메뉴 건너뛰기




Volumn 34, Issue 3, 2011, Pages 372-385

Handling numeric attributes when comparing Bayesian network classifiers: Does the discretization method matter?

Author keywords

AODE; Bayesian classifiers; Discretization; Naive Bayes

Indexed keywords

AODE; BAYESIAN CLASSIFIER; BAYESIAN METHODS; BAYESIAN NETWORK CLASSIFIERS; BAYESIAN NETWORKS (BNS); CLASSIFIER PERFORMANCE; CONTINUOUS VARIABLES; DATA SETS; DISCRETE VARIABLES; DISCRETIZATION; DISCRETIZATION METHOD; DISCRETIZATIONS; HILL CLIMBING ALGORITHMS; NAIVE BAYES; REAL PROBLEMS; RUNTIMES; SEMI-NAIVE BAYES;

EID: 79956106290     PISSN: 0924669X     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10489-011-0286-z     Document Type: Conference Paper
Times cited : (33)

References (30)
  • 1
    • 36948999941 scopus 로고    scopus 로고
    • School of Information and Computer Sciences, University of California, Irvine
    • Asuncion A, Newman DJ (2007) UCI machine learning repository. School of Information and Computer Sciences, University of California, Irvine. http://www.ics.uci.edu/~mlearn/MLRepository.html
    • (2007) UCI Machine Learning Repository
    • Asuncion, A.1    Newman, D.J.2
  • 2
    • 33745301431 scopus 로고    scopus 로고
    • Bayesian network classifiers in Weka
    • Bouckaert RR (2005) Bayesian network classifiers in Weka. Technical report
    • (2005) Technical Report
    • Bouckaert, R.R.1
  • 3
    • 0030124955 scopus 로고    scopus 로고
    • A guide to the literature on learning probabilistic networks from data
    • W Buntine 1996 A guide to the literature on learning probabilistic networks from data IEEE Trans Knowl Data Eng 8 195 210 10.1109/69.494161 (Pubitemid 126776290)
    • (1996) IEEE Transactions on Knowledge and Data Engineering , vol.8 , Issue.2 , pp. 195-210
    • Buntine, W.1
  • 5
    • 0000864105 scopus 로고    scopus 로고
    • Global discretization of continuous attributes as preprocessing for machine learning
    • PII S0888613X96000740
    • MR Chmielewski J Grzrmala-Busse 1996 Global discretization of continuous attributes as preprocessing for machine learning Int J Approx Reason 15 4 319 331 0949.68560 10.1016/S0888-613X(96)00074-6 (Pubitemid 126414909)
    • (1996) International Journal of Approximate Reasoning , vol.15 , Issue.4 SPEC. ISS. , pp. 319-331
    • Chmielewski, M.R.1    Grzymala-Busse, J.W.2
  • 6
    • 84933530882 scopus 로고
    • Approximating discrete probability distributions with dependence trees
    • 2443718 0165.22305 10.1109/TIT.1968.1054142
    • C Chow C Liu 1968 Approximating discrete probability distributions with dependence trees IEEE Trans Inf Theory 14 3 462 467 2443718 0165.22305 10.1109/TIT.1968.1054142
    • (1968) IEEE Trans Inf Theory , vol.14 , Issue.3 , pp. 462-467
    • Chow, C.1    Liu, C.2
  • 8
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J Demšar 2006 Statistical comparisons of classifiers over multiple data sets J Mach Learn Res 7 1 30 2274360 (Pubitemid 43022939)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1
  • 10
    • 0002593344 scopus 로고
    • Multi-interval discretization of continuous-valued attributes for classification learning
    • Fayyad UM, Irani KB (1993) Multi-interval discretization of continuous-valued attributes for classification learning. In: Proc of the 13th int joint conf on AI, pp 1022-1027
    • (1993) Proc of the 13th Int Joint Conf on AI , pp. 1022-1027
    • Fayyad, U.M.1    Irani, K.B.2
  • 12
    • 41749119664 scopus 로고    scopus 로고
    • Wrapper discretization by means of estimation of distribution algorithms
    • JL Flores I Inza P Larran̈aga 2007 Wrapper discretization by means of estimation of distribution algorithms Intell Data Anal 11 5 525 545
    • (2007) Intell Data Anal , vol.11 , Issue.5 , pp. 525-545
    • Flores, J.L.1    Inza, I.2    Larran̈aga, P.3
  • 14
    • 0031276011 scopus 로고    scopus 로고
    • Bayesian Network Classifiers
    • N Friedman D Geiger M Goldszmidt 1997 Bayesian network classifiers Mach Learn 29 131 163 0892.68077 10.1023/A:1007465528199 (Pubitemid 127510036)
