-
2
-
-
0028480283
-
Novelty detection and neural network validation
-
Vision, Image Signal Process
-
C.M. Bishop, Novelty detection and neural network validation, IEE Proc. Vision, Image Signal Process., 1994, pp. 217-222.
-
(1994)
IEE Proc
, pp. 217-222
-
-
Bishop, C.M.1
-
3
-
-
0031169206
-
Outliers in statistical pattern recognition and an application to automatic chromosome classification
-
Ritter G., Gallegos M.T. Outliers in statistical pattern recognition and an application to automatic chromosome classification. Pattern Recognit. Lett. 1997, 18(6):525-539.
-
(1997)
Pattern Recognit. Lett.
, vol.18
, Issue.6
, pp. 525-539
-
-
Ritter, G.1
Gallegos, M.T.2
-
4
-
-
0007900786
-
Concept-learning in the Absence of Counter-examples: An Autoassociation-based Approach to Classification
-
Ph.D. Thesis
-
N. Japkowicz, Concept-learning in the Absence of Counter-examples: An Autoassociation-based Approach to Classification, Ph.D. Thesis, 1999.
-
(1999)
-
-
Japkowicz, N.1
-
5
-
-
0000487102
-
Estimating the support of a high-dimensional distribution
-
Schölkopf B., Platt J.C., Shawe-Taylor J., Smola A.J., Williamson R.C. Estimating the support of a high-dimensional distribution. Neural Comput. 2001, 13(7):1443-1471.
-
(2001)
Neural Comput.
, vol.13
, Issue.7
, pp. 1443-1471
-
-
Schölkopf, B.1
Platt, J.C.2
Shawe-Taylor, J.3
Smola, A.J.4
Williamson, R.C.5
-
6
-
-
84875512265
-
Toward supervised anomaly detection
-
Gornitz N., Kloft M., Rieck K., Brefeld U. Toward supervised anomaly detection. J. Artif. Intell. Res. 2013, 46:235-262.
-
(2013)
J. Artif. Intell. Res.
, vol.46
, pp. 235-262
-
-
Gornitz, N.1
Kloft, M.2
Rieck, K.3
Brefeld, U.4
-
7
-
-
0942266514
-
Support vector data description
-
Tax D.M.J., Duin R.P.W. Support vector data description. Mach. Learn. 2004, 54(1):45-66.
-
(2004)
Mach. Learn.
, vol.54
, Issue.1
, pp. 45-66
-
-
Tax, D.M.J.1
Duin, R.P.W.2
-
9
-
-
77958475013
-
A computable plug-in estimator of minimum volume sets for noveltydetection
-
Park C., Huang J.Z., Ding Y. A computable plug-in estimator of minimum volume sets for noveltydetection. Oper. Res. 2010, 58(5):1469-1480.
-
(2010)
Oper. Res.
, vol.58
, Issue.5
, pp. 1469-1480
-
-
Park, C.1
Huang, J.Z.2
Ding, Y.3
-
10
-
-
61849121774
-
Minimum spanning tree based one-class classifier
-
Juszczak P., Tax D.M.J., Pekalska E., Duin R.P.W. Minimum spanning tree based one-class classifier. Neurocomputing 2009, 72(7-9):1859-1869.
-
(2009)
Neurocomputing
, vol.72
, Issue.7-9
, pp. 1859-1869
-
-
Juszczak, P.1
Tax, D.M.J.2
Pekalska, E.3
Duin, R.P.W.4
-
11
-
-
9444240096
-
One-class Classification: Concept-learning in the Absence of Counter-examples
-
Ph.D. Thesis
-
D.M.J. Tax, One-class Classification: Concept-learning in the Absence of Counter-examples, Ph.D. Thesis, 2001.
-
(2001)
-
-
Tax, D.M.J.1
-
12
-
-
0142063407
-
Novelty detection: a review-Part 1&2: Statistical approaches & neural network based approaches
-
Markou M., Singh S. Novelty detection: a review-Part 1&2: Statistical approaches & neural network based approaches. Signal Process 2003, 83(12):2481-2521.
-
(2003)
Signal Process
, vol.83
, Issue.12
, pp. 2481-2521
-
-
Markou, M.1
Singh, S.2
-
13
-
-
7544223741
-
A survey of outlier detection methodologies
-
Hodge V.J., Austin J. A survey of outlier detection methodologies. Artif. Intell. Rev. 2004, 22(2):85-126.
