-
1
-
-
0000918302
-
Hints and the VC dimension
-
Abu-Mostafa Y.S., Hints and the VC dimension. Neural Comput. 5(2):1993;278-288.
-
(1993)
Neural Comput.
, vol.5
, Issue.2
, pp. 278-288
-
-
Abu-Mostafa, Y.S.1
-
2
-
-
0042199595
-
Bayesian error-bars for belief net inference
-
Breese J, Koller D, editors. Morgan Kaufmann
-
Van Allen T, Greiner R, Hooper P. Bayesian error-bars for belief net inference. In: Breese J, Koller D, editors. Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence (UAI-2001). Morgan Kaufmann; 2001. p. 522-9.
-
(2001)
Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence (UAI-2001)
, pp. 522-529
-
-
Van Allen, T.1
Greiner, R.2
Hooper, P.3
-
3
-
-
0035521560
-
Challenges for intelligent systems in biology
-
Altman R.B., Challenges for intelligent systems in biology. IEEE Intell. Syst. 16(6):2002;14-18.
-
(2002)
IEEE Intell. Syst.
, vol.16
, Issue.6
, pp. 14-18
-
-
Altman, R.B.1
-
5
-
-
85031066611
-
Using literature and data to learn Bayesian networks as clinical models of ovarian tumors
-
in press. Special issue on Bayesian Models Med
-
Antal P, Fannes G, Moreau Y, Timmerman D, De Moor B. Using literature and data to learn Bayesian networks as clinical models of ovarian tumors. Artif Intell Med, 2003, in press. Special issue on Bayesian Models Med.
-
(2003)
Artif Intell Med
-
-
Antal, P.1
Fannes, G.2
Moreau, Y.3
Timmerman, D.4
De Moor, B.5
-
6
-
-
0042700747
-
Incorporation of prior knowledge in black-box models: Comparison of transformation methods from Bayesian network to multilayer perceptrons
-
Antal P, Fannes G, Verrelst H, De Moor B, Vandewalle J. Incorporation of prior knowledge in black-box models: comparison of transformation methods from Bayesian network to multilayer perceptrons. In: Workshop on Fusion of Domain Knowledge with Data for Decision Support, 16th Uncertainty in Artificial Intelligence Conference; 2000. p. 42-8.
-
(2000)
Workshop on Fusion of Domain Knowledge with Data for Decision Support, 16th Uncertainty in Artificial Intelligence Conference
, pp. 42-48
-
-
Antal, P.1
Fannes, G.2
Verrelst, H.3
De Moor, B.4
Vandewalle, J.5
-
7
-
-
0042700675
-
On the potential of domain literature for clustering and Bayesian network learning
-
Antal P, Glenisson P, Fannes G, Mathijs J, Moreau Y, De Moor B. On the potential of domain literature for clustering and Bayesian network learning. In: Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM-KDD-2002); 2002. p. 405-14.
-
(2002)
Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM-KDD-2002)
, pp. 405-414
-
-
Antal, P.1
Glenisson, P.2
Fannes, G.3
Mathijs, J.4
Moreau, Y.5
De Moor, B.6
-
9
-
-
0033713172
-
Bayesian networks in ovarian cancer diagnosis: Potential and limitations
-
Antal P, Verrelst H, Timmerman D, Moreau Y, Van Huffel S, De Moor B, Vergote I. Bayesian networks in ovarian cancer diagnosis: potential and limitations. In: Proceedings of the 13th IEEE Symposium on Computer-Based Medical System (CBMS-2000); 2000. p. 103-9.
-
(2000)
Proceedings of the 13th IEEE Symposium on Computer-Based Medical System (CBMS-2000)
, pp. 103-109
-
-
Antal, P.1
Verrelst, H.2
Timmerman, D.3
Moreau, Y.4
Van Huffel, S.5
De Moor, B.6
Vergote, I.7
-
14
-
-
0024750852
-
Learnability and the Vapnik-Chervonenkis dimension
-
Blumer A., Ehrenfeucht A., Haussler D., Warmuth M.K., Learnability and the Vapnik-Chervonenkis dimension. J. ACM. 36(4):1989;929-965.
