메뉴 건너뛰기




Volumn 24, Issue 4, 2011, Pages 360-369

Theoretical analysis for solution of support vector data description

Author keywords

Convex optimization; Kernel methods; Support vector data description; Uniqueness

Indexed keywords

CONVEX PROGRAMMING PROBLEMS; DUAL FORM; GEOMETRIC INTERPRETATION; KERNEL METHODS; MACHINE LEARNING METHODS; NONUNIQUENESS; OPTIMAL SOLUTIONS; OPTIMIZATION PROBLEMS; SUFFICIENT CONDITIONS; SUPPORT VECTOR DATA DESCRIPTION; UNIQUENESS;

EID: 79951916431     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neunet.2011.01.007     Document Type: Article
Times cited : (25)

References (22)
  • 1
    • 79951903874 scopus 로고    scopus 로고
    • UCI machine learning repository. School of Information and Computer Sciences, University of California, Irvine. From: .
    • Asuncion, A., & Newman, D. (2007). UCI machine learning repository. School of Information and Computer Sciences, University of California, Irvine. From: http://www.ics.uci.edu/~mlearn/MLRepository.html.
    • (2007)
    • Asuncion, A.1    Newman, D.2
  • 3
    • 0004055894 scopus 로고    scopus 로고
    • Cambridge University Press, Stanford University, New York
    • Boyd S., Vandenberghe L. Convex optimization 2004, Cambridge University Press, Stanford University, New York.
    • (2004) Convex optimization
    • Boyd, S.1    Vandenberghe, L.2
  • 5
    • 0242320492 scopus 로고    scopus 로고
    • Uniqueness theorems for kernel methods
    • Burges C.J.C., Crisp D.J. Uniqueness theorems for kernel methods. Neurocomputing 2003, 55(1-2):187-220.
    • (2003) Neurocomputing , vol.55 , Issue.1-2 , pp. 187-220
    • Burges, C.J.C.1    Crisp, D.J.2
  • 6
    • 79951876986 scopus 로고    scopus 로고
    • A minimum enclosing balls labeling method for support vector clustering. From: .
    • Chang, C. C., Tsai, H. C., & Lee, Y. J. (2009). A minimum enclosing balls labeling method for support vector clustering. From: http://dmlab1.csie.ntust.edu.tw/downloads/papers/SVC_MEB.pdf.
    • (2009)
    • Chang, C.C.1    Tsai, H.C.2    Lee, Y.J.3
  • 7
    • 10944248340 scopus 로고    scopus 로고
    • Scaling up support vector data description by using core-sets. In Proceedings of the international joint conference on neural networks, IJCNN 2004
    • Chu, C. S., Tsang, I. W., & Kwok, J. T. (2004). Scaling up support vector data description by using core-sets. In Proceedings of the international joint conference on neural networks, IJCNN 2004 (pp. 425-430).
    • (2004) , pp. 425-430
    • Chu, C.S.1    Tsang, I.W.2    Kwok, J.T.3
  • 10
    • 51649118270 scopus 로고    scopus 로고
    • A boundary method for outlier detection based on support vector domain description
    • Guo S.M., Chen L.C., Tsai J.S.H. A boundary method for outlier detection based on support vector domain description. Pattern Recognition 2009, 42(1):77-83.
    • (2009) Pattern Recognition , vol.42 , Issue.1 , pp. 77-83
    • Guo, S.M.1    Chen, L.C.2    Tsai, J.S.H.3
  • 11
    • 22844442781 scopus 로고    scopus 로고
    • Improving support vector data description using local density degree
    • Leea K.Y., Kim D.W., Leeb D., Lee K.H. Improving support vector data description using local density degree. Pattern Recognition 2005, 38(10):1768-1771.
    • (2005) Pattern Recognition , vol.38 , Issue.10 , pp. 1768-1771
    • Leea, K.Y.1    Kim, D.W.2    Leeb, D.3    Lee, K.H.4
  • 17
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • Smola A.J., Schölkopf B. A tutorial on support vector regression. Statistics and Computing 2004, 14(3):199-222.
    • (2004) Statistics and Computing , vol.14 , Issue.3 , pp. 199-222
    • Smola, A.J.1    Schölkopf, B.2
  • 18
    • 0942266514 scopus 로고    scopus 로고
    • Support vector data description
    • Tax D.M.J., Duin R.P.W. Support vector data description. Machine Learning 2004, 54(1):45-66.
    • (2004) Machine Learning , vol.54 , Issue.1 , pp. 45-66
    • Tax, D.M.J.1    Duin, R.P.W.2
  • 22
    • 56349086575 scopus 로고    scopus 로고
    • Non-uniqueness of solutions of 1-norm support vector classification in dual form. In IEEE international joint conference on neural networks, IJCNN
    • Zhang, J. R., Chiu, S. Y., & Lan, L. S. (2008). Non-uniqueness of solutions of 1-norm support vector classification in dual form. In IEEE international joint conference on neural networks, IJCNN (pp. 3058-3061.
    • (2008) , pp. 3058-3061
    • Zhang, J.R.1    Chiu, S.Y.2    Lan, L.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.