-
(2004)
Artif. Intell. Rev.
, vol.22
, Issue.2
, pp. 85-126
-
-
Hodge, V.J.1
Austin, J.2
-
14
-
-
34250315640
-
An overview of anomaly detection techniques: existing solutions and latest technological trends
-
Patcha A., Park J.M. An overview of anomaly detection techniques: existing solutions and latest technological trends. Comput. Netw. 2007, 51(12):3448-3470.
-
(2007)
Comput. Netw.
, vol.51
, Issue.12
, pp. 3448-3470
-
-
Patcha, A.1
Park, J.M.2
-
15
-
-
79953811849
-
A survey of outlier detection methods in network anomaly identification
-
Gogoi P., Bhattacharyya D.K., Borah B., Kalita J.K. A survey of outlier detection methods in network anomaly identification. Comput. J. 2011, 54(4):570-588.
-
(2011)
Comput. J.
, vol.54
, Issue.4
, pp. 570-588
-
-
Gogoi, P.1
Bhattacharyya, D.K.2
Borah, B.3
Kalita, J.K.4
-
16
-
-
84897915320
-
-
Jan.) Outlier Detection for Temporal Data: A Survey. [Online].
-
M. Gupta, J. Gao, C.C. Aggarwal, J. Han (2013, Jan.) Outlier Detection for Temporal Data: A Survey. [Online]. http://dais.cs.uiuc.edu/manish.
-
(2013)
-
-
Gupta, M.1
Gao, J.2
Aggarwal, C.C.3
Han, J.4
-
17
-
-
77949485006
-
Novelty detection in a changing environment: a negative selection approach
-
Surace C., Worden K. Novelty detection in a changing environment: a negative selection approach. Machan. Syst. Signal Process. 2010, 24(4):1114-1128.
-
(2010)
Machan. Syst. Signal Process.
, vol.24
, Issue.4
, pp. 1114-1128
-
-
Surace, C.1
Worden, K.2
-
18
-
-
70349915779
-
A small sphere and large margin approach for novelty detection using training data with outliers
-
Wu M., Ye J. A small sphere and large margin approach for novelty detection using training data with outliers. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31(11):2088-2092.
-
(2009)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.31
, Issue.11
, pp. 2088-2092
-
-
Wu, M.1
Ye, J.2
-
19
-
-
79959415640
-
An optimal sphere and two large margins approach for novelty detection, in: International Joint Conference on Neural Networks
-
Canberra, Australia
-
T. Le, D. Tran, W. Ma, D. Sharma, An optimal sphere and two large margins approach for novelty detection, in: International Joint Conference on Neural Networks, Canberra, Australia, 2010, pp. 1-6.
-
(2010)
, pp. 1-6
-
-
Le, T.1
Tran, D.2
Ma, W.3
Sharma, D.4
-
22
-
-
62249120040
-
Outlier detection with the kernelized spatial depth function
-
Chen Y., Dang X., Peng H., Jr H.L.B. Outlier detection with the kernelized spatial depth function. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31(2):288-305.
-
(2009)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.31
, Issue.2
, pp. 288-305
-
-
Chen, Y.1
Dang, X.2
Peng, H.3
Jr., H.L.B.4
-
23
-
-
77957010230
-
Online conditional anomaly detection in multivariate data for transformer monitoring
-
Catterson V.M., McArthur S.D.J., Moss G. Online conditional anomaly detection in multivariate data for transformer monitoring. IEEE Trans. Power Delivery 2010, 25(4):2556-2564.
-
(2010)
IEEE Trans. Power Delivery
, vol.25
, Issue.4
, pp. 2556-2564
-
-
Catterson, V.M.1
McArthur, S.D.J.2
Moss, G.3
-
24
-
-
77951257705
-
Iterative Boolean combination of classifiers in the ROC space: an application to anomaly detection with HMMs
-
Khreich W., Granger E., Miri A., Sabourin R. Iterative Boolean combination of classifiers in the ROC space: an application to anomaly detection with HMMs. Pattern Recogn. 2010, 43(8):2732-2752.
-
(2010)
Pattern Recogn.
, vol.43
, Issue.8
, pp. 2732-2752
-
-
Khreich, W.1
Granger, E.2
Miri, A.3
Sabourin, R.4
-
25
-
-
84866013812
-
L1 norm based KPCA for novelty detection
-
Xiao Y., Wang H., Xu W., Zhou J. L1 norm based KPCA for novelty detection. Pattern Recognit. 2013, 46(1):389-396.
