blumer A., Ehrenfeucht A., Haussler D., Warmuth M.K., Learnability and the Vapnik-Chervonenkis dimension. J. ACM. 36(4):1989;929-965.
    • (1989) J. ACM , vol.36 , Issue.4 , pp. 929-965
    • Blumer, A.1    Ehrenfeucht, A.2    Haussler, D.3    Warmuth, M.K.4
  • 15
    • 84949434688 scopus 로고    scopus 로고
    • Learning Bayesian belief network classifiers: Algorithms and system
    • Cheng J., Greiner R., Learning Bayesian belief network classifiers: algorithms and system. Lect. Notes Comput. Sci. 2056:2001;141-151.
    • (2001) Lect. Notes Comput. Sci. , vol.2056 , pp. 141-151
    • Cheng, J.1    Greiner, R.2
  • 16
    • 0027979310 scopus 로고
    • Autosomal dominant inheritance of early-onset breast cancer
    • Claus E.B., Risch N., Thompson W.D., Autosomal dominant inheritance of early-onset breast cancer. Cancer. 73(3):1994;643-650.
    • (1994) Cancer , vol.73 , Issue.3 , pp. 643-650
    • Claus, E.B.1    Risch, N.2    Thompson, W.D.3
  • 18
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper G.F., Herskovits E., A Bayesian method for the induction of probabilistic networks from data. Machine Learn. 9:1992;309-347.
    • (1992) Machine Learn. , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 19
    • 0027560587 scopus 로고
    • Approximating probabilistic inference in Bayesian belief networks is NP-hard
    • Dagum P., Luby M., Approximating probabilistic inference in Bayesian belief networks is NP-hard. Artif. Intell. 60:1993;141-153.
    • (1993) Artif. Intell. , vol.60 , pp. 141-153
    • Dagum, P.1    Luby, M.2
  • 20
    • 0031269467 scopus 로고    scopus 로고
    • The sample complexity of learning fixed-structure Bayesian networks
    • Dasgupta S., The sample complexity of learning fixed-structure Bayesian networks. Machine Learn. 29:1997;165-180.
    • (1997) Machine Learn. , vol.29 , pp. 165-180
    • Dasgupta, S.1
  • 22
    • 0028843102 scopus 로고
    • Breast and ovarian cancer incidence in BRCA1-mutation
    • Easton D.F., Ford D., Bishop D.T., Breast and ovarian cancer incidence in BRCA1-mutation. Am. J. Hum. Genet. 56:1995;265-271.
    • (1995) Am. J. Hum. Genet. , vol.56 , pp. 265-271
    • Easton, D.F.1    Ford, D.2    Bishop, D.T.3
  • 23
    • 0023675912 scopus 로고    scopus 로고
    • Comparison of serum CA 125, clinical impression, and ultrasound in the preoperative evaluation of ovarian masses
    • Finkler N.J., Benaceraf B., Lavin P.T., Comparison of serum CA 125, clinical impression, and ultrasound in the preoperative evaluation of ovarian masses. Obstetrics Gynecol. 72(4):1998;659-663.
    • (1998) Obstetrics Gynecol. , vol.72 , Issue.4 , pp. 659-663
    • Finkler, N.J.1    Benaceraf, B.2    Lavin, P.T.3
  • 27
    • 0002977294 scopus 로고    scopus 로고
    • A characterization of the Dirichlet distribution with application to learning Bayesian networks
    • Besnard P, Hanks S, editors. Morgan Kaufmann
    • Geiger D, Heckerman D. A characterization of the Dirichlet distribution with application to learning Bayesian networks. In: Besnard P, Hanks S, editors. Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence (UAI-1995). Morgan Kaufmann; 2000. p. 196-207.
    • (2000) Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence (UAI-1995) , pp. 196-207
    • Geiger, D.1    Heckerman, D.2
  • 29
  • 30
    • 0024462627 scopus 로고
    • Macroscopic characterization of ovarian tumors and the relation to the histological diagnosis
    • Granberg S., Wikland M., Jansson I., Macroscopic characterization of ovarian tumors and the relation to the histological diagnosis. Gynecol. Oncol. 35:1989;139-144.
