메뉴 건너뛰기




Volumn 43, Issue 1, 2006, Pages 1-25

Supervised classification with conditional Gaussian networks: Increasing the structure complexity from naive Bayes

Author keywords

Bayesian network; Conditional Gaussian network; Filter; k Dependence Bayesian classifiers; Naive Bayes; Semi naive Bayes; Tree augmented naive Bayes; Wrapper

Indexed keywords

ALGORITHMS; BENCHMARKING; COMPUTATIONAL COMPLEXITY; INFORMATION DISSEMINATION; INFORMATION RETRIEVAL; LINEAR CONTROL SYSTEMS;

EID: 33746334456     PISSN: 0888613X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijar.2006.01.002     Document Type: Article
Times cited : (106)

References (64)
  • 2
    • 33746327471 scopus 로고    scopus 로고
    • S.G. Bottcher, Learning Bayesian networks with mixed variables, PhD thesis, Aalborg University, 2004.
  • 4
    • 33746379591 scopus 로고    scopus 로고
    • J. Cheng, R. Greiner, Comparing Bayesian network classifiers, in: Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence, 1999, pp. 101-107.
  • 5
    • 84933530882 scopus 로고
    • Approximating discrete probability distributions with dependence trees
    • Chow C., and Liu C. Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory 14 (1968) 462-467
    • (1968) IEEE Transactions on Information Theory , vol.14 , pp. 462-467
    • Chow, C.1    Liu, C.2
  • 10
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple Bayesian classifier under zero-one loss
    • Domingos P., and Pazzani M. On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning 29 (1997) 103-130
    • (1997) Machine Learning , vol.29 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 13
    • 35048903577 scopus 로고    scopus 로고
    • M. Egmont-Peterson, Feature selection by Markov chain Monte Carlo sampling: a Bayesian approach, in: Proceedings of the Joint IAPR Workshops SSPR 2004 and SPR 2004, 2004, pp. 1034-1042.
  • 14
    • 33746379280 scopus 로고    scopus 로고
    • U. Fayyad, K. Irani, Multi-interval discretization of continuous-valued attributes for classification learning, in: Proceedings of the 13th International Conference on Artificial Intelligence, 1993, pp. 1022-1027.
  • 15
    • 0000764772 scopus 로고
    • The use of multiple measurements
    • Fisher R.A. The use of multiple measurements. Annals of Eugenics 7 (1936) 179-188
    • (1936) Annals of Eugenics , vol.7 , pp. 179-188
    • Fisher, R.A.1
  • 16
    • 21744462998 scopus 로고    scopus 로고
    • On bias, variance, 0/1 - loss, and the curse-of-dimensionality
    • Friedman J.H. On bias, variance, 0/1 - loss, and the curse-of-dimensionality. Data Mining and Knowledge Discovery 1 (1997) 55-77
    • (1997) Data Mining and Knowledge Discovery , vol.1 , pp. 55-77
    • Friedman, J.H.1
  • 18
    • 33746353403 scopus 로고    scopus 로고
    • N. Friedman, M. Goldszmidt, T. Lee, Bayesian network classification with continuous attributes: getting the best of both discretization and parametric fitting, in: Proceedings of the 15th National Conference on Machine Learning, 1998.
  • 19
    • 33746366814 scopus 로고    scopus 로고
    • D. Geiger, D. Heckerman, Learning Gaussian networks, Technical Report, Microsoft Research, Advanced Technology Division, 1994.
  • 20
    • 0030125397 scopus 로고    scopus 로고
    • Beyond Bayesian networks: similarity networks and Bayesian multinets
    • Geiger D., and Heckerman D. Beyond Bayesian networks: similarity networks and Bayesian multinets. Artificial Intelligence 82 (1996) 45-74
    • (1996) Artificial Intelligence , vol.82 , pp. 45-74
    • Geiger, D.1    Heckerman, D.2
  • 22
    • 0001099335 scopus 로고    scopus 로고
    • Decomposable graphical Gaussian model determination