-
(2013)
Pattern Recognit.
, vol.46
, Issue.1
, pp. 389-396
-
-
Xiao, Y.1
Wang, H.2
Xu, W.3
Zhou, J.4
-
26
-
-
80052587023
-
A hybrid approach to outlier detection based on boundary region
-
Jiang F., Sui Y., Cao C. A hybrid approach to outlier detection based on boundary region. Pattern Recognit. Lett. 2011, 32(14):1860-1870.
-
(2011)
Pattern Recognit. Lett.
, vol.32
, Issue.14
, pp. 1860-1870
-
-
Jiang, F.1
Sui, Y.2
Cao, C.3
-
27
-
-
79151485318
-
Outliers detection in environmental monitoring databases
-
Garces H., Sbarbaro D. Outliers detection in environmental monitoring databases. Eng. Appl. Artif. Intell. 2011, 24(2):341-349.
-
(2011)
Eng. Appl. Artif. Intell.
, vol.24
, Issue.2
, pp. 341-349
-
-
Garces, H.1
Sbarbaro, D.2
-
28
-
-
84872620184
-
A unifying methodology for the evaluation of neural network models on novelty detection tasks
-
Barreto G.A., Frota R.A. A unifying methodology for the evaluation of neural network models on novelty detection tasks. Pattern Anal. Appl. 2013, 16(1):83-97.
-
(2013)
Pattern Anal. Appl.
, vol.16
, Issue.1
, pp. 83-97
-
-
Barreto, G.A.1
Frota, R.A.2
-
29
-
-
84865084957
-
Semi-supervised detection of collective anomalies with an application in high energy particle physics
-
International Joint Conference on Neural Networks, Brisbane, Australia
-
T. Vatanen et al., Semi-supervised detection of collective anomalies with an application in high energy particle physics, in: International Joint Conference on Neural Networks, Brisbane, Australia, 2012, pp. 1-8.
-
(2012)
, pp. 1-8
-
-
Vatanen, T.1
-
30
-
-
79151485529
-
A positive and unlabeled learning algorithm for one-class classification of remote-sensing data
-
Li W., Guo Q., Elkan C. A positive and unlabeled learning algorithm for one-class classification of remote-sensing data. IEEE Trans. Geosci. Remote Sens. 2011, 49(2):717-725.
-
(2011)
IEEE Trans. Geosci. Remote Sens.
, vol.49
, Issue.2
, pp. 717-725
-
-
Li, W.1
Guo, Q.2
Elkan, C.3
-
31
-
-
84861610344
-
Novelty detection in wildlife scenes through semantic context modelling
-
Yong S.P., Deng J.D., Purvis M.K. Novelty detection in wildlife scenes through semantic context modelling. Pattern Recognit. 2012, 45(9):3439-3450.
-
(2012)
Pattern Recognit.
, vol.45
, Issue.9
, pp. 3439-3450
-
-
Yong, S.P.1
Deng, J.D.2
Purvis, M.K.3
-
32
-
-
76049128852
-
The use of pseudo-faults for novelty detection in SHM
-
Papatheou E., Manson G., Barthorpe R.J., Worden K. The use of pseudo-faults for novelty detection in SHM. J. Sound Vib. 2010, 329(12):2349-2366.
-
(2010)
J. Sound Vib.
, vol.329
, Issue.12
, pp. 2349-2366
-
-
Papatheou, E.1
Manson, G.2
Barthorpe, R.J.3
Worden, K.4
-
33
-
-
84898941932
-
Support vector method for novelty detection
-
Schölkopf B., Williamson R.C., Smola A.J., Shawe-Taylor J., Platt J. Support vector method for novelty detection. Adv. Neural Inf. Process. Syst. 2000, 12(3):582-588.
-
(2000)
Adv. Neural Inf. Process. Syst.
, vol.12
, Issue.3
, pp. 582-588
-
-
Schölkopf, B.1
Williamson, R.C.2
Smola, A.J.3
Shawe-Taylor, J.4
Platt, J.5
-
34
-
-
79957530145
-
Selecting training points for one-class support vector machines
-
Li Y. Selecting training points for one-class support vector machines. Pattern Recognit. Lett. 2011, 32(11):1517-1522.
-
(2011)
Pattern Recognit. Lett.
, vol.32
, Issue.11
, pp. 1517-1522
-
-
Li, Y.1
-
35
-
-
84859339218
-
On feature selection with principal component analysis for one-class SVM
-
Lian H. On feature selection with principal component analysis for one-class SVM. Pattern Recognit. Lett. 2012, 33(9):1027-1031.
