메뉴 건너뛰기




Volumn 135, Issue , 2014, Pages 313-327

An experimental evaluation of novelty detection methods

Author keywords

Gaussian mixture; K Nearest neighbours; K Means clustering; Novelty detection; Support vector data description

Indexed keywords

DATA DESCRIPTION;

EID: 84897912404     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2013.12.002     Document Type: Article
Times cited : (118)

References (89)
  • 2
    • 0028480283 scopus 로고
    • Novelty detection and neural network validation
    • Vision, Image Signal Process
    • C.M. Bishop, Novelty detection and neural network validation, IEE Proc. Vision, Image Signal Process., 1994, pp. 217-222.
    • (1994) IEE Proc , pp. 217-222
    • Bishop, C.M.1
  • 3
    • 0031169206 scopus 로고    scopus 로고
    • Outliers in statistical pattern recognition and an application to automatic chromosome classification
    • Ritter G., Gallegos M.T. Outliers in statistical pattern recognition and an application to automatic chromosome classification. Pattern Recognit. Lett. 1997, 18(6):525-539.
    • (1997) Pattern Recognit. Lett. , vol.18 , Issue.6 , pp. 525-539
    • Ritter, G.1    Gallegos, M.T.2
  • 4
    • 0007900786 scopus 로고    scopus 로고
    • Concept-learning in the Absence of Counter-examples: An Autoassociation-based Approach to Classification
    • Ph.D. Thesis
    • N. Japkowicz, Concept-learning in the Absence of Counter-examples: An Autoassociation-based Approach to Classification, Ph.D. Thesis, 1999.
    • (1999)
    • Japkowicz, N.1
  • 7
    • 0942266514 scopus 로고    scopus 로고
    • Support vector data description
    • Tax D.M.J., Duin R.P.W. Support vector data description. Mach. Learn. 2004, 54(1):45-66.
    • (2004) Mach. Learn. , vol.54 , Issue.1 , pp. 45-66
    • Tax, D.M.J.1    Duin, R.P.W.2
  • 9
    • 77958475013 scopus 로고    scopus 로고
    • A computable plug-in estimator of minimum volume sets for noveltydetection
    • Park C., Huang J.Z., Ding Y. A computable plug-in estimator of minimum volume sets for noveltydetection. Oper. Res. 2010, 58(5):1469-1480.
    • (2010) Oper. Res. , vol.58 , Issue.5 , pp. 1469-1480
    • Park, C.1    Huang, J.Z.2    Ding, Y.3
  • 10
    • 61849121774 scopus 로고    scopus 로고
    • Minimum spanning tree based one-class classifier
    • Juszczak P., Tax D.M.J., Pekalska E., Duin R.P.W. Minimum spanning tree based one-class classifier. Neurocomputing 2009, 72(7-9):1859-1869.
    • (2009) Neurocomputing , vol.72 , Issue.7-9 , pp. 1859-1869
    • Juszczak, P.1    Tax, D.M.J.2    Pekalska, E.3    Duin, R.P.W.4
  • 11
    • 9444240096 scopus 로고    scopus 로고
    • One-class Classification: Concept-learning in the Absence of Counter-examples
    • Ph.D. Thesis
    • D.M.J. Tax, One-class Classification: Concept-learning in the Absence of Counter-examples, Ph.D. Thesis, 2001.
    • (2001)
    • Tax, D.M.J.1
  • 12
    • 0142063407 scopus 로고    scopus 로고
    • Novelty detection: a review-Part 1&2: Statistical approaches & neural network based approaches
    • Markou M., Singh S. Novelty detection: a review-Part 1&2: Statistical approaches & neural network based approaches. Signal Process 2003, 83(12):2481-2521.
    • (2003) Signal Process , vol.83 , Issue.12 , pp. 2481-2521
    • Markou, M.1    Singh, S.2
  • 13
    • 7544223741 scopus 로고    scopus 로고
    • A survey of outlier detection methodologies
    • Hodge V.J., Austin J. A survey of outlier detection methodologies. Artif. Intell. Rev. 2004, 22(2):85-126.
