메뉴 건너뛰기




Volumn 13, Issue 2, 2013, Pages 1193-1205

A modified support vector data description based novelty detection approach for machinery components

Author keywords

Bearing; Novelty detection; One class classification; Parameter selection; Support vector data description

Indexed keywords

BEARINGS (STRUCTURAL); ECONOMIC AND SOCIAL EFFECTS; MACHINERY; ROLLER BEARINGS; TAPERED ROLLER BEARINGS; VECTORS;

EID: 84881606574     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2012.11.005     Document Type: Article
Times cited : (72)

References (33)
  • 1
    • 11144287783 scopus 로고    scopus 로고
    • On-line novelty detection for non-stationary classes using a modified support vector machine
    • 413-097, Proceedings of the IASTED International Conference on Neural Networks and Computational Intelligence
    • F. Camci, R.B. Chinnam, On-line novelty detection for non-stationary classes using a modified support vector machine, in: Proceedings of the IASTED International Conference on Neural Networks and Computational Intelligence, 2004, Grindelwald, Switzerland, 2004, pp. 244-249. (Pubitemid 40036373)
    • (2004) Proceedings of the IASTED International Conference on Neural Networks and Computational Intelligence , pp. 244-249
    • Camci, F.1    Chinnam, R.B.2
  • 3
    • 28844433590 scopus 로고    scopus 로고
    • Modified self-organising map for automated novelty detection applied to vibration signal monitoring
    • DOI 10.1016/j.ymssp.2005.01.008, PII S0888327005000178
    • M.L.D. Wong, L.B. Jack, A.K. Nandi, Modified self-organizing map for automated novelty detection applied to vibration signal monitoring, Mechanical Systems and Signal Processing 20 (3) (2009) 593-610. (Pubitemid 41766673)
    • (2006) Mechanical Systems and Signal Processing , vol.20 , Issue.3 , pp. 593-610
    • Wong, M.L.D.1    Jack, L.B.2    Nandi, A.K.3
  • 4
    • 0036804085 scopus 로고    scopus 로고
    • Network intrusion and fault detection: A statistical anomaly approach
    • DOI 10.1109/MCOM.2002.1039860
    • C. Manikopoulos, S. Papavassiliou, Network intrusion and fault detection: a statistical anomaly approach, IEEE Communications Magazine 40 (10) (2002) 76-82. (Pubitemid 35311949)
    • (2002) IEEE Communications Magazine , vol.40 , Issue.10 , pp. 76-82
    • Manikopoulos, C.1    Papavassiliou, S.2
  • 5
    • 33746885881 scopus 로고    scopus 로고
    • A support vector method for anomaly detection in hyperspectral imagery
    • DOI 10.1109/TGRS.2006.873019, 1661816
    • A. Banerjee, B. Philippe, C. Diehl, A support vector method for anomaly detection in hyperspectral imagery, IEEE Transactions on Geoscience and Remote Sensing 44 (8) (2006) 2282-2291. (Pubitemid 44192167)
    • (2006) IEEE Transactions on Geoscience and Remote Sensing , vol.44 , Issue.8 , pp. 2282-2291
    • Banerjee, A.1    Burlina, P.2    Diehl, C.3
  • 6
    • 33750100476 scopus 로고    scopus 로고
    • A neural network-based novelty detector for image sequence analysis
    • DOI 10.1109/TPAMI.2006.196
    • M. Markou, S. Singh, A neural network-based novelty detector for image sequence analysis, IEEE Transactions on Pattern Analysis and Machine Intelligence 28 (10) (2006) 1664-1677. (Pubitemid 46414200)
    • (2006) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.28 , Issue.10 , pp. 1664-1677
    • Markou, M.1    Singh, S.2
  • 7
    • 34548389776 scopus 로고    scopus 로고
    • A path algorithm for the support vector domain description and its application to medical imaging
    • DOI 10.1016/j.media.2007.07.008, PII S1361841507000710, Ninth International Conference on Medical Image Computing and Computer-Assisted Interventions - MICCAI 2006
    • K. Sjostrand, M.S. Hansen, H.B. Larsson, R. Larsen, A path algorithm for the support vector domain description and its application to medical imaging, Medical Image Analysis 11 (5) (2007) 417-428. (Pubitemid 47365759)
    • (2007) Medical Image Analysis , vol.11 , Issue.5 , pp. 417-428
    • Sjostrand, K.1    Hansen, M.S.2    Larsson, H.B.3    Larsen, R.4
  • 8
    • 33750522220 scopus 로고    scopus 로고