-
(2012)
Pattern Recognit. Lett.
, vol.33
, Issue.9
, pp. 1027-1031
-
-
Lian, H.1
-
36
-
-
77954265938
-
One-class classification based finance news story recommendation
-
Wei Z., Xun J., Wang X. One-class classification based finance news story recommendation. Comput. Inf. Syst. 2009, 5(6):1625-1631.
-
(2009)
Comput. Inf. Syst.
, vol.5
, Issue.6
, pp. 1625-1631
-
-
Wei, Z.1
Xun, J.2
Wang, X.3
-
37
-
-
79957513618
-
Adaptive one-class support vector machine
-
Verdejo V.G., Garcia J.A., Gredilla M.L., Vazquez A.N. Adaptive one-class support vector machine. IEEE Trans. Signal Process. 2011, 59(6):2975-2981.
-
(2011)
IEEE Trans. Signal Process.
, vol.59
, Issue.6
, pp. 2975-2981
-
-
Verdejo, V.G.1
Garcia, J.A.2
Gredilla, M.L.3
Vazquez, A.N.4
-
38
-
-
80053047465
-
Novelty detection for identifying deterioration in emergency department patients
-
Clifton D.A., et al. Novelty detection for identifying deterioration in emergency department patients. Lect. Notes Comput. Sci. 2011, 6936:220-227.
-
(2011)
Lect. Notes Comput. Sci.
, vol.6936
, pp. 220-227
-
-
Clifton, D.A.1
-
39
-
-
51649118270
-
A boundary method for outlier detection based on support vector d omain description
-
Guo S.M., Chan L.C., Tsai J.S.H. A boundary method for outlier detection based on support vector d omain description. Pattern Recognit. 2009, 42(1):77-83.
-
(2009)
Pattern Recognit.
, vol.42
, Issue.1
, pp. 77-83
-
-
Guo, S.M.1
Chan, L.C.2
Tsai, J.S.H.3
-
40
-
-
79951916431
-
Theoretical analysis for solution of support vector data description
-
Wang X., Chung F., Wang S. Theoretical analysis for solution of support vector data description. Neural Netw. 2011, 24(4):360-369.
-
(2011)
Neural Netw.
, vol.24
, Issue.4
, pp. 360-369
-
-
Wang, X.1
Chung, F.2
Wang, S.3
-
41
-
-
77955514045
-
Fast support vector data descriptions for novelty detection
-
Liu Y.H., Liu Y.C., Chen Y.J. Fast support vector data descriptions for novelty detection. IEEE Trans. Neural Netw. 2010, 21(8):1296-1313.
-
(2010)
IEEE Trans. Neural Netw.
, vol.21
, Issue.8
, pp. 1296-1313
-
-
Liu, Y.H.1
Liu, Y.C.2
Chen, Y.J.3
-
42
-
-
84867736801
-
Efficient support vector data descriptions for novelty detection
-
Peng X., Xu D. Efficient support vector data descriptions for novelty detection. Neural Comput. Appl. 2012, 21(8):2023-2032.
-
(2012)
Neural Comput. Appl.
, vol.21
, Issue.8
, pp. 2023-2032
-
-
Peng, X.1
Xu, D.2
-
43
-
-
84867497509
-
On simple one-class classification methods
-
Z. Noumir, P. Honeine, C. Richard, On simple one-class classification methods, in: IEEE International Symposium on Information Theory Proceedings, 2012, pp. 2022-2026.
-
(2012)
IEEE International Symposium on Information Theory Proceedings
, pp. 2022-2026
-
-
Noumir, Z.1
Honeine, P.2
Richard, C.3
-
44
-
-
84881606574
-
A modified support vector data description based novelty detection approach for machinery components
-
Wang S., Yu J., Lapira E., Lee J. A modified support vector data description based novelty detection approach for machinery components. Appl. Software Comput. 2013, 13(2):1193-1205.
-
(2013)
Appl. Software Comput.
, vol.13
, Issue.2
, pp. 1193-1205
-
-
Wang, S.1
Yu, J.2
Lapira, E.3
Lee, J.4
-
45
-
-
79952320406
-
Feature extraction for novelty detection as applied to fault detection in machinery
-
McBain J., Timusk M. Feature extraction for novelty detection as applied to fault detection in machinery. Pattern Recognit. Lett. 2011, 32(7):1054-1061.