    • (2004) Artif. Intell. Rev. , vol.22 , Issue.2 , pp. 85-126
    • Hodge, V.J.1    Austin, J.2
  • 14
    • 34250315640 scopus 로고    scopus 로고
    • An overview of anomaly detection techniques: existing solutions and latest technological trends
    • Patcha A., Park J.M. An overview of anomaly detection techniques: existing solutions and latest technological trends. Comput. Netw. 2007, 51(12):3448-3470.
    • (2007) Comput. Netw. , vol.51 , Issue.12 , pp. 3448-3470
    • Patcha, A.1    Park, J.M.2
  • 15
    • 79953811849 scopus 로고    scopus 로고
    • A survey of outlier detection methods in network anomaly identification
    • Gogoi P., Bhattacharyya D.K., Borah B., Kalita J.K. A survey of outlier detection methods in network anomaly identification. Comput. J. 2011, 54(4):570-588.
    • (2011) Comput. J. , vol.54 , Issue.4 , pp. 570-588
    • Gogoi, P.1    Bhattacharyya, D.K.2    Borah, B.3    Kalita, J.K.4
  • 16
    • 84897915320 scopus 로고    scopus 로고
    • Jan.) Outlier Detection for Temporal Data: A Survey. [Online].
    • M. Gupta, J. Gao, C.C. Aggarwal, J. Han (2013, Jan.) Outlier Detection for Temporal Data: A Survey. [Online]. http://dais.cs.uiuc.edu/manish.
    • (2013)
    • Gupta, M.1    Gao, J.2    Aggarwal, C.C.3    Han, J.4
  • 17
    • 77949485006 scopus 로고    scopus 로고
    • Novelty detection in a changing environment: a negative selection approach
    • Surace C., Worden K. Novelty detection in a changing environment: a negative selection approach. Machan. Syst. Signal Process. 2010, 24(4):1114-1128.
    • (2010) Machan. Syst. Signal Process. , vol.24 , Issue.4 , pp. 1114-1128
    • Surace, C.1    Worden, K.2
  • 18
    • 70349915779 scopus 로고    scopus 로고
    • A small sphere and large margin approach for novelty detection using training data with outliers
    • Wu M., Ye J. A small sphere and large margin approach for novelty detection using training data with outliers. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31(11):2088-2092.
    • (2009) IEEE Trans. Pattern Anal. Mach. Intell. , vol.31 , Issue.11 , pp. 2088-2092
    • Wu, M.1    Ye, J.2
  • 19
    • 79959415640 scopus 로고    scopus 로고
    • An optimal sphere and two large margins approach for novelty detection, in: International Joint Conference on Neural Networks
    • Canberra, Australia
    • T. Le, D. Tran, W. Ma, D. Sharma, An optimal sphere and two large margins approach for novelty detection, in: International Joint Conference on Neural Networks, Canberra, Australia, 2010, pp. 1-6.
    • (2010) , pp. 1-6
    • Le, T.1    Tran, D.2    Ma, W.3    Sharma, D.4
  • 23
    • 77957010230 scopus 로고    scopus 로고
    • Online conditional anomaly detection in multivariate data for transformer monitoring
    • Catterson V.M., McArthur S.D.J., Moss G. Online conditional anomaly detection in multivariate data for transformer monitoring. IEEE Trans. Power Delivery 2010, 25(4):2556-2564.
    • (2010) IEEE Trans. Power Delivery , vol.25 , Issue.4 , pp. 2556-2564
    • Catterson, V.M.1    McArthur, S.D.J.2    Moss, G.3
  • 24
    • 77951257705 scopus 로고    scopus 로고
    • Iterative Boolean combination of classifiers in the ROC space: an application to anomaly detection with HMMs
    • Khreich W., Granger E., Miri A., Sabourin R. Iterative Boolean combination of classifiers in the ROC space: an application to anomaly detection with HMMs. Pattern Recogn. 2010, 43(8):2732-2752.
    • (2010) Pattern Recogn. , vol.43 , Issue.8 , pp. 2732-2752
    • Khreich, W.1    Granger, E.2    Miri, A.3    Sabourin, R.4
  • 25
    • 84866013812 scopus 로고    scopus 로고
    • L1 norm based KPCA for novelty detection
    • Xiao Y., Wang H., Xu W., Zhou J. L1 norm based KPCA for novelty detection. Pattern Recognit. 2013, 46(1):389-396.
