-
1
-
-
77951257180
-
Anomaly detection for discrete sequences: A survey
-
09-015, University of Minnesota, Department of Computer Science and Engineering
-
V. Chandola, A. Banerjee, V. Kumar, Anomaly detection for discrete sequences: a survey, Technical Report TR 09-015, University of Minnesota, Department of Computer Science and Engineering, 2009
-
(2009)
Technical Report TR
-
-
Chandola, V.1
Banerjee, A.2
Kumar, V.3
-
2
-
-
0029716418
-
A sense of self for Unix processes
-
S. Forrest, S.A. Hofmeyr, A. Somayaji, T.A. Longstaff, A sense of self for Unix processes, in: Proceedings of the 1996 IEEE Symposium on Research in Security and Privacy, 1996, pp. 120-128
-
(1996)
Proceedings of the 1996 IEEE Symposium on Research in Security and Privacy
, pp. 120-128
-
-
Forrest, S.1
Hofmeyr, S.A.2
Somayaji, A.3
Longstaff, T.A.4
-
3
-
-
0032639421
-
Detecting intrusions using system calls: Alternative data models
-
Oakland, CA, USA
-
C. Warrender, S. Forrest, B. Pearlmutter, Detecting intrusions using system calls: alternative data models, in: Proceedings of the IEEE Computer Society Symposium on Research in Security and Privacy, Oakland, CA, USA, 1999, pp. 133-45
-
(1999)
Proceedings of the IEEE Computer Society Symposium on Research in Security and Privacy
, pp. 133-145
-
-
Warrender, C.1
Forrest, S.2
Pearlmutter, B.3
-
4
-
-
0024610919
-
A tutorial on Hidden Markov Models and selected applications in speech recognition
-
Rabiner L. A tutorial on Hidden Markov Models and selected applications in speech recognition. Proceedings of the IEEE 77 2 (1989) 257-286
-
(1989)
Proceedings of the IEEE
, vol.77
, Issue.2
, pp. 257-286
-
-
Rabiner, L.1
-
5
-
-
0036928078
-
HMMs (Hidden Markov Models) based on anomaly intrusion detection method
-
B. Gao, H.-Y. Ma, Y.-H. Yang, HMMs (Hidden Markov Models) based on anomaly intrusion detection method, in: Proceedings of 2002 International Conference on Machine Learning and Cybernetics, vol. 1, 2002, pp. 381-385
-
(2002)
Proceedings of 2002 International Conference on Machine Learning and Cybernetics
, vol.1
, pp. 381-385
-
-
Gao, B.1
Ma, H.-Y.2
Yang, Y.-H.3
-
6
-
-
21644438395
-
An efficient Hidden Markov Model training scheme for anomaly intrusion detection of server applications based on system calls
-
ICON, Singapore
-
X. Hoang, J. Hu, An efficient Hidden Markov Model training scheme for anomaly intrusion detection of server applications based on system calls, in: IEEE International Conference on Networks, ICON, vol. 2, Singapore, 2004, pp. 470-474
-
(2004)
IEEE International Conference on Networks
, vol.2
, pp. 470-474
-
-
Hoang, X.1
Hu, J.2
-
7
-
-
84898936541
-
The infinite Hidden Markov Model
-
MIT Press, Cambridge, MA
-
M.J. Beal, Z. Ghahramani, C.E. Rasmussen, The infinite Hidden Markov Model, in: Advances in Neural Information Processing Systems (NIPS) 2001, vol. 14, MIT Press, Cambridge, MA, 2002, pp. 577-585
-
(2001)
Advances in Neural Information Processing Systems (NIPS)
, vol.14
, pp. 577-585
-
-
Beal, M.J.1
Ghahramani, Z.2
Rasmussen, C.E.3
-
8
-
-
56449130659
-
Beam sampling for the infinite Hidden Markov Model
-
Helsinki, Finland
-
J.V. Gael, Y. Saatci, Y.W. Teh, Z. Ghahramani, Beam sampling for the infinite Hidden Markov Model, in: Proceedings of the 25th International Conference on Machine Learning, ACM, Helsinki, Finland, 2008, pp. 1088-1095
-
(2008)
Proceedings of the 25th International Conference on Machine Learning, ACM
, pp. 1088-1095
-
-
Gael, J.V.1
Saatci, Y.2
Teh, Y.W.3
Ghahramani, Z.4
-
9
-
-
70449499748
-
Combining Hidden Markov Models for anomaly detection
-
Dresden, Germany
-
W. Khreich, E. Granger, R. Sabourin, A. Miri, Combining Hidden Markov Models for anomaly detection, in: International Conference on Communications (ICC), Dresden, Germany, 2009
-
(2009)
International Conference on Communications (ICC)
-
-
Khreich, W.1
Granger, E.2
Sabourin, R.3
Miri, A.4
-
10
-
-
0007210317
-
Realisable classifiers: improving operating performance on variable cost problems
-
Lewis P.H., and Nixon M.S. (Eds), University of Southampton, UK
-
Scott M.J.J., Niranjan M., and Prager R.W. Realisable classifiers: improving operating performance on variable cost problems. In: Lewis P.H., and Nixon M.S. (Eds). Proceedings of the Ninth British Machine Vision Conference vol. 1 (1998), University of Southampton, UK 304-315
-
(1998)
Proceedings of the Ninth British Machine Vision Conference
, vol.1
, pp. 304-315
-
-
Scott, M.J.J.1
Niranjan, M.2
Prager, R.W.3
-
11
-
-
85101511266
-
Analysis and visualization of classifier performance: Comparison under imprecise class and cost distributions
-
AAAI Press, Menlo Park, CA
-
F. Provost, T. Fawcett, Analysis and visualization of classifier performance: comparison under imprecise class and cost distributions, in: Proceedings of the Third International Conference on Knowledge Discovery and Data Mining, AAAI Press, Menlo Park, CA, 1997, pp. 43-48
-
(1997)
Proceedings of the Third International Conference on Knowledge Discovery and Data Mining
, pp. 43-48
-
-
Provost, F.1
Fawcett, T.2
-
12
-
-
0345438685
-
Notes and practical considerations for researchers
-
ROC graphs:, Technical Report HPL-2003-4, HP Laboratories, Palo Alto, CA, USA
-
T. Fawcett, ROC graphs: Notes and practical considerations for researchers, Technical Report HPL-2003-4, HP Laboratories, Palo Alto, CA, USA, 2004
-
(2004)
-
-
Fawcett, T.1
-
13
-
-
85162065215
-
Optimal ROC for a combination of classifiers
-
M. Barreno, A. Cardenas, D. Tygar, Optimal ROC for a combination of classifiers, in: Advances in Neural Information Processing Systems (NIPS), vol. 20, 2008
-
(2008)
Advances in Neural Information Processing Systems (NIPS)
, vol.20
-
-
Barreno, M.1
Cardenas, A.2
Tygar, D.3
-
14
-
-
77951259127
-
Threshold-optimized decision-level fusion and its application to biometrics
-
Tao Q., and Veldhuis R. Threshold-optimized decision-level fusion and its application to biometrics. Pattern Recognition 41 5 (2008) 852-867
-
(2008)
Pattern Recognition
, vol.41
, Issue.5
, pp. 852-867
-
-
Tao, Q.1
Veldhuis, R.2
-
15
-
-
84937438636
-
Evolving receiver operating characteristics for data fusion
-
Springer-Verlag, London, UK
-
W.B. Langdon, B.F. Buxton, Evolving receiver operating characteristics for data fusion, in: EuroGP '01: Proceedings of the 4th European Conference on Genetic Programming, Springer-Verlag, London, UK, 2001, pp. 87-96
-
(2001)
EuroGP '01: Proceedings of the 4th European Conference on Genetic Programming
, pp. 87-96
-
-
Langdon, W.B.1
Buxton, B.F.2
-
16
-
-
33744827720
-
Combining classifiers using their receiver operating characteristics and maximum likelihood estimation
-
S. Haker, W.M. Wells, S.K. Warfield, I.-F. Talos, J.G. Bhagwat, D. Goldberg-Zimring, A. Mian, L. Ohno-Machado, K.H. Zou, Combining classifiers using their receiver operating characteristics and maximum likelihood estimation, in: Medical Image Computing and Computer Assisted Intervention (MICCAI), vol. 3749, 2005, pp. 506-514
-
(2005)
Medical Image Computing and Computer Assisted Intervention (MICCAI)
, vol.3749
, pp. 506-514
-
-
Haker, S.1
Wells, W.M.2
Warfield, S.K.3
Talos, I.-F.4
Bhagwat, J.G.5
Goldberg-Zimring, D.6
Mian, A.7
Ohno-Machado, L.8
Zou, K.H.9
-
17
-
-
77951252534
-
Receiver operating characteristic curves and fusion of multiple classifiers
-
J. Hill, M. Oxley, K. Bauer, Receiver operating characteristic curves and fusion of multiple classifiers, in: Proceedings of the 6th International Conference on Information Fusion, vol. 2, 2003, pp. 815-822
-
(2003)
Proceedings of the 6th International Conference on Information Fusion
, vol.2
, pp. 815-822
-
-
Hill, J.1
Oxley, M.2
Bauer, K.3
-
18
-
-
50149086325
-
A Boolean Algebra of receiver operating characteristic curves
-
M. Oxley, S. Thorsen, C. Schubert, A Boolean Algebra of receiver operating characteristic curves, in: 10th International Conference on Information Fusion, 2007, pp. 1-8
-
(2007)
10th International Conference on Information Fusion
, pp. 1-8
-
-
Oxley, M.1
Thorsen, S.2
Schubert, C.3
-
20
-
-
0020083498
-
The meaning and use of the area under a receiver operating characteristic (ROC) curve
-
Hanley J., and McNeil B. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143 1 (1982) 29-36
-
(1982)
Radiology
, vol.143
, Issue.1
, pp. 29-36
-
-
Hanley, J.1
McNeil, B.2
-
21
-
-
21244485773
-
The partial area under the summary ROC curve
-
Walter S.D. The partial area under the summary ROC curve. Statistics in Medicine 24 13 (2005) 2025-2040
-
(2005)
Statistics in Medicine
, vol.24
, Issue.13
, pp. 2025-2040
-
-
Walter, S.D.1
-
22
-
-
0000353178
-
A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains
-
Baum L.E., Petrie G.S., and Weiss N. A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. The Annals of Mathematical Statistics 41 1 (1970) 164-171
-
(1970)
The Annals of Mathematical Statistics
, vol.41
, Issue.1
, pp. 164-171
-
-
Baum, L.E.1
Petrie, G.S.2
Weiss, N.3
-
24
-
-
0023780330
-
The robustness of the "binormal" assumptions used in fitting ROC curves
-
Hanley J.A. The robustness of the "binormal" assumptions used in fitting ROC curves. Medical Decision Making 8 3 (1988) 197-203
-
(1988)
Medical Decision Making
, vol.8
, Issue.3
, pp. 197-203
-
-
Hanley, J.A.1
-
25
-
-
0018079655
-
Basic principles of ROC analysis
-
Metz C. Basic principles of ROC analysis. Seminars in Nuclear Medicine 8 (1978) 283-298
-
(1978)
Seminars in Nuclear Medicine
, vol.8
, pp. 283-298
-
-
Metz, C.1
-
26
-
-
0035283313
-
Robust classification for imprecise environments
-
Provost F.J., and Fawcett T. Robust classification for imprecise environments. Machine Learning 42 3 (2001) 203-231
-
(2001)
Machine Learning
, vol.42
, Issue.3
, pp. 203-231
-
-
Provost, F.J.1
Fawcett, T.2
-
27
-
-
0011478306
-
Biometric decision landscapes
-
Technical Report UCAM-CL-TR-482, University of Cambridge, UK
-
J. Daugman, Biometric decision landscapes, Technical Report UCAM-CL-TR-482, University of Cambridge, UK, 2000
-
(2000)
-
-
Daugman, J.1
-
28
-
-
0037201010
-
Estimating disease prevalence in the absence of a gold standard
-
Black M.A., and Craig B.A. Estimating disease prevalence in the absence of a gold standard. Statistics in Medicine 21 18 (2002) 2653-2669
-
(2002)
Statistics in Medicine
, vol.21
, Issue.18
, pp. 2653-2669
-
-
Black, M.A.1
Craig, B.A.2
-
29
-
-
33750979017
-
Role of statistical dependence between classifier scores in determining the best decision fusion rule for improved biometric verification
-
Venkataramani K., and Kumar B. Role of statistical dependence between classifier scores in determining the best decision fusion rule for improved biometric verification. Multimedia Content Representation, Classification and Security 4105 (2006) 489-496
-
(2006)
Multimedia Content Representation, Classification and Security
, vol.4105
, pp. 489-496
-
-
Venkataramani, K.1
Kumar, B.2
-
31
-
-
77951253179
-
On the principles of believe the positive and believe the negative for diagnosis using two continuous tests
-
Shen C. On the principles of believe the positive and believe the negative for diagnosis using two continuous tests. Journal of Data Science 6 (2008) 189-205
-
(2008)
Journal of Data Science
, vol.6
, pp. 189-205
-
-
Shen, C.1
-
34
-
-
0010202247
-
Combining diagnostic test results to increase accuracy
-
Pepe M.S., and Thompson M.L. Combining diagnostic test results to increase accuracy. Biostatistics 1 2 (2000) 123-140
-
(2000)
Biostatistics
, vol.1
, Issue.2
, pp. 123-140
-
-
Pepe, M.S.1
Thompson, M.L.2
-
36
-
-
38049071588
-
Review of classifier combination methods
-
Simone Marinai H.F. (Ed), Springer
-
Tulyakov S., Jaeger S., Govindaraju V., and Doermann D. Review of classifier combination methods. In: Simone Marinai H.F. (Ed). Studies in Computational Intelligence: Machine Learning in Document Analysis and Recognition (2008), Springer 361-386
-
(2008)
Studies in Computational Intelligence: Machine Learning in Document Analysis and Recognition
, pp. 361-386
-
-
Tulyakov, S.1
Jaeger, S.2
Govindaraju, V.3
Doermann, D.4
-
37
-
-
0030211964
-
Bagging predictors
-
Breiman L. Bagging predictors. Machine Learning 24 2 (1996) 123-140
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
40
-
-
0037403516
-
Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
-
Kuncheva L.I., and Whitaker C.J. Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Machine Learning 51 2 (2003) 181-207
-
(2003)
Machine Learning
, vol.51
, Issue.2
, pp. 181-207
-
-
Kuncheva, L.I.1
Whitaker, C.J.