-
(2011)
Pattern Recognit. Lett.
, vol.32
, Issue.7
, pp. 1054-1061
-
-
McBain, J.1
Timusk, M.2
-
46
-
-
84863774353
-
Feasibility of an objective electrophysiological loudness scaling: a kernel-based novelty detection approach
-
Mariam M., Delb W., Schick B., Strauss D.J. Feasibility of an objective electrophysiological loudness scaling: a kernel-based novelty detection approach. Artif. Intell. Med. 2012, 55(3):185-195.
-
(2012)
Artif. Intell. Med.
, vol.55
, Issue.3
, pp. 185-195
-
-
Mariam, M.1
Delb, W.2
Schick, B.3
Strauss, D.J.4
-
47
-
-
67650671551
-
A new local disctance-based outlier detection approach for scattered real-world data
-
Zhang K., Hutter M., Jin H. A new local disctance-based outlier detection approach for scattered real-world data. Advances in Knowledge Discovery and Data Mining 2009, 5476:813-822.
-
(2009)
Advances in Knowledge Discovery and Data Mining
, vol.5476
, pp. 813-822
-
-
Zhang, K.1
Hutter, M.2
Jin, H.3
-
48
-
-
59449093823
-
Combining nearest neighbor data description and structural risk minimization for one-class classification
-
Cabral G.G., Oliveira A.L.I., Cahu C.B.G. Combining nearest neighbor data description and structural risk minimization for one-class classification. Neural Comput. Appl. 2009, 18(2):175-183.
-
(2009)
Neural Comput. Appl.
, vol.18
, Issue.2
, pp. 175-183
-
-
Cabral, G.G.1
Oliveira, A.L.I.2
Cahu, C.B.G.3
-
49
-
-
49349096909
-
Bayesian extreme value statistics for novelty detection in gas-turbine engines
-
Montana, USA
-
D.A. Clifton et al., Bayesian extreme value statistics for novelty detection in gas-turbine engines, in: IEEE Aerospace Conference, Montana, USA, 2008, pp. 1-11.
-
(2008)
IEEE Aerospace Conference
, pp. 1-11
-
-
Clifton, D.A.1
-
50
-
-
0034704222
-
Nonlinear dimensionality reduction by locally linear embedding
-
Roweis Sam T., Saul Lawrence K. Nonlinear dimensionality reduction by locally linear embedding. Science 2000, 290(22):2323-2326.
-
(2000)
Science
, vol.290
, Issue.22
, pp. 2323-2326
-
-
Roweis, S.T.1
Saul, L.K.2
-
51
-
-
84860244162
-
Prototype-based domain description for one-class classification
-
Angiulli F. Prototype-based domain description for one-class classification. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34(6):1131-1144.
-
(2012)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.34
, Issue.6
, pp. 1131-1144
-
-
Angiulli, F.1
-
52
-
-
77952547412
-
Event monitoring via local motion abnormality detection in non-linear subspace
-
Tzizkos I., Cavallaro A., Xu L. Event monitoring via local motion abnormality detection in non-linear subspace. Neurocomputing 2010, 73(10-12):1881-1891.
-
(2010)
Neurocomputing
, vol.73
, Issue.10-12
, pp. 1881-1891
-
-
Tzizkos, I.1
Cavallaro, A.2
Xu, L.3
-
53
-
-
79955500697
-
Classification and novel class detection in concept-drifting data streams under time constraints
-
Masud M.M., Gao J., Khan L., Han J., Thuraisingham B. Classification and novel class detection in concept-drifting data streams under time constraints. IEEE Trans. Knowl. Data Eng. 2011, 23(6):859-874.
-
(2011)
IEEE Trans. Knowl. Data Eng.
, vol.23
, Issue.6
, pp. 859-874
-
-
Masud, M.M.1
Gao, J.2
Khan, L.3
Han, J.4
Thuraisingham, B.5
-
54
-
-
85158154554
-
A hybrid method for novelty detection in time series based on states transitions and swarm intelligence
-
International Conference on Neural Networks, Spain
-
G.G. Cabral, A.L.I. Oliveira, A hybrid method for novelty detection in time series based on states transitions and swarm intelligence, in: International Conference on Neural Networks, Spain, 2010, pp. 1-8.