    • (1989) Gynecol. Oncol. , vol.35 , pp. 139-144
    • Granberg, S.1    Wikland, M.2    Jansson, I.3
  • 32
    • 0020083498 scopus 로고
    • The meaning and use of the area under receiver operating characteristic (ROC) curve
    • Hanley J.A., McNeil B.J., The meaning and use of the area under receiver operating characteristic (ROC) curve. Radiology. 143:1982;29-36.
    • (1982) Radiology , vol.143 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 33
    • 0027092658 scopus 로고
    • Characteristics relating to ovarian cancer risk (i, ii, iii, iv)
    • Harris R, Whittemore AS, Itnyre J, and the Collaborative Ovarian Cancer Group. Characteristics relating to ovarian cancer risk (i, ii, iii, iv). Am J Epidemiol 1992;136:1175-1220.
    • (1992) Am J Epidemiol , vol.136 , pp. 1175-1220
    • Harris, R.1    Whittemore, A.S.2    Itnyre, J.3
  • 34
    • 0024082469 scopus 로고
    • Quantifying inductive bias: AI learning algorithms and Valiant's learning framework
    • Haussler D., Quantifying inductive bias: AI learning algorithms and Valiant's learning framework. Artif. Intell. 36:1988;177-221.
    • (1988) Artif. Intell. , vol.36 , pp. 177-221
    • Haussler, D.1
  • 35
    • 0028132501 scopus 로고
    • Bounds on the sample complexity of Bayesian learning using information theory and the Vapnik-Chervonenkis dimension
    • Haussler D., Bounds on the sample complexity of Bayesian learning using information theory and the Vapnik-Chervonenkis dimension. Machine Learn. 14:1994;83-113.
    • (1994) Machine Learn. , vol.14 , pp. 83-113
    • Haussler, D.1
  • 36
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • Heckerman D., Geiger D., Chickering D., Learning Bayesian networks: the combination of knowledge and statistical data. Machine Learn. 20:1995;197-243.
    • (1995) Machine Learn. , vol.20 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.3
  • 37
    • 30244555119 scopus 로고    scopus 로고
    • Inference in belief networks: a procedural guide
    • Amsterdam: Elsevier
    • Huang C, Darwiche A. Inference in belief networks: a procedural guide. Amsterdam: Elsevier. Int J Approx Reason 1996;5:225-63.
    • (1996) Int J Approx Reason , vol.5 , pp. 225-263
    • Huang, C.1    Darwiche, A.2
  • 40
    • 0031235612 scopus 로고    scopus 로고
    • Does machine learning really work?
    • Mitchell T.M., Does machine learning really work? AI Mag. 18:1997;11-20.
    • (1997) AI Mag. , vol.18 , pp. 11-20
    • Mitchell, T.M.1
  • 41
    • 0347128520 scopus 로고    scopus 로고
    • Issues in Bayesian analysis of neural network models
    • Müller P., Insua R.D., Issues in Bayesian analysis of neural network models. Neural Comput. 10:1998;571-592.
    • (1998) Neural Comput. , vol.10 , pp. 571-592
    • Müller, P.1    Insua, R.D.2
  • 45
    • 0032203371 scopus 로고    scopus 로고
    • Incorporating prior information in machine learning by creating virtual examples
    • Niyogi P., Poggio T., Girosi F., Incorporating prior information in machine learning by creating virtual examples. Proc. IEEE. 86(11):1998; 2196-2209.
    • (1998) Proc. IEEE , vol.86 , Issue.11 , pp. 2196-2209
    • Niyogi, P.1    Poggio, T.2    Girosi, F.3
  • 48
    • 84902126683 scopus 로고    scopus 로고
    • Clustering in weight space of feedforward nets
    • von der Malsburg C, editor. Berlin: Springer
    • Rüger SM, Ossen A. Clustering in weight space of feedforward nets. In: von der Malsburg C, editor. ICANN 96, Lecture Notes in Computer Science. Berlin: Springer; 1996. p. 83-8.