    • (2013) Pattern Recognit. , vol.46 , Issue.1 , pp. 389-396
    • Xiao, Y.1    Wang, H.2    Xu, W.3    Zhou, J.4
  • 26
    • 80052587023 scopus 로고    scopus 로고
    • A hybrid approach to outlier detection based on boundary region
    • Jiang F., Sui Y., Cao C. A hybrid approach to outlier detection based on boundary region. Pattern Recognit. Lett. 2011, 32(14):1860-1870.
    • (2011) Pattern Recognit. Lett. , vol.32 , Issue.14 , pp. 1860-1870
    • Jiang, F.1    Sui, Y.2    Cao, C.3
  • 27
    • 79151485318 scopus 로고    scopus 로고
    • Outliers detection in environmental monitoring databases
    • Garces H., Sbarbaro D. Outliers detection in environmental monitoring databases. Eng. Appl. Artif. Intell. 2011, 24(2):341-349.
    • (2011) Eng. Appl. Artif. Intell. , vol.24 , Issue.2 , pp. 341-349
    • Garces, H.1    Sbarbaro, D.2
  • 28
    • 84872620184 scopus 로고    scopus 로고
    • A unifying methodology for the evaluation of neural network models on novelty detection tasks
    • Barreto G.A., Frota R.A. A unifying methodology for the evaluation of neural network models on novelty detection tasks. Pattern Anal. Appl. 2013, 16(1):83-97.
    • (2013) Pattern Anal. Appl. , vol.16 , Issue.1 , pp. 83-97
    • Barreto, G.A.1    Frota, R.A.2
  • 29
    • 84865084957 scopus 로고    scopus 로고
    • Semi-supervised detection of collective anomalies with an application in high energy particle physics
    • International Joint Conference on Neural Networks, Brisbane, Australia
    • T. Vatanen et al., Semi-supervised detection of collective anomalies with an application in high energy particle physics, in: International Joint Conference on Neural Networks, Brisbane, Australia, 2012, pp. 1-8.
    • (2012) , pp. 1-8
    • Vatanen, T.1
  • 30
    • 79151485529 scopus 로고    scopus 로고
    • A positive and unlabeled learning algorithm for one-class classification of remote-sensing data
    • Li W., Guo Q., Elkan C. A positive and unlabeled learning algorithm for one-class classification of remote-sensing data. IEEE Trans. Geosci. Remote Sens. 2011, 49(2):717-725.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.2 , pp. 717-725
    • Li, W.1    Guo, Q.2    Elkan, C.3
  • 31
    • 84861610344 scopus 로고    scopus 로고
    • Novelty detection in wildlife scenes through semantic context modelling
    • Yong S.P., Deng J.D., Purvis M.K. Novelty detection in wildlife scenes through semantic context modelling. Pattern Recognit. 2012, 45(9):3439-3450.
    • (2012) Pattern Recognit. , vol.45 , Issue.9 , pp. 3439-3450
    • Yong, S.P.1    Deng, J.D.2    Purvis, M.K.3
  • 32
    • 76049128852 scopus 로고    scopus 로고
    • The use of pseudo-faults for novelty detection in SHM
    • Papatheou E., Manson G., Barthorpe R.J., Worden K. The use of pseudo-faults for novelty detection in SHM. J. Sound Vib. 2010, 329(12):2349-2366.
    • (2010) J. Sound Vib. , vol.329 , Issue.12 , pp. 2349-2366
    • Papatheou, E.1    Manson, G.2    Barthorpe, R.J.3    Worden, K.4
  • 34
    • 79957530145 scopus 로고    scopus 로고
    • Selecting training points for one-class support vector machines
    • Li Y. Selecting training points for one-class support vector machines. Pattern Recognit. Lett. 2011, 32(11):1517-1522.
    • (2011) Pattern Recognit. Lett. , vol.32 , Issue.11 , pp. 1517-1522
    • Li, Y.1
  • 35
    • 84859339218 scopus 로고    scopus 로고
    • On feature selection with principal component analysis for one-class SVM
    • Lian H. On feature selection with principal component analysis for one-class SVM. Pattern Recognit. Lett. 2012, 33(9):1027-1031.