    • (1997) Machine Learning , vol.29 , Issue.2-3 , pp. 131-163
    • Friedman, N.1    Geiger, D.2    Goldszmidt, M.3
  • 15
    • 58149287952 scopus 로고    scopus 로고
    • An extension on "statistical comparisons of classifiers over multiple data sets" for all pairwise comparisons
    • S García F Herrera 2009 An extension on "Statistical comparisons of classifiers over multiple data sets" for all pairwise comparisons J Mach Learn Res 9 2677 2694
    • (2009) J Mach Learn Res , vol.9 , pp. 2677-2694
    • García, S.1    Herrera, F.2
  • 17
    • 0345306663 scopus 로고    scopus 로고
    • Implications of the Dirichlet assumption for discretization of continuous variables in Naive Bayesian classifiers
    • 1089.68096 10.1023/A:1026367023636
    • C-N Hsu H-J Huang T-T Wong 2003 Implications of the Dirichlet assumption for discretization of continuous variables in Naive Bayesian classifiers Mach Learn 53 3 235 263 1089.68096 10.1023/A:1026367023636
    • (2003) Mach Learn , vol.53 , Issue.3 , pp. 235-263
    • Hsu, C.-N.1    Huang, H.-J.2    Wong, T.-T.3
  • 18
    • 0001750957 scopus 로고
    • Approximations of the critical region of the Friedman statistic
    • 10.1080/03610928008827904
    • R Iman J Davenport 1980 Approximations of the critical region of the Friedman statistic Commun Stat, Theory Methods 9 6 571 595 10.1080/ 03610928008827904
    • (1980) Commun Stat, Theory Methods , vol.9 , Issue.6 , pp. 571-595
    • Iman, R.1    Davenport, J.2
  • 20
    • 0002610991 scopus 로고    scopus 로고
    • Learning augmented Bayesian classifiers: A comparison of distribution-based and classification-based approaches
    • Keogh E, Pazzani M (1999) Learning augmented Bayesian classifiers: a comparison of distribution-based and classification-based approaches. In: Proc of the 7th int workshop on AI and statistics, pp 225-230
    • (1999) Proc of the 7th Int Workshop on AI and Statistics , pp. 225-230
    • Keogh, E.1    Pazzani, M.2
  • 23
    • 0034247206 scopus 로고    scopus 로고
    • Multiboosting: A technique for combining boosting and wagging
    • 10.1023/A:1007659514849
    • GI Webb 2000 Multiboosting: a technique for combining boosting and wagging Mach Learn 40 2 159 196 10.1023/A:1007659514849
    • (2000) Mach Learn , vol.40 , Issue.2 , pp. 159-196
    • Webb, G.I.1
  • 25
    • 14844351034 scopus 로고    scopus 로고
    • Not so naive Bayes: Aggregating one-dependence estimators
    • DOI 10.1007/s10994-005-4258-6
    • GI Webb JR Boughton Z Wang 2005 Not so Naive Bayes: aggregating one-dependence estimators Mach Learn 58 1 5 24 1075.68078 10.1007/s10994-005- 4258-6 (Pubitemid 40356736)
    • (2005) Machine Learning , vol.58 , Issue.1 , pp. 5-24
    • Webb, G.I.1    Boughton, J.R.2    Wang, Z.3
  • 28
    • 58149195307 scopus 로고    scopus 로고
    • Discretization for Naive-Bayes learning: Managing discretization bias and variance
    • 10.1007/s10994-008-5083-5
    • Y Yang GI Webb 2009 Discretization for Naive-Bayes learning: managing discretization bias and variance Mach Learn 74 1 39 74 10.1007/s10994-008-5083-5
    • (2009) Mach Learn , vol.74 , Issue.1 , pp. 39-74
    • Yang, Y.1    Webb, G.I.2
  • 29
    • 0034301677 scopus 로고    scopus 로고
    • Lazy learning of Bayesian rules
    • 10.1023/A:1007613203719
    • Z Zheng GI Webb 2000 Lazy learning of Bayesian rules Mach Learn 41 1 53 84 10.1023/A:1007613203719
    • (2000) Mach Learn , vol.41 , Issue.1 , pp. 53-84
    • Zheng, Z.1    Webb, G.I.2
  • 30
    • 84884333463 scopus 로고    scopus 로고
    • A comparative study of semi-Naive Bayes methods in classification learning
    • University of Technology Sydney
    • Zheng F, Webb GI (2005) A comparative study of semi-Naive Bayes methods in classification learning. In: Proc of the 4th Australasian data mining conf (AusDM05), Sydney. University of Technology, Sydney, pp 141-156
    • (2005) Proc of the 4th Australasian Data Mining Conf (AusDM05) Sydney , pp. 141-156
    • Zheng, F.1    Webb, G.I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.