    • Kernel PCA for novelty detection
    • DOI 10.1016/j.patcog.2006.07.009, PII S0031320306003414
    • H. Hoffmann, Kernel PCA for novelty detection, Pattern Recognition 40 (3) (2007) 863-874. (Pubitemid 44667761)
    • (2007) Pattern Recognition , vol.40 , Issue.3 , pp. 863-874
    • Hoffmann, H.1
  • 9
    • 0142063407 scopus 로고    scopus 로고
    • Novelty detection: A review-Part 1: Statistical approaches
    • M. Markou, S. Singh, Novelty detection: a review-Part 1: statistical approaches, Signal Processing 83 (12) (2003) 2481-2497.
    • (2003) Signal Processing , vol.83 , Issue.12 , pp. 2481-2497
    • Markou, M.1    Singh, S.2
  • 10
    • 0142126712 scopus 로고    scopus 로고
    • Novelty detection: A review-Part 2: Neural network based approaches
    • M. Markou, S. Singh, Novelty detection: a review-Part 2: neural network based approaches, Signal Processing 83 (12) (2003) 2499-2521.
    • (2003) Signal Processing , vol.83 , Issue.12 , pp. 2499-2521
    • Markou, M.1    Singh, S.2
  • 11
    • 2142828547 scopus 로고    scopus 로고
    • An approach to novelty detection applied to the classification of image regions
    • S. Singh, M. Markou, An approach to novelty detection applied to the classification of image regions, IEEE Transactions on Knowledge and Data Engineering 16 (4) (2004) 396-407.
    • (2004) IEEE Transactions on Knowledge and Data Engineering , vol.16 , Issue.4 , pp. 396-407
    • Singh, S.1    Markou, M.2
  • 12
    • 0032022460 scopus 로고    scopus 로고
    • Neural tree density estimation for novelty detection
    • PII S1045922798018177
    • D. Martinez, Neural tree density estimation for novelty detection, IEEE Transactions on Neural Networks 9 (2) (1998) 330-338. (Pubitemid 128743640)
    • (1998) IEEE Transactions on Neural Networks , vol.9 , Issue.2 , pp. 330-338
    • Martinez, D.1
  • 13
    • 0242333191 scopus 로고    scopus 로고
    • A kernel-distance-based multivariate control chart using support vector methods
    • R. Sun, F. Tsung, A kernel-distance-based multivariate control chart using support vector methods, International Journal of Production Research 41 (13) (2003) 2975-2989.
    • (2003) International Journal of Production Research , vol.41 , Issue.13 , pp. 2975-2989
    • Sun, R.1    Tsung, F.2
  • 15
    • 0034552537 scopus 로고    scopus 로고
    • Generalized radial basis function networks for classification and novelty detection: Selforganization of optimal Bayesian decision
    • S. Albrecht, J. Busch, M. Kloppenburg, F. Metze, P. Tavan, Generalized radial basis function networks for classification and novelty detection: selforganization of optimal Bayesian decision, Neural Networks 13 (10) (2000) 1075-1093.
    • (2000) Neural Networks , vol.13 , Issue.10 , pp. 1075-1093
    • Albrecht, S.1    Busch, J.2    Kloppenburg, M.3    Metze, F.4    Tavan, P.5
  • 17
    • 0033220728 scopus 로고    scopus 로고
    • Support vector domain description
    • DOI 10.1016/S0167-8655(99)00087-2
    • D. Tax, R. Duin, Support vector domain description, Pattern Recognition Letters 20 (11-13) (1999) 1191-1199. (Pubitemid 32261897)
    • (1999) Pattern Recognition Letters , vol.20 , Issue.11-13 , pp. 1191-1199
    • Tax, D.M.J.1    Duin, R.P.W.2
  • 18
    • 0942266514 scopus 로고    scopus 로고
    • Support vector data description
    • D. Tax, R. Duin, Support vector data description, Machine Learning 54 (1) (2004) 45-66.
    • (2004) Machine Learning , vol.54 , Issue.1 , pp. 45-66
    • Tax, D.1    Duin, R.2
  • 19
    • 84957654736 scopus 로고    scopus 로고
    • Pump failure detection using support vector data description
    • D. Tax, A. Ypma, R. Duin, Pump failure detection using support vector data description, Advances in Intelligent Data Analysis 1642 (1999) 415-425.
    • (1999) Advances in Intelligent Data Analysis , vol.1642 , pp. 415-425
    • Tax, D.1    Ypma, A.2    Duin, R.3
  • 21
    • 58049182562 scopus 로고    scopus 로고
    • Robust bearing performance degradation assessment method based on improved wavelet packet-support vector data description
