메뉴 건너뛰기




Volumn 43, Issue 8, 2010, Pages 2732-2752

Iterative Boolean combination of classifiers in the ROC space: An application to anomaly detection with HMMs

Author keywords

Anomaly detection; Combination of classifiers; Computer and network security; Hidden Markov models; Limited and imbalanced data; Receiver operating characteristics

Indexed keywords

ANOMALY DETECTION; APPLICATION DOMAINS; BOOLEAN COMBINATIONS; COMBINATION OF CLASSIFIERS; COMPUTER AND NETWORK SECURITY; HOST-BASED INTRUSION DETECTION; IMBALANCED DATA; MULTIPLE CLASSIFIERS; OPERATING SYSTEM KERNEL; REAL-WORLD; REAL-WORLD APPLICATION; ROC CURVES; SYSTEM CALLS; TIME COMPLEXITY; TRAINING DATA; TWO-CLASS CLASSIFIER;

EID: 77951257705     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2010.03.006     Document Type: Article
Times cited : (95)

References (56)
  • 1
    • 77951257180 scopus 로고    scopus 로고
    • Anomaly detection for discrete sequences: A survey
    • 09-015, University of Minnesota, Department of Computer Science and Engineering
    • V. Chandola, A. Banerjee, V. Kumar, Anomaly detection for discrete sequences: a survey, Technical Report TR 09-015, University of Minnesota, Department of Computer Science and Engineering, 2009
    • (2009) Technical Report TR
    • Chandola, V.1    Banerjee, A.2    Kumar, V.3
  • 4
    • 0024610919 scopus 로고
    • A tutorial on Hidden Markov Models and selected applications in speech recognition
    • Rabiner L. A tutorial on Hidden Markov Models and selected applications in speech recognition. Proceedings of the IEEE 77 2 (1989) 257-286
    • (1989) Proceedings of the IEEE , vol.77 , Issue.2 , pp. 257-286
    • Rabiner, L.1
  • 6
    • 21644438395 scopus 로고    scopus 로고
    • An efficient Hidden Markov Model training scheme for anomaly intrusion detection of server applications based on system calls
    • ICON, Singapore
    • X. Hoang, J. Hu, An efficient Hidden Markov Model training scheme for anomaly intrusion detection of server applications based on system calls, in: IEEE International Conference on Networks, ICON, vol. 2, Singapore, 2004, pp. 470-474
    • (2004) IEEE International Conference on Networks , vol.2 , pp. 470-474
    • Hoang, X.1    Hu, J.2
  • 10
    • 0007210317 scopus 로고    scopus 로고
    • Realisable classifiers: improving operating performance on variable cost problems
    • Lewis P.H., and Nixon M.S. (Eds), University of Southampton, UK
    • Scott M.J.J., Niranjan M., and Prager R.W. Realisable classifiers: improving operating performance on variable cost problems. In: Lewis P.H., and Nixon M.S. (Eds). Proceedings of the Ninth British Machine Vision Conference vol. 1 (1998), University of Southampton, UK 304-315
    • (1998) Proceedings of the Ninth British Machine Vision Conference , vol.1 , pp. 304-315
    • Scott, M.J.J.1    Niranjan, M.2    Prager, R.W.3
  • 11
  • 12
    • 0345438685 scopus 로고    scopus 로고
    • Notes and practical considerations for researchers
    • ROC graphs:, Technical Report HPL-2003-4, HP Laboratories, Palo Alto, CA, USA
    • T. Fawcett, ROC graphs: Notes and practical considerations for researchers, Technical Report HPL-2003-4, HP Laboratories, Palo Alto, CA, USA, 2004
    • (2004)
    • Fawcett, T.1
  • 14
    • 77951259127 scopus 로고    scopus 로고
    • Threshold-optimized decision-level fusion and its application to biometrics
    • Tao Q., and Veldhuis R. Threshold-optimized decision-level fusion and its application to biometrics. Pattern Recognition 41 5 (2008) 852-867
    • (2008) Pattern Recognition , vol.41 , Issue.5 , pp. 852-867
    • Tao, Q.1    Veldhuis, R.2
  • 20
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • Hanley J., and McNeil B. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143 1 (1982) 29-36
    • (1982) Radiology , vol.143 , Issue.1 , pp. 29-36
    • Hanley, J.1    McNeil, B.2
  • 21
    • 21244485773 scopus 로고    scopus 로고
    • The partial area under the summary ROC curve
    • Walter S.D. The partial area under the summary ROC curve. Statistics in Medicine 24 13 (2005) 2025-2040
    • (2005) Statistics in Medicine , vol.24 , Issue.13 , pp. 2025-2040
    • Walter, S.D.1
  • 22
    • 0000353178 scopus 로고
    • A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains
    • Baum L.E., Petrie G.S., and Weiss N. A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. The Annals of Mathematical Statistics 41 1 (1970) 164-171
    • (1970) The Annals of Mathematical Statistics , vol.41 , Issue.1 , pp. 164-171
    • Baum, L.E.1    Petrie, G.S.2    Weiss, N.3
  • 24
    • 0023780330 scopus 로고
    • The robustness of the "binormal" assumptions used in fitting ROC curves
    • Hanley J.A. The robustness of the "binormal" assumptions used in fitting ROC curves. Medical Decision Making 8 3 (1988) 197-203
    • (1988) Medical Decision Making , vol.8 , Issue.3 , pp. 197-203
    • Hanley, J.A.1
  • 25
    • 0018079655 scopus 로고
    • Basic principles of ROC analysis
    • Metz C. Basic principles of ROC analysis. Seminars in Nuclear Medicine 8 (1978) 283-298
    • (1978) Seminars in Nuclear Medicine , vol.8 , pp. 283-298
    • Metz, C.1
  • 26
    • 0035283313 scopus 로고    scopus 로고
    • Robust classification for imprecise environments
    • Provost F.J., and Fawcett T. Robust classification for imprecise environments. Machine Learning 42 3 (2001) 203-231
    • (2001) Machine Learning , vol.42 , Issue.3 , pp. 203-231
    • Provost, F.J.1    Fawcett, T.2
  • 27
    • 0011478306 scopus 로고    scopus 로고
    • Biometric decision landscapes
    • Technical Report UCAM-CL-TR-482, University of Cambridge, UK
    • J. Daugman, Biometric decision landscapes, Technical Report UCAM-CL-TR-482, University of Cambridge, UK, 2000
    • (2000)
    • Daugman, J.1
  • 28
    • 0037201010 scopus 로고    scopus 로고
    • Estimating disease prevalence in the absence of a gold standard
    • Black M.A., and Craig B.A. Estimating disease prevalence in the absence of a gold standard. Statistics in Medicine 21 18 (2002) 2653-2669
    • (2002) Statistics in Medicine , vol.21 , Issue.18 , pp. 2653-2669
    • Black, M.A.1    Craig, B.A.2
  • 29
    • 33750979017 scopus 로고    scopus 로고
    • Role of statistical dependence between classifier scores in determining the best decision fusion rule for improved biometric verification
    • Venkataramani K., and Kumar B. Role of statistical dependence between classifier scores in determining the best decision fusion rule for improved biometric verification. Multimedia Content Representation, Classification and Security 4105 (2006) 489-496
    • (2006) Multimedia Content Representation, Classification and Security , vol.4105 , pp. 489-496
    • Venkataramani, K.1    Kumar, B.2
  • 31
    • 77951253179 scopus 로고    scopus 로고
    • On the principles of believe the positive and believe the negative for diagnosis using two continuous tests
    • Shen C. On the principles of believe the positive and believe the negative for diagnosis using two continuous tests. Journal of Data Science 6 (2008) 189-205
    • (2008) Journal of Data Science , vol.6 , pp. 189-205
    • Shen, C.1
  • 34
    • 0010202247 scopus 로고    scopus 로고
    • Combining diagnostic test results to increase accuracy
    • Pepe M.S., and Thompson M.L. Combining diagnostic test results to increase accuracy. Biostatistics 1 2 (2000) 123-140
    • (2000) Biostatistics , vol.1 , Issue.2 , pp. 123-140
    • Pepe, M.S.1    Thompson, M.L.2
  • 37
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Machine Learning 24 2 (1996) 123-140
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 40
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • Kuncheva L.I., and Whitaker C.J. Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Machine Learning 51 2 (2003) 181-207
    • (2003) Machine Learning , vol.51 , Issue.2 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 42
  • 43
    • 10444224737 scopus 로고    scopus 로고
    • Classifier selection for majority voting
    • Ruta D., and Gabrys B. Classifier selection for majority voting. Information Fusion 6 1 (2005) 63-81
    • (2005) Information Fusion , vol.6 , Issue.1 , pp. 63-81
    • Ruta, D.1    Gabrys, B.2
  • 44
    • 22444454265 scopus 로고    scopus 로고
    • Combining classifiers: a theoretical framework
    • Kittler J. Combining classifiers: a theoretical framework. Pattern Analysis & Applications 1 1 (1998) 18-27
    • (1998) Pattern Analysis & Applications , vol.1 , Issue.1 , pp. 18-27
    • Kittler, J.1
  • 45
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert D.H. Stacked generalization. Neural Networks 5 (1992) 241-259
    • (1992) Neural Networks , vol.5 , pp. 241-259
    • Wolpert, D.H.1
  • 49
    • 0036026248 scopus 로고    scopus 로고
    • A theoretical analysis of the limits of majority voting errors for multiple classifier systems
    • Ruta D., and Gabrys B. A theoretical analysis of the limits of majority voting errors for multiple classifier systems. Pattern Analysis & Applications 5 4 (2002) 333-350
    • (2002) Pattern Analysis & Applications , vol.5 , Issue.4 , pp. 333-350
    • Ruta, D.1    Gabrys, B.2
  • 50
    • 27244453282 scopus 로고    scopus 로고
    • The behavior knowledge space fusion method: Analysis of generalization error and strategies for performance improvement
    • Å. Raudys, F. Roli, The behavior knowledge space fusion method: analysis of generalization error and strategies for performance improvement, in: Multiple Classifier Systems, vol. 2709, 2003, pp. 55-64
    • (2003) Multiple Classifier Systems , vol.2709 , pp. 55-64
    • Raudys, A.1    Roli, F.2
  • 51
    • 0003598536 scopus 로고    scopus 로고
    • Ensemble learning for hidden Markov models
    • Technical Report, Cavendish Laboratory, Cambridge, UK
    • D. MacKay, Ensemble learning for hidden Markov models, Technical Report, Cavendish Laboratory, Cambridge, UK, 1997
    • (1997)
    • MacKay, D.1
  • 52
    • 0037252253 scopus 로고    scopus 로고
    • Determining the operational limits of an anomaly-based intrusion detector
    • Tan K., and Maxion R. Determining the operational limits of an anomaly-based intrusion detector. IEEE Journal on Selected Areas in Communications 21 1 (2003) 96-110
    • (2003) IEEE Journal on Selected Areas in Communications , vol.21 , Issue.1 , pp. 96-110
    • Tan, K.1    Maxion, R.2
  • 53
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • Bradley A.P. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition 30 7 (1997) 1145-1159
    • (1997) Pattern Recognition , vol.30 , Issue.7 , pp. 1145-1159
    • Bradley, A.P.1
  • 55
    • 0037088346 scopus 로고    scopus 로고
    • A non-parametric method for the comparison of partial areas under ROC curves and its application to large health care data sets
    • Zhang D.D., Zhou X.-H., Freeman Jr. D.H., and Freeman J.L. A non-parametric method for the comparison of partial areas under ROC curves and its application to large health care data sets. Statistics in Medicine 21 5 (2002) 701-715
    • (2002) Statistics in Medicine , vol.21 , Issue.5 , pp. 701-715
    • Zhang, D.D.1    Zhou, X.-H.2    Freeman Jr., D.H.3    Freeman, J.L.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.