-
(1989)
J. ACM
, vol.36
, Issue.4
, pp. 929-965
-
-
Blumer, A.1
Ehrenfeucht, A.2
Haussler, D.3
Warmuth, M.K.4
-
15
-
-
84949434688
-
Learning Bayesian belief network classifiers: Algorithms and system
-
Cheng J., Greiner R., Learning Bayesian belief network classifiers: algorithms and system. Lect. Notes Comput. Sci. 2056:2001;141-151.
-
(2001)
Lect. Notes Comput. Sci.
, vol.2056
, pp. 141-151
-
-
Cheng, J.1
Greiner, R.2
-
16
-
-
0027979310
-
Autosomal dominant inheritance of early-onset breast cancer
-
Claus E.B., Risch N., Thompson W.D., Autosomal dominant inheritance of early-onset breast cancer. Cancer. 73(3):1994;643-650.
-
(1994)
Cancer
, vol.73
, Issue.3
, pp. 643-650
-
-
Claus, E.B.1
Risch, N.2
Thompson, W.D.3
-
18
-
-
34249832377
-
A Bayesian method for the induction of probabilistic networks from data
-
Cooper G.F., Herskovits E., A Bayesian method for the induction of probabilistic networks from data. Machine Learn. 9:1992;309-347.
-
(1992)
Machine Learn.
, vol.9
, pp. 309-347
-
-
Cooper, G.F.1
Herskovits, E.2
-
19
-
-
0027560587
-
Approximating probabilistic inference in Bayesian belief networks is NP-hard
-
Dagum P., Luby M., Approximating probabilistic inference in Bayesian belief networks is NP-hard. Artif. Intell. 60:1993;141-153.
-
(1993)
Artif. Intell.
, vol.60
, pp. 141-153
-
-
Dagum, P.1
Luby, M.2
-
20
-
-
0031269467
-
The sample complexity of learning fixed-structure Bayesian networks
-
Dasgupta S., The sample complexity of learning fixed-structure Bayesian networks. Machine Learn. 29:1997;165-180.
-
(1997)
Machine Learn.
, vol.29
, pp. 165-180
-
-
Dasgupta, S.1
-
22
-
-
0028843102
-
Breast and ovarian cancer incidence in BRCA1-mutation
-
Easton D.F., Ford D., Bishop D.T., Breast and ovarian cancer incidence in BRCA1-mutation. Am. J. Hum. Genet. 56:1995;265-271.
-
(1995)
Am. J. Hum. Genet.
, vol.56
, pp. 265-271
-
-
Easton, D.F.1
Ford, D.2
Bishop, D.T.3
-
23
-
-
0023675912
-
Comparison of serum CA 125, clinical impression, and ultrasound in the preoperative evaluation of ovarian masses
-
Finkler N.J., Benaceraf B., Lavin P.T., Comparison of serum CA 125, clinical impression, and ultrasound in the preoperative evaluation of ovarian masses. Obstetrics Gynecol. 72(4):1998;659-663.
-
(1998)
Obstetrics Gynecol.
, vol.72
, Issue.4
, pp. 659-663
-
-
Finkler, N.J.1
Benaceraf, B.2
Lavin, P.T.3
-
27
-
-
0002977294
-
A characterization of the Dirichlet distribution with application to learning Bayesian networks
-
Besnard P, Hanks S, editors. Morgan Kaufmann
-
Geiger D, Heckerman D. A characterization of the Dirichlet distribution with application to learning Bayesian networks. In: Besnard P, Hanks S, editors. Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence (UAI-1995). Morgan Kaufmann; 2000. p. 196-207.
-
(2000)
Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence (UAI-1995)
, pp. 196-207
-
-
Geiger, D.1
Heckerman, D.2
-
30
-
-
0024462627
-
Macroscopic characterization of ovarian tumors and the relation to the histological diagnosis
-
Granberg S., Wikland M., Jansson I., Macroscopic characterization of ovarian tumors and the relation to the histological diagnosis. Gynecol. Oncol. 35:1989;139-144.
-
(1989)
Gynecol. Oncol.