    • Y. Pan, J. Chen, L. Guo, Robust bearing performance degradation assessment method based on improved wavelet packet-support vector data description, Mechanical Systems and Signal Processing 23 (2009) 669-681.
    • (2009) Mechanical Systems and Signal Processing , vol.23 , pp. 669-681
    • Pan, Y.1    Chen, J.2    Guo, L.3
  • 22
    • 77955514045 scopus 로고    scopus 로고
    • Fast support vector data descriptions for novelty detection
    • Y.H. Liu, Y.C. Liu, Y.J. Chen, Fast support vector data descriptions for novelty detection, IEEE Transactions on Neural Networks 21 (8) (2010) 1296-1313.
    • (2010) IEEE Transactions on Neural Networks , vol.21 , Issue.8 , pp. 1296-1313
    • Liu, Y.H.1    Liu, Y.C.2    Chen, Y.J.3
  • 23
    • 79151475707 scopus 로고    scopus 로고
    • High-speed inline defect detection for TFT-LCD array process using a novel support vector data description
    • Y.H. Liu, Y.C. Liu, Y.Z. Chen, High-speed inline defect detection for TFT-LCD array process using a novel support vector data description, Expert Systems with Applications 38 (5) (2011) 6222-6231.
    • (2011) Expert Systems with Applications , vol.38 , Issue.5 , pp. 6222-6231
    • Liu, Y.H.1    Liu, Y.C.2    Chen, Y.Z.3
  • 24
    • 77249166490 scopus 로고    scopus 로고
    • Integrating support vector machine and genetic algorithm to implement dynamic wafer quality prediction system
    • P.H. Chou, M.J. Wu, K.K. Chen, Integrating support vector machine and genetic algorithm to implement dynamic wafer quality prediction system, Expert Systems with Applications 37 (6) (2010) 4413-4424.
    • (2010) Expert Systems with Applications , vol.37 , Issue.6 , pp. 4413-4424
    • Chou, P.H.1    Wu, M.J.2    Chen, K.K.3
  • 26
    • 0028416938 scopus 로고
    • Independent component analysis a new concept?
    • P. Comon, Independent component analysis, a new concept? Signal Processing 36 (3) (1994) 287-314.
    • (1994) Signal Processing , vol.36 , Issue.3 , pp. 287-314
    • Comon, P.1
  • 27
    • 0013326060 scopus 로고    scopus 로고
    • Feature selection for classification
    • M. Dash, H. Liu, Feature selection for classification, Intelligent Data Analysis 1 (1997) 131-156.
    • (1997) Intelligent Data Analysis , vol.1 , pp. 131-156
    • Dash, M.1    Liu, H.2
  • 29
    • 56349104733 scopus 로고    scopus 로고
    • Automatic target defect identification for TFT-LCD array process inspection using kernel FCM-based fuzzy SVDD ensemble
    • Y.H. Liu, S.H. Lin, Y.L. Hsueh, M.J. Lee, Automatic target defect identification for TFT-LCD array process inspection using kernel FCM-based fuzzy SVDD ensemble, Expert Systems with Applications 36 (2) (2009) 1978-1998.
    • (2009) Expert Systems with Applications , vol.36 , Issue.2 , pp. 1978-1998
    • Liu, Y.H.1    Lin, S.H.2    Hsueh, Y.L.3    Lee, M.J.4
  • 30
    • 0013372968 scopus 로고    scopus 로고
    • Uniform object generation for optimizing one-class classifiers
    • D. Tax, R. Duin, Uniform object generation for optimizing one-class classifiers, The Journal of Machine Learning Research 2 (2002) 155-173.
    • (2002) The Journal of Machine Learning Research , vol.2 , pp. 155-173
    • Tax, D.1    Duin, R.2
  • 32
    • 0031998121 scopus 로고    scopus 로고
    • Machine learning for the detection of oil spills in satellite radar images
    • M. Kubat, R. Holte, S. Matwin, Machine learning for the detection of oil spills in satellite radar images, Machine Learning 30 (2-3) (1998) 195-215.
    • (1998) Machine Learning , vol.30 , Issue.2-3 , pp. 195-215
    • Kubat, M.1    Holte, R.2    Matwin, S.3
  • 33
    • 53349119024 scopus 로고    scopus 로고
    • Using an MQE chart based on a self-organizing map NN to monitor out-of-control signals in manufacturing processes
    • J.B. Yu, L.F. Xi, Using an MQE chart based on a self-organizing map NN to monitor out-of-control signals in manufacturing processes, International Journal of Production Research 46 (21) (2008) 5907-5933.
    • (2008) International Journal of Production Research , vol.46 , Issue.21 , pp. 5907-5933
    • Yu, J.B.1    Xi, L.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.