-
(2010)
, pp. 1-8
-
-
Cabral, G.G.1
Oliveira, A.L.I.2
-
55
-
-
78149466949
-
An industrial strength novelty detection framework for autonomous equipment monitoring and diagnostics
-
Filev D.P., Chinnam R.B., Tseng F., Baruah P. An industrial strength novelty detection framework for autonomous equipment monitoring and diagnostics. IEEE Trans. Ind. Inf. 2010, 6(4):767-779.
-
(2010)
IEEE Trans. Ind. Inf.
, vol.6
, Issue.4
, pp. 767-779
-
-
Filev, D.P.1
Chinnam, R.B.2
Tseng, F.3
Baruah, P.4
-
56
-
-
77956478694
-
Clustering ellipses for anomaly detection
-
Moshtaghi M., et al. Clustering ellipses for anomaly detection. Pattern Recognit. 2011, 44(1):55-69.
-
(2011)
Pattern Recognit.
, vol.44
, Issue.1
, pp. 55-69
-
-
Moshtaghi, M.1
-
57
-
-
84865072848
-
Constructing the minimum volume surfaces using level set methods for novelty detection
-
International Joint Conference on Neural Networks, Brisbane, Australia
-
X. Ding, Y. Li, A. Belatreche, L. Maguire, Constructing the minimum volume surfaces using level set methods for novelty detection, in: International Joint Conference on Neural Networks, Brisbane, Australia, 2012, pp. 3158-3163.
-
(2012)
, pp. 3158-3163
-
-
Ding, X.1
Li, Y.2
Belatreche, A.3
Maguire, L.4
-
58
-
-
84893615090
-
Novelty detection using level set methods with adaptive boundaries
-
Manchester, UK
-
X. Ding, Y. Li, A. Belatreche, L. Maguire, Novelty detection using level set methods with adaptive boundaries, in: IEEE International Conference on SMC, Manchester, UK, 2013, pp. 3020-3025.
-
(2013)
IEEE International Conference on SMC
, pp. 3020-3025
-
-
Ding, X.1
Li, Y.2
Belatreche, A.3
Maguire, L.4
-
59
-
-
79960670476
-
Probabilistic novelty detection for acoustic suiveillance under real-world conditions
-
Ntalampiras S., Potamitis I., Fakotakis N. Probabilistic novelty detection for acoustic suiveillance under real-world conditions. IEEE Trans. Multimedia 2011, 13(4):713-719.
-
(2011)
IEEE Trans. Multimedia
, vol.13
, Issue.4
, pp. 713-719
-
-
Ntalampiras, S.1
Potamitis, I.2
Fakotakis, N.3
-
60
-
-
81855226144
-
Novelty detection with multivariate extreme value statistics
-
Clifton D.A., Hugueny S., Tarassenko L. Novelty detection with multivariate extreme value statistics. Signal Process. Syst. 2011, 65(3):371-389.
-
(2011)
Signal Process. Syst.
, vol.65
, Issue.3
, pp. 371-389
-
-
Clifton, D.A.1
Hugueny, S.2
Tarassenko, L.3
-
61
-
-
70449717021
-
Information theoretic novelty detection
-
Filippone M., Sanguinetti G. Information theoretic novelty detection. Pattern Recognit. 2010, 43(3):805-814.
-
(2010)
Pattern Recognit.
, vol.43
, Issue.3
, pp. 805-814
-
-
Filippone, M.1
Sanguinetti, G.2
-
62
-
-
78549284938
-
Abnormality detection using low-level co-occurring events
-
Benezeth Y., Jodoin P.M., Saligrama V. Abnormality detection using low-level co-occurring events. Pattern Recognit. Lett. 2011, 32(3):423-431.
-
(2011)
Pattern Recognit. Lett.
, vol.32
, Issue.3
, pp. 423-431
-
-
Benezeth, Y.1
Jodoin, P.M.2
Saligrama, V.3
-
64
-
-
84897912614
-
Outlier detection with nonlinear projection pursuit
-
Breaban M., Luchian H. Outlier detection with nonlinear projection pursuit. Int. J. Comput. Commun. Control 2013, 8(1):30-36.
-
(2013)
Int. J. Comput. Commun. Control
, vol.8
, Issue.1
, pp. 30-36
-
-
Breaban, M.1
Luchian, H.2
-
65
-
-
84865320756
-
Beyond novelty detection: incongruent events, when general and specific classifiers disagree
-
Weinshall D., et al. Beyond novelty detection: incongruent events, when general and specific classifiers disagree. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34(10):1886-1901.