    • (2012) Pattern Recognit. Lett. , vol.33 , Issue.9 , pp. 1027-1031
    • Lian, H.1
  • 36
    • 77954265938 scopus 로고    scopus 로고
    • One-class classification based finance news story recommendation
    • Wei Z., Xun J., Wang X. One-class classification based finance news story recommendation. Comput. Inf. Syst. 2009, 5(6):1625-1631.
    • (2009) Comput. Inf. Syst. , vol.5 , Issue.6 , pp. 1625-1631
    • Wei, Z.1    Xun, J.2    Wang, X.3
  • 38
    • 80053047465 scopus 로고    scopus 로고
    • Novelty detection for identifying deterioration in emergency department patients
    • Clifton D.A., et al. Novelty detection for identifying deterioration in emergency department patients. Lect. Notes Comput. Sci. 2011, 6936:220-227.
    • (2011) Lect. Notes Comput. Sci. , vol.6936 , pp. 220-227
    • Clifton, D.A.1
  • 39
    • 51649118270 scopus 로고    scopus 로고
    • A boundary method for outlier detection based on support vector d omain description
    • Guo S.M., Chan L.C., Tsai J.S.H. A boundary method for outlier detection based on support vector d omain description. Pattern Recognit. 2009, 42(1):77-83.
    • (2009) Pattern Recognit. , vol.42 , Issue.1 , pp. 77-83
    • Guo, S.M.1    Chan, L.C.2    Tsai, J.S.H.3
  • 40
    • 79951916431 scopus 로고    scopus 로고
    • Theoretical analysis for solution of support vector data description
    • Wang X., Chung F., Wang S. Theoretical analysis for solution of support vector data description. Neural Netw. 2011, 24(4):360-369.
    • (2011) Neural Netw. , vol.24 , Issue.4 , pp. 360-369
    • Wang, X.1    Chung, F.2    Wang, S.3
  • 41
    • 77955514045 scopus 로고    scopus 로고
    • Fast support vector data descriptions for novelty detection
    • Liu Y.H., Liu Y.C., Chen Y.J. Fast support vector data descriptions for novelty detection. IEEE Trans. Neural Netw. 2010, 21(8):1296-1313.
    • (2010) IEEE Trans. Neural Netw. , vol.21 , Issue.8 , pp. 1296-1313
    • Liu, Y.H.1    Liu, Y.C.2    Chen, Y.J.3
  • 42
    • 84867736801 scopus 로고    scopus 로고
    • Efficient support vector data descriptions for novelty detection
    • Peng X., Xu D. Efficient support vector data descriptions for novelty detection. Neural Comput. Appl. 2012, 21(8):2023-2032.
    • (2012) Neural Comput. Appl. , vol.21 , Issue.8 , pp. 2023-2032
    • Peng, X.1    Xu, D.2
  • 44
    • 84881606574 scopus 로고    scopus 로고
    • A modified support vector data description based novelty detection approach for machinery components
    • Wang S., Yu J., Lapira E., Lee J. A modified support vector data description based novelty detection approach for machinery components. Appl. Software Comput. 2013, 13(2):1193-1205.
    • (2013) Appl. Software Comput. , vol.13 , Issue.2 , pp. 1193-1205
    • Wang, S.1    Yu, J.2    Lapira, E.3    Lee, J.4
  • 45
    • 79952320406 scopus 로고    scopus 로고
    • Feature extraction for novelty detection as applied to fault detection in machinery
    • McBain J., Timusk M. Feature extraction for novelty detection as applied to fault detection in machinery. Pattern Recognit. Lett. 2011, 32(7):1054-1061.
    • (2011) Pattern Recognit. Lett. , vol.32 , Issue.7 , pp. 1054-1061
    • McBain, J.1    Timusk, M.2
  • 46
    • 84863774353 scopus 로고    scopus 로고
    • Feasibility of an objective electrophysiological loudness scaling: a kernel-based novelty detection approach
    • Mariam M., Delb W., Schick B., Strauss D.J. Feasibility of an objective electrophysiological loudness scaling: a kernel-based novelty detection approach. Artif. Intell. Med. 2012, 55(3):185-195.