    • Giudici P., and Green P.J. Decomposable graphical Gaussian model determination. Biometrika 86 4 (1999) 785-801
    • (1999) Biometrika , vol.86 , Issue.4 , pp. 785-801
    • Giudici, P.1    Green, P.J.2
  • 24
    • 14344256569 scopus 로고    scopus 로고
    • D. Grossman, P. Domingos, Learning Bayesian network classifiers by maximizing conditional likelihood, in: Proceeding of the 21th International Conference on Machine Learning, 2004.
  • 26
    • 33746343337 scopus 로고    scopus 로고
    • M.A. Hall, L.A. Smith, Feature subset selection: a correlation based filter approach, in: Proceeding of the Fourth International Conference on Neural Information Processing and Intelligent Information Systems, 1997, pp. 855-858.
  • 27
    • 34249761849 scopus 로고
    • Learning Bayesian networks: the combination of knowledge and statistical data
    • Heckerman D.E., Geiger D., and Chickering D. Learning Bayesian networks: the combination of knowledge and statistical data. Machine Learning 20 (1995) 197-243
    • (1995) Machine Learning , vol.20 , pp. 197-243
    • Heckerman, D.E.1    Geiger, D.2    Chickering, D.3
  • 28
    • 0037403462 scopus 로고    scopus 로고
    • Variance and bias for general loss functions
    • James G.M. Variance and bias for general loss functions. Machine Learning 51 (2003) 115-135
    • (2003) Machine Learning , vol.51 , pp. 115-135
    • James, G.M.1
  • 29
    • 33746365566 scopus 로고    scopus 로고
    • T. Jebara, Discriminative, generative, and imitative learning, PhD thesis, Massachusetts Institute of Technology, 2001.
  • 30
    • 33746331059 scopus 로고    scopus 로고
    • G. John, P. Langley, Estimating continuous distributions in Bayesian classifiers, in: Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence, 1995, pp. 338-345.
  • 33
    • 33746361205 scopus 로고    scopus 로고
    • E.J. Keogh, M. Pazzani, Learning augmented Bayesian classifiers: a comparison of distribution-based and non distribution-based approaches, in: Proceedings of the 7th International Workshop on Artificial Intelligence and Statistics, 1999, pp. 225-230.
  • 34
    • 33746333295 scopus 로고    scopus 로고
    • R. Kohavi, Wrappers for performance enhancement and oblivious decision graphs, PhD Thesis, Computer Science department, 1995.
  • 35
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R., and John G. Wrappers for feature subset selection. Artificial Intelligence 97 1-2 (1997) 273-324
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.2
  • 36
    • 33746357585 scopus 로고    scopus 로고
    • R. Kohavi, D.H. Wolpert, Bias plus variance decomposition for zero-one loss functions, in: International Conference on Machine Learning, 1996.
  • 37
    • 85031799549 scopus 로고    scopus 로고
    • I. Kononenko, Semi-naive Bayesian classifiers, in: Proceedings of the 6th European Working Session on Learning, 1991, pp. 206-219.
  • 38
    • 0033640901 scopus 로고    scopus 로고
    • Comparison of algorithms that select features for pattern classifiers
    • Kudo M. Comparison of algorithms that select features for pattern classifiers. Machine Learning 33 1 (2000) 25-41
    • (2000) Machine Learning , vol.33 , Issue.1 , pp. 25-41
    • Kudo, M.1
  • 39
    • 0026992322 scopus 로고    scopus 로고
    • P. Langley, W. Iba, K. Thompson, An analysis of Bayesian classifiers, in: Proceedings of the 10th National Conference on Artificial Intelligence, 1992, pp. 223-228.
  • 40
    • 33746327470 scopus 로고    scopus 로고
    • P. Langley, S. Sage, Induction of selective Bayesian classifiers, in: Proceedings of the 10th Conference on Uncertainty in Artificial Intelligence, 1994, pp. 399-406.
  • 43
    • 33746324249 scopus 로고    scopus 로고