-
(2012)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.34
, Issue.10
, pp. 1886-1901
-
-
Weinshall, D.1
-
66
-
-
0442312143
-
A mixture model and EM-based algorithm for class discovery, robust classification, and outlier rejection in mixed labeled/unlabeled data sets
-
Miller David J., Browning John A mixture model and EM-based algorithm for class discovery, robust classification, and outlier rejection in mixed labeled/unlabeled data sets. IEEE Trans. Pattern Anal. Mach. Intell. 2003, 25(11):1468-1483.
-
(2003)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.25
, Issue.11
, pp. 1468-1483
-
-
Miller, D.J.1
Browning, J.2
-
67
-
-
0033096971
-
Partially supervised classification using weighted unsupervised clustering
-
Jeong Byeungwoo, Landgrebe D.A. Partially supervised classification using weighted unsupervised clustering. IEEE Trans. Geosci. Remote Sensing 1999, 37(2):1073-1079.
-
(1999)
IEEE Trans. Geosci. Remote Sensing
, vol.37
, Issue.2
, pp. 1073-1079
-
-
Jeong, B.1
Landgrebe, D.A.2
-
68
-
-
84898980291
-
A mixture of experts classifier with learning based on both labelled and unlabelled data
-
David J. Miller, H. Uyar, A mixture of experts classifier with learning based on both labelled and unlabelled data, in: Neural Information Processing Systems Conference, 1997, pp. 571-577.
-
(1997)
Neural Information Processing Systems Conference
, pp. 571-577
-
-
Miller, D.J.1
Uyar, H.2
-
69
-
-
67349250736
-
Evolving novelty detectors for specific applications
-
Haggett S.J., Chu D.F. Evolving novelty detectors for specific applications. Neurocomputing 2009, 72(10-12):2392-2405.
-
(2009)
Neurocomputing
, vol.72
, Issue.10-12
, pp. 2392-2405
-
-
Haggett, S.J.1
Chu, D.F.2
-
70
-
-
0035681625
-
Applying MLP and RBF classifiers in embedded condition monitoring and fault diagnosis systems
-
Li Y., Pont M.J., Jones N.B., Twiddle J.A. Applying MLP and RBF classifiers in embedded condition monitoring and fault diagnosis systems. Trans. Inst. Meas. Control 2001, 23(5):315-343.
-
(2001)
Trans. Inst. Meas. Control
, vol.23
, Issue.5
, pp. 315-343
-
-
Li, Y.1
Pont, M.J.2
Jones, N.B.3
Twiddle, J.A.4
-
71
-
-
0033220728
-
Support vector domain description
-
Tax D.M.J., Duin R.P.W. Support vector domain description. Pattern Recoginit. Lett. 1999, 20(11-13):1191-1199.
-
(1999)
Pattern Recoginit. Lett.
, vol.20
, Issue.11-13
, pp. 1191-1199
-
-
Tax, D.M.J.1
Duin, R.P.W.2
-
72
-
-
33846080495
-
Density-induced support vector data description
-
Lee K.Y., et al. Density-induced support vector data description. IEEE Trans. Neural Netw. 2007, 18(1):284-289.
-
(2007)
IEEE Trans. Neural Netw.
, vol.18
, Issue.1
, pp. 284-289
-
-
Lee, K.Y.1
-
73
-
-
77957878669
-
A fast SVDD algorithm based on decomposition and combinaiton for fault detection
-
Xiamen, China
-
Jian Luo, Bo Li, Changqing Wu, Yinghui Pan, A fast SVDD algorithm based on decomposition and combinaiton for fault detection, in: The Eighth IEEE International Conference on Control and Automation, Xiamen, China, 2010, pp. 1924-1928.
-
(2010)
The Eighth IEEE International Conference on Control and Automation
, pp. 1924-1928
-
-
Luo, J.1
Li, B.2
Wu, C.3
Pan, Y.4
-
74
-
-
10944248340
-
Scaling up support vector data description by using core-sets
-
Budapest
-
C.S. Chu, I.W. Tsang, J.T. Kwok, Scaling up support vector data description by using core-sets, in: IEEE International Joint Conference on Neural Networks, Budapest, 2004, pp. 425-430.
-
(2004)
IEEE International Joint Conference on Neural Networks
, pp. 425-430
-
-
Chu, C.S.1
Tsang, I.W.2
Kwok, J.T.3
-
75
-
-
79955475773
-
Selecting critical patterns based on local geometrical and statistical information
-
Li Y., Maguire L. Selecting critical patterns based on local geometrical and statistical information. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33(6):1189-1201.
-
(2011)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.33
, Issue.6
, pp. 1189-1201
-
-
Li, Y.1
Maguire, L.2
-
76
-
-
84863643216
-
Algorithms for maximum-likelihood bandwidth selection in kernel density estimators
-
Leiva-Murillo J.M., Artés-Rodríguez A. Algorithms for maximum-likelihood bandwidth selection in kernel density estimators. Pattern Recognit. Lett. 2012, 33(13):1717-1724.
-
(2012)
Pattern Recognit. Lett.
, vol.33
, Issue.13
, pp. 1717-1724
-
-
Leiva-Murillo, J.M.1
Artés-Rodríguez, A.2
-
77
-
-
84945709355
-
An algorithm for finding best matches in logarithmic expected time
-
Friedman J.H., Bentley J.L., Finkel R.A. An algorithm for finding best matches in logarithmic expected time. ACM Trans. Math. Softw. 1997, 3(3):209-226.
-
(1997)
ACM Trans. Math. Softw.
, vol.3
, Issue.3
, pp. 209-226
-
-
Friedman, J.H.1
Bentley, J.L.2
Finkel, R.A.3
-
78
-
-
37549012615
-
K-nearest neighbor finding using MaxNearestDist
-
Samet Hanan K-nearest neighbor finding using MaxNearestDist. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30(2):243-252.
-
(2008)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.30
, Issue.2
, pp. 243-252
-
-
Samet, H.1
-
79
-
-
77949501687
-
Classification using geometric level sets
-
Varshney K.R., Willsky A.S. Classification using geometric level sets. J. Mach. Learn. Res. 2010, 11:491-516.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 491-516
-
-
Varshney, K.R.1
Willsky, A.S.2
-
82
-
-
84897913411
-
-
[Online].
-
[Online]. ftp://ftp.dice.ucl.ac.be/pub/neural-net/ELENA/databases/REAL/phoneme.
-
-
-
-
83
-
-
84897911958
-
-
LIBSVM: A Library for Support Vector Machines. [Online].
-
C.C. Chang, C.J. Lin (2011) LIBSVM: A Library for Support Vector Machines. [Online]. http://www.csie.ntu.edu.tw/~cjlin/libsvm.
-
(2011)
-
-
Chang, C.C.1
Lin, C.J.2
-
84
-
-
84897914945
-
-
UCI Repository of Machine Learning Databases. [Online].
-
D.J. Newman, S. Hettich, C.L. Blake, C.J. Merz (1998) UCI Repository of Machine Learning Databases. [Online]. http://archive.ics.uci.edu/ml.
-
(1998)
-
-
Newman, D.J.1
Hettich, S.2
Blake, C.L.3
Merz, C.J.4
-
85
-
-
33745215847
-
From outliers to prototypes: ordering dat
-
Harmeling S., Dornhege G., Tax D.M.J., Meinecke F., Muller K.R. From outliers to prototypes: ordering dat. Neurocomputing 2006, 69(13-15):1608-1618.
-
(2006)
Neurocomputing
, vol.69
, Issue.13-15
, pp. 1608-1618
-
-
Harmeling, S.1
Dornhege, G.2
Tax, D.M.J.3
Meinecke, F.4
Muller, K.R.5
-
86
-
-
84897912467
-
-
DDtools, the Data Description Toolbox for Matlab. [Online].
-
D.M.J. Tax. (2012) DDtools, the Data Description Toolbox for Matlab. [Online]. http://prlab.tudelft.nl/david-tax/dd_tools.html.
-
(2012)
-
-
Tax, D.M.J.1
-
87
-
-
33646023117
-
An introduction to ROC analysis
-
Fawcett T. An introduction to ROC analysis. Pattern Recoginit. Lett. 2006, 27(8):861-874.
-
(2006)
Pattern Recoginit. Lett.
, vol.27
, Issue.8
, pp. 861-874
-
-
Fawcett, T.1
-
88
-
-
84897912965
-
-
PRTools: A Matlab Toolbox for Pattern Recognition. [Online].
-
R.P.W. Duin et al. (2010) PRTools: A Matlab Toolbox for Pattern Recognition. [Online]. http://www.prtools.org/index.html.
-
(2010)
-
-
Duin, R.P.W.1
-
89
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
Demsar J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 2006, 7:1-30.
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 1-30
-
-
Demsar, J.1
|