, vol.35
, pp. 139-144
-
-
Granberg, S.1
Wikland, M.2
Jansson, I.3
-
32
-
-
0020083498
-
The meaning and use of the area under receiver operating characteristic (ROC) curve
-
Hanley J.A., McNeil B.J., The meaning and use of the area under receiver operating characteristic (ROC) curve. Radiology. 143:1982;29-36.
-
(1982)
Radiology
, vol.143
, pp. 29-36
-
-
Hanley, J.A.1
McNeil, B.J.2
-
33
-
-
0027092658
-
Characteristics relating to ovarian cancer risk (i, ii, iii, iv)
-
Harris R, Whittemore AS, Itnyre J, and the Collaborative Ovarian Cancer Group. Characteristics relating to ovarian cancer risk (i, ii, iii, iv). Am J Epidemiol 1992;136:1175-1220.
-
(1992)
Am J Epidemiol
, vol.136
, pp. 1175-1220
-
-
Harris, R.1
Whittemore, A.S.2
Itnyre, J.3
-
34
-
-
0024082469
-
Quantifying inductive bias: AI learning algorithms and Valiant's learning framework
-
Haussler D., Quantifying inductive bias: AI learning algorithms and Valiant's learning framework. Artif. Intell. 36:1988;177-221.
-
(1988)
Artif. Intell.
, vol.36
, pp. 177-221
-
-
Haussler, D.1
-
35
-
-
0028132501
-
Bounds on the sample complexity of Bayesian learning using information theory and the Vapnik-Chervonenkis dimension
-
Haussler D., Bounds on the sample complexity of Bayesian learning using information theory and the Vapnik-Chervonenkis dimension. Machine Learn. 14:1994;83-113.
-
(1994)
Machine Learn.
, vol.14
, pp. 83-113
-
-
Haussler, D.1
-
36
-
-
34249761849
-
Learning Bayesian networks: The combination of knowledge and statistical data
-
Heckerman D., Geiger D., Chickering D., Learning Bayesian networks: the combination of knowledge and statistical data. Machine Learn. 20:1995;197-243.
-
(1995)
Machine Learn.
, vol.20
, pp. 197-243
-
-
Heckerman, D.1
Geiger, D.2
Chickering, D.3
-
37
-
-
30244555119
-
Inference in belief networks: a procedural guide
-
Amsterdam: Elsevier
-
Huang C, Darwiche A. Inference in belief networks: a procedural guide. Amsterdam: Elsevier. Int J Approx Reason 1996;5:225-63.
-
(1996)
Int J Approx Reason
, vol.5
, pp. 225-263
-
-
Huang, C.1
Darwiche, A.2
-
40
-
-
0031235612
-
Does machine learning really work?
-
Mitchell T.M., Does machine learning really work? AI Mag. 18:1997;11-20.
-
(1997)
AI Mag.
, vol.18
, pp. 11-20
-
-
Mitchell, T.M.1
-
41
-
-
0347128520
-
Issues in Bayesian analysis of neural network models
-
Müller P., Insua R.D., Issues in Bayesian analysis of neural network models. Neural Comput. 10:1998;571-592.
-
(1998)
Neural Comput.
, vol.10
, pp. 571-592
-
-
Müller, P.1
Insua, R.D.2
-
45
-
-
0032203371
-
Incorporating prior information in machine learning by creating virtual examples
-
Niyogi P., Poggio T., Girosi F., Incorporating prior information in machine learning by creating virtual examples. Proc. IEEE. 86(11):1998; 2196-2209.
-
(1998)
Proc. IEEE
, vol.86
, Issue.11
, pp. 2196-2209
-
-
Niyogi, P.1
Poggio, T.2
Girosi, F.3
-
48
-
-
84902126683
-
Clustering in weight space of feedforward nets
-
von der Malsburg C, editor. Berlin: Springer
-
Rüger SM, Ossen A. Clustering in weight space of feedforward nets. In: von der Malsburg C, editor. ICANN 96, Lecture Notes in Computer Science. Berlin: Springer; 1996. p. 83-8.
-
(1996)
ICANN 96, Lecture Notes in Computer Science
, pp. 83-88
-
-
Rüger, S.M.1
Ossen, A.2
-
51
-
-
0001006209
-
Local computations with probabilities on graphical structures and their application to expert systems
-
Spiegelhalter D.J., Local computations with probabilities on graphical structures and their application to expert systems. J. R. Statist. Soc. B. 50(2):1988;157-224.