    • S.L. Lauritzen, N. Wermuth, Mixed interaction models. Technical Report r 84-8, Institute for Electronic Systems, Aalborg University, 1984.
  • 44
    • 0002480085 scopus 로고
    • Graphical models for associations between variables, some of which are qualitative and some quantitative
    • Lauritzen S.L., and Wermuth N. Graphical models for associations between variables, some of which are qualitative and some quantitative. Annals of Statistics 17 (1989)
    • (1989) Annals of Statistics , vol.17
    • Lauritzen, S.L.1    Wermuth, N.2
  • 47
    • 33746333867 scopus 로고    scopus 로고
    • P.M. Murphy, D.W. Aha, UCI repository of machine learning databases, Technical Report, University of California at Irvine, 1995. Available from: .
  • 49
    • 33746331397 scopus 로고    scopus 로고
    • M. Pazzani, Searching for dependencies in Bayesian classifiers, in: Learning from Data: Artificial Intelligence and Statistics V, 1997, pp. 239-248.
  • 51
    • 4644329616 scopus 로고    scopus 로고
    • Bayesian network classifier versus k-NN classifier
    • Pernkopf F. Bayesian network classifier versus k-NN classifier. Pattern Recognition 38 1 (2005) 1-10
    • (2005) Pattern Recognition , vol.38 , Issue.1 , pp. 1-10
    • Pernkopf, F.1
  • 52
    • 31844434495 scopus 로고    scopus 로고
    • F. Pernkopf, J. Bilmes, Discriminative versus generative parameter and structure learning of Bayesian network classifiers, in: Proceedings of the 22nd International Conference in Machine Learning, 2005.
  • 53
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan J.R. Induction of decision trees. Machine Learning 1 (1986) 81-106
    • (1986) Machine Learning , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 55
    • 33746351492 scopus 로고    scopus 로고
    • R. Raina, Y. Shen, A.Y. Ng, A. McCallum, Classification with hybrid generative/discriminative models, in: Advances in Neural Information Processing Systems 16, 2003.
  • 57
    • 33746339228 scopus 로고    scopus 로고
    • M. Sahami, Learning limited dependence Bayesian classifiers, in: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, 1996, pp. 335-338.
  • 58
    • 26944496426 scopus 로고    scopus 로고
    • G. Santaf́e, J.A. Lozano, P. Larrañaga, Discriminative learning of Bayesian network classifiers via the TM algorithm, in: Proceedings of the Eighth European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, 2005, pp. 148-160.
  • 59
    • 3242765279 scopus 로고    scopus 로고
    • A bias-variance analysis of a real world learning problem: the CoIL challenge 2000
    • van der Putten P., and van Someren M. A bias-variance analysis of a real world learning problem: the CoIL challenge 2000. Machine Learning 57 (2004) 177-195
    • (2004) Machine Learning , vol.57 , pp. 177-195
    • van der Putten, P.1    van Someren, M.2
  • 60
    • 33746326483 scopus 로고    scopus 로고
    • H. Wang, Towards a unified framework of relevance, PhD Thesis, Faculty of Informatics, University of Ulster, 1996.
  • 63
    • 33746368383 scopus 로고    scopus 로고
    • Y. Yang, G.I. Webb, Discretization for naive-Bayes learning: managing discretization bias and variance, Technical Report 2003-131, School of Computer Science and Software Engineering, Monash University, 2003.
  • 64
    • 25144492516 scopus 로고    scopus 로고
    • Efficient feature selection via analysis of relevance and redundancy
    • Yu L., and Liu H. Efficient feature selection via analysis of relevance and redundancy. Machine Learning Research 5 (2004) 1205-1224
    • (2004) Machine Learning Research , vol.5 , pp. 1205-1224
    • Yu, L.1    Liu, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.