    • (2012) Artif. Intell. Med. , vol.55 , Issue.3 , pp. 185-195
    • Mariam, M.1    Delb, W.2    Schick, B.3    Strauss, D.J.4
  • 47
    • 67650671551 scopus 로고    scopus 로고
    • A new local disctance-based outlier detection approach for scattered real-world data
    • Zhang K., Hutter M., Jin H. A new local disctance-based outlier detection approach for scattered real-world data. Advances in Knowledge Discovery and Data Mining 2009, 5476:813-822.
    • (2009) Advances in Knowledge Discovery and Data Mining , vol.5476 , pp. 813-822
    • Zhang, K.1    Hutter, M.2    Jin, H.3
  • 48
    • 59449093823 scopus 로고    scopus 로고
    • Combining nearest neighbor data description and structural risk minimization for one-class classification
    • Cabral G.G., Oliveira A.L.I., Cahu C.B.G. Combining nearest neighbor data description and structural risk minimization for one-class classification. Neural Comput. Appl. 2009, 18(2):175-183.
    • (2009) Neural Comput. Appl. , vol.18 , Issue.2 , pp. 175-183
    • Cabral, G.G.1    Oliveira, A.L.I.2    Cahu, C.B.G.3
  • 49
    • 49349096909 scopus 로고    scopus 로고
    • Bayesian extreme value statistics for novelty detection in gas-turbine engines
    • Montana, USA
    • D.A. Clifton et al., Bayesian extreme value statistics for novelty detection in gas-turbine engines, in: IEEE Aerospace Conference, Montana, USA, 2008, pp. 1-11.
    • (2008) IEEE Aerospace Conference , pp. 1-11
    • Clifton, D.A.1
  • 50
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis Sam T., Saul Lawrence K. Nonlinear dimensionality reduction by locally linear embedding. Science 2000, 290(22):2323-2326.
    • (2000) Science , vol.290 , Issue.22 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 51
    • 84860244162 scopus 로고    scopus 로고
    • Prototype-based domain description for one-class classification
    • Angiulli F. Prototype-based domain description for one-class classification. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34(6):1131-1144.
    • (2012) IEEE Trans. Pattern Anal. Mach. Intell. , vol.34 , Issue.6 , pp. 1131-1144
    • Angiulli, F.1
  • 52
    • 77952547412 scopus 로고    scopus 로고
    • Event monitoring via local motion abnormality detection in non-linear subspace
    • Tzizkos I., Cavallaro A., Xu L. Event monitoring via local motion abnormality detection in non-linear subspace. Neurocomputing 2010, 73(10-12):1881-1891.
    • (2010) Neurocomputing , vol.73 , Issue.10-12 , pp. 1881-1891
    • Tzizkos, I.1    Cavallaro, A.2    Xu, L.3
  • 53
    • 79955500697 scopus 로고    scopus 로고
    • Classification and novel class detection in concept-drifting data streams under time constraints
    • Masud M.M., Gao J., Khan L., Han J., Thuraisingham B. Classification and novel class detection in concept-drifting data streams under time constraints. IEEE Trans. Knowl. Data Eng. 2011, 23(6):859-874.
    • (2011) IEEE Trans. Knowl. Data Eng. , vol.23 , Issue.6 , pp. 859-874
    • Masud, M.M.1    Gao, J.2    Khan, L.3    Han, J.4    Thuraisingham, B.5
  • 54
    • 85158154554 scopus 로고    scopus 로고
    • A hybrid method for novelty detection in time series based on states transitions and swarm intelligence
    • International Conference on Neural Networks, Spain
    • G.G. Cabral, A.L.I. Oliveira, A hybrid method for novelty detection in time series based on states transitions and swarm intelligence, in: International Conference on Neural Networks, Spain, 2010, pp. 1-8.