-
(1988)
J. R. Statist. Soc. B
, vol.50
, Issue.2
, pp. 157-224
-
-
Spiegelhalter, D.J.1
-
52
-
-
84972488038
-
Bayesian analysis in expert systems
-
Spiegelhalter D.J., Dawid A., Lawritzen S., Cowell R., Bayesian analysis in expert systems. Statist. Sci. 8(3):1993;219-283.
-
(1993)
Statist. Sci.
, vol.8
, Issue.3
, pp. 219-283
-
-
Spiegelhalter, D.J.1
Dawid, A.2
Lawritzen, S.3
Cowell, R.4
-
53
-
-
84989094213
-
Validity of pulsatility and resistance indices in classification of adnexal tumors with transvaginal color Doppler ultrasound
-
Tekay A., Jouppila P., Validity of pulsatility and resistance indices in classification of adnexal tumors with transvaginal color Doppler ultrasound. Ultrasound Obstetrics Gynecol. 2:1992;338-344.
-
(1992)
Ultrasound Obstetrics Gynecol.
, vol.2
, pp. 338-344
-
-
Tekay, A.1
Jouppila, P.2
-
55
-
-
0032977423
-
Artificial neural network models for the pre-operative discrimination between malignant and benign adnexal masses
-
Timmerman D., Artificial neural network models for the pre-operative discrimination between malignant and benign adnexal masses. Ultrasound Obstetrics Gynecol. 13:1999;17-25.
-
(1999)
Ultrasound Obstetrics Gynecol.
, vol.13
, pp. 17-25
-
-
Timmerman, D.1
-
56
-
-
0034487466
-
Terms, definitions and measurements to describe the sonographic features of adnexal tumors: A consensus opinion from the international ovarian tumor analysis (IOTA) group
-
Timmerman D., Valentin L., Bourne T.H., Collins W.P., Verrelst H., Vergote I., Terms, definitions and measurements to describe the sonographic features of adnexal tumors: a consensus opinion from the international ovarian tumor analysis (IOTA) group. Ultrasound Obstetrics Gynecol. 16(5):2000;500-505.
-
(2000)
Ultrasound Obstetrics Gynecol.
, vol.16
, Issue.5
, pp. 500-505
-
-
Timmerman, D.1
Valentin, L.2
Bourne, T.H.3
Collins, W.P.4
Verrelst, H.5
Vergote, I.6
-
57
-
-
0028529307
-
Knowledge-based artificial neural networks
-
Towell G., Shavlik J., Knowledge-based artificial neural networks. Artif. Intell. 70:1994;119-165.
-
(1994)
Artif. Intell.
, vol.70
, pp. 119-165
-
-
Towell, G.1
Shavlik, J.2
-
58
-
-
0042700678
-
-
National Cancer Institute (US). SEER cancer data; 1998.
-
(1998)
SEER Cancer Data
-
-
-
59
-
-
0031106790
-
Gray scale sonography, subjective evaluation of the color Doppler image and measurement of blood flow velocity for distinguishing benign and malignant tumors of suspected adnexal origin
-
Valentin L., Gray scale sonography, subjective evaluation of the color Doppler image and measurement of blood flow velocity for distinguishing benign and malignant tumors of suspected adnexal origin. Eur. J. Obstetrics Gynecol. Reprod. Biol. 72:1997;63-72.
-
(1997)
Eur. J. Obstetrics Gynecol. Reprod. Biol.
, vol.72
, pp. 63-72
-
-
Valentin, L.1
-
61
-
-
0031025322
-
Prevalence and contribution of BRCA1 mutations in breast cancer and ovarian cancer
-
Whittemore A.S., Gong G., Itnyre J., Prevalence and contribution of BRCA1 mutations in breast cancer and ovarian cancer. Am. J. Hum. Genet. 60:1997;496-504.
-
(1997)
Am. J. Hum. Genet.
, vol.60
, pp. 496-504
-
-
Whittemore, A.S.1
Gong, G.2
Itnyre, J.3
|