    • (1996) ICANN 96, Lecture Notes in Computer Science , pp. 83-88
    • Rüger, S.M.1    Ossen, A.2
  • 51
    • 0001006209 scopus 로고
    • Local computations with probabilities on graphical structures and their application to expert systems
    • Spiegelhalter D.J., Local computations with probabilities on graphical structures and their application to expert systems. J. R. Statist. Soc. B. 50(2):1988;157-224.
    • (1988) J. R. Statist. Soc. B , vol.50 , Issue.2 , pp. 157-224
    • Spiegelhalter, D.J.1
  • 53
    • 84989094213 scopus 로고
    • Validity of pulsatility and resistance indices in classification of adnexal tumors with transvaginal color Doppler ultrasound
    • Tekay A., Jouppila P., Validity of pulsatility and resistance indices in classification of adnexal tumors with transvaginal color Doppler ultrasound. Ultrasound Obstetrics Gynecol. 2:1992;338-344.
    • (1992) Ultrasound Obstetrics Gynecol. , vol.2 , pp. 338-344
    • Tekay, A.1    Jouppila, P.2
  • 55
    • 0032977423 scopus 로고    scopus 로고
    • Artificial neural network models for the pre-operative discrimination between malignant and benign adnexal masses
    • Timmerman D., Artificial neural network models for the pre-operative discrimination between malignant and benign adnexal masses. Ultrasound Obstetrics Gynecol. 13:1999;17-25.
    • (1999) Ultrasound Obstetrics Gynecol. , vol.13 , pp. 17-25
    • Timmerman, D.1
  • 56
    • 0034487466 scopus 로고    scopus 로고
    • Terms, definitions and measurements to describe the sonographic features of adnexal tumors: A consensus opinion from the international ovarian tumor analysis (IOTA) group
    • Timmerman D., Valentin L., Bourne T.H., Collins W.P., Verrelst H., Vergote I., Terms, definitions and measurements to describe the sonographic features of adnexal tumors: a consensus opinion from the international ovarian tumor analysis (IOTA) group. Ultrasound Obstetrics Gynecol. 16(5):2000;500-505.
    • (2000) Ultrasound Obstetrics Gynecol. , vol.16 , Issue.5 , pp. 500-505
    • Timmerman, D.1    Valentin, L.2    Bourne, T.H.3    Collins, W.P.4    Verrelst, H.5    Vergote, I.6
  • 57
    • 0028529307 scopus 로고
    • Knowledge-based artificial neural networks
    • Towell G., Shavlik J., Knowledge-based artificial neural networks. Artif. Intell. 70:1994;119-165.
    • (1994) Artif. Intell. , vol.70 , pp. 119-165
    • Towell, G.1    Shavlik, J.2
  • 58
    • 0042700678 scopus 로고    scopus 로고
    • National Cancer Institute (US). SEER cancer data; 1998.
    • (1998) SEER Cancer Data
  • 59
    • 0031106790 scopus 로고    scopus 로고
    • Gray scale sonography, subjective evaluation of the color Doppler image and measurement of blood flow velocity for distinguishing benign and malignant tumors of suspected adnexal origin
    • Valentin L., Gray scale sonography, subjective evaluation of the color Doppler image and measurement of blood flow velocity for distinguishing benign and malignant tumors of suspected adnexal origin. Eur. J. Obstetrics Gynecol. Reprod. Biol. 72:1997;63-72.
    • (1997) Eur. J. Obstetrics Gynecol. Reprod. Biol. , vol.72 , pp. 63-72
    • Valentin, L.1
  • 61
    • 0031025322 scopus 로고    scopus 로고
    • Prevalence and contribution of BRCA1 mutations in breast cancer and ovarian cancer
    • Whittemore A.S., Gong G., Itnyre J., Prevalence and contribution of BRCA1 mutations in breast cancer and ovarian cancer. Am. J. Hum. Genet. 60:1997;496-504.
    • (1997) Am. J. Hum. Genet. , vol.60 , pp. 496-504
    • Whittemore, A.S.1    Gong, G.2    Itnyre, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.