    • (2010) , pp. 1-8
    • Cabral, G.G.1    Oliveira, A.L.I.2
  • 55
    • 78149466949 scopus 로고    scopus 로고
    • An industrial strength novelty detection framework for autonomous equipment monitoring and diagnostics
    • Filev D.P., Chinnam R.B., Tseng F., Baruah P. An industrial strength novelty detection framework for autonomous equipment monitoring and diagnostics. IEEE Trans. Ind. Inf. 2010, 6(4):767-779.
    • (2010) IEEE Trans. Ind. Inf. , vol.6 , Issue.4 , pp. 767-779
    • Filev, D.P.1    Chinnam, R.B.2    Tseng, F.3    Baruah, P.4
  • 56
    • 77956478694 scopus 로고    scopus 로고
    • Clustering ellipses for anomaly detection
    • Moshtaghi M., et al. Clustering ellipses for anomaly detection. Pattern Recognit. 2011, 44(1):55-69.
    • (2011) Pattern Recognit. , vol.44 , Issue.1 , pp. 55-69
    • Moshtaghi, M.1
  • 57
    • 84865072848 scopus 로고    scopus 로고
    • Constructing the minimum volume surfaces using level set methods for novelty detection
    • International Joint Conference on Neural Networks, Brisbane, Australia
    • X. Ding, Y. Li, A. Belatreche, L. Maguire, Constructing the minimum volume surfaces using level set methods for novelty detection, in: International Joint Conference on Neural Networks, Brisbane, Australia, 2012, pp. 3158-3163.
    • (2012) , pp. 3158-3163
    • Ding, X.1    Li, Y.2    Belatreche, A.3    Maguire, L.4
  • 58
    • 84893615090 scopus 로고    scopus 로고
    • Novelty detection using level set methods with adaptive boundaries
    • Manchester, UK
    • X. Ding, Y. Li, A. Belatreche, L. Maguire, Novelty detection using level set methods with adaptive boundaries, in: IEEE International Conference on SMC, Manchester, UK, 2013, pp. 3020-3025.
    • (2013) IEEE International Conference on SMC , pp. 3020-3025
    • Ding, X.1    Li, Y.2    Belatreche, A.3    Maguire, L.4
  • 59
    • 79960670476 scopus 로고    scopus 로고
    • Probabilistic novelty detection for acoustic suiveillance under real-world conditions
    • Ntalampiras S., Potamitis I., Fakotakis N. Probabilistic novelty detection for acoustic suiveillance under real-world conditions. IEEE Trans. Multimedia 2011, 13(4):713-719.
    • (2011) IEEE Trans. Multimedia , vol.13 , Issue.4 , pp. 713-719
    • Ntalampiras, S.1    Potamitis, I.2    Fakotakis, N.3
  • 60
    • 81855226144 scopus 로고    scopus 로고
    • Novelty detection with multivariate extreme value statistics
    • Clifton D.A., Hugueny S., Tarassenko L. Novelty detection with multivariate extreme value statistics. Signal Process. Syst. 2011, 65(3):371-389.
    • (2011) Signal Process. Syst. , vol.65 , Issue.3 , pp. 371-389
    • Clifton, D.A.1    Hugueny, S.2    Tarassenko, L.3
  • 61
    • 70449717021 scopus 로고    scopus 로고
    • Information theoretic novelty detection
    • Filippone M., Sanguinetti G. Information theoretic novelty detection. Pattern Recognit. 2010, 43(3):805-814.
    • (2010) Pattern Recognit. , vol.43 , Issue.3 , pp. 805-814
    • Filippone, M.1    Sanguinetti, G.2
  • 62
    • 78549284938 scopus 로고    scopus 로고
    • Abnormality detection using low-level co-occurring events
    • Benezeth Y., Jodoin P.M., Saligrama V. Abnormality detection using low-level co-occurring events. Pattern Recognit. Lett. 2011, 32(3):423-431.
    • (2011) Pattern Recognit. Lett. , vol.32 , Issue.3 , pp. 423-431
    • Benezeth, Y.1    Jodoin, P.M.2    Saligrama, V.3
  • 64
    • 84897912614 scopus 로고    scopus 로고
    • Outlier detection with nonlinear projection pursuit
    • Breaban M., Luchian H. Outlier detection with nonlinear projection pursuit. Int. J. Comput. Commun. Control 2013, 8(1):30-36.
    • (2013) Int. J. Comput. Commun. Control , vol.8 , Issue.1 , pp. 30-36
    • Breaban, M.1    Luchian, H.2
  • 65
    • 84865320756 scopus 로고    scopus 로고
    • Beyond novelty detection: incongruent events, when general and specific classifiers disagree
    • Weinshall D., et al. Beyond novelty detection: incongruent events, when general and specific classifiers disagree. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34(10):1886-1901.
    • (2012) IEEE Trans. Pattern Anal. Mach. Intell. , vol.34 , Issue.10 , pp. 1886-1901
    • Weinshall, D.1
  • 66
    • 0442312143 scopus 로고    scopus 로고
    • A mixture model and EM-based algorithm for class discovery, robust classification, and outlier rejection in mixed labeled/unlabeled data sets
    • Miller David J., Browning John A mixture model and EM-based algorithm for class discovery, robust classification, and outlier rejection in mixed labeled/unlabeled data sets. IEEE Trans. Pattern Anal. Mach. Intell. 2003, 25(11):1468-1483.
    • (2003) IEEE Trans. Pattern Anal. Mach. Intell. , vol.25 , Issue.11 , pp. 1468-1483
    • Miller, D.J.1    Browning, J.2
  • 67
    • 0033096971 scopus 로고    scopus 로고
    • Partially supervised classification using weighted unsupervised clustering
    • Jeong Byeungwoo, Landgrebe D.A. Partially supervised classification using weighted unsupervised clustering. IEEE Trans. Geosci. Remote Sensing 1999, 37(2):1073-1079.
    • (1999) IEEE Trans. Geosci. Remote Sensing , vol.37 , Issue.2 , pp. 1073-1079
    • Jeong, B.1    Landgrebe, D.A.2
  • 68
    • 84898980291 scopus 로고    scopus 로고
    • A mixture of experts classifier with learning based on both labelled and unlabelled data
    • David J. Miller, H. Uyar, A mixture of experts classifier with learning based on both labelled and unlabelled data, in: Neural Information Processing Systems Conference, 1997, pp. 571-577.
    • (1997) Neural Information Processing Systems Conference , pp. 571-577
    • Miller, D.J.1    Uyar, H.2
  • 69
    • 67349250736 scopus 로고    scopus 로고
    • Evolving novelty detectors for specific applications
    • Haggett S.J., Chu D.F. Evolving novelty detectors for specific applications. Neurocomputing 2009, 72(10-12):2392-2405.
    • (2009) Neurocomputing , vol.72 , Issue.10-12 , pp. 2392-2405
    • Haggett, S.J.1    Chu, D.F.2
  • 70
    • 0035681625 scopus 로고    scopus 로고
    • Applying MLP and RBF classifiers in embedded condition monitoring and fault diagnosis systems
    • Li Y., Pont M.J., Jones N.B., Twiddle J.A. Applying MLP and RBF classifiers in embedded condition monitoring and fault diagnosis systems. Trans. Inst. Meas. Control 2001, 23(5):315-343.
    • (2001) Trans. Inst. Meas. Control , vol.23 , Issue.5 , pp. 315-343
    • Li, Y.1    Pont, M.J.2    Jones, N.B.3    Twiddle, J.A.4
  • 71
    • 0033220728 scopus 로고    scopus 로고
    • Support vector domain description
    • Tax D.M.J., Duin R.P.W. Support vector domain description. Pattern Recoginit. Lett. 1999, 20(11-13):1191-1199.
    • (1999) Pattern Recoginit. Lett. , vol.20 , Issue.11-13 , pp. 1191-1199
    • Tax, D.M.J.1    Duin, R.P.W.2
  • 72
    • 33846080495 scopus 로고    scopus 로고
    • Density-induced support vector data description
    • Lee K.Y., et al. Density-induced support vector data description. IEEE Trans. Neural Netw. 2007, 18(1):284-289.
    • (2007) IEEE Trans. Neural Netw. , vol.18 , Issue.1 , pp. 284-289
    • Lee, K.Y.1
  • 73
  • 75
    • 79955475773 scopus 로고    scopus 로고
    • Selecting critical patterns based on local geometrical and statistical information
    • Li Y., Maguire L. Selecting critical patterns based on local geometrical and statistical information. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33(6):1189-1201.
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell. , vol.33 , Issue.6 , pp. 1189-1201
    • Li, Y.1    Maguire, L.2
  • 76
    • 84863643216 scopus 로고    scopus 로고
    • Algorithms for maximum-likelihood bandwidth selection in kernel density estimators
    • Leiva-Murillo J.M., Artés-Rodríguez A. Algorithms for maximum-likelihood bandwidth selection in kernel density estimators. Pattern Recognit. Lett. 2012, 33(13):1717-1724.
    • (2012) Pattern Recognit. Lett. , vol.33 , Issue.13 , pp. 1717-1724
    • Leiva-Murillo, J.M.1    Artés-Rodríguez, A.2
  • 77
    • 84945709355 scopus 로고    scopus 로고
    • An algorithm for finding best matches in logarithmic expected time
    • Friedman J.H., Bentley J.L., Finkel R.A. An algorithm for finding best matches in logarithmic expected time. ACM Trans. Math. Softw. 1997, 3(3):209-226.
    • (1997) ACM Trans. Math. Softw. , vol.3 , Issue.3 , pp. 209-226
    • Friedman, J.H.1    Bentley, J.L.2    Finkel, R.A.3
  • 78
    • 37549012615 scopus 로고    scopus 로고
    • K-nearest neighbor finding using MaxNearestDist
    • Samet Hanan K-nearest neighbor finding using MaxNearestDist. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30(2):243-252.
    • (2008) IEEE Trans. Pattern Anal. Mach. Intell. , vol.30 , Issue.2 , pp. 243-252
    • Samet, H.1
  • 79
    • 77949501687 scopus 로고    scopus 로고
    • Classification using geometric level sets
    • Varshney K.R., Willsky A.S. Classification using geometric level sets. J. Mach. Learn. Res. 2010, 11:491-516.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 491-516
    • Varshney, K.R.1    Willsky, A.S.2
  • 82
    • 84897913411 scopus 로고    scopus 로고
    • [Online].
    • [Online]. ftp://ftp.dice.ucl.ac.be/pub/neural-net/ELENA/databases/REAL/phoneme.
  • 83
    • 84897911958 scopus 로고    scopus 로고
    • LIBSVM: A Library for Support Vector Machines. [Online].
    • C.C. Chang, C.J. Lin (2011) LIBSVM: A Library for Support Vector Machines. [Online]. http://www.csie.ntu.edu.tw/~cjlin/libsvm.
    • (2011)
    • Chang, C.C.1    Lin, C.J.2
  • 84
    • 84897914945 scopus 로고    scopus 로고
    • UCI Repository of Machine Learning Databases. [Online].
    • D.J. Newman, S. Hettich, C.L. Blake, C.J. Merz (1998) UCI Repository of Machine Learning Databases. [Online]. http://archive.ics.uci.edu/ml.
    • (1998)
    • Newman, D.J.1    Hettich, S.2    Blake, C.L.3    Merz, C.J.4
  • 86
    • 84897912467 scopus 로고    scopus 로고
    • DDtools, the Data Description Toolbox for Matlab. [Online].
    • D.M.J. Tax. (2012) DDtools, the Data Description Toolbox for Matlab. [Online]. http://prlab.tudelft.nl/david-tax/dd_tools.html.
    • (2012)
    • Tax, D.M.J.1
  • 87
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • Fawcett T. An introduction to ROC analysis. Pattern Recoginit. Lett. 2006, 27(8):861-874.
    • (2006) Pattern Recoginit. Lett. , vol.27 , Issue.8 , pp. 861-874
    • Fawcett, T.1
  • 88
    • 84897912965 scopus 로고    scopus 로고
    • PRTools: A Matlab Toolbox for Pattern Recognition. [Online].
    • R.P.W. Duin et al. (2010) PRTools: A Matlab Toolbox for Pattern Recognition. [Online]. http://www.prtools.org/index.html.
    • (2010)
    • Duin, R.P.W.1
  • 89
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demsar J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 2006, 7:1-30.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1-30
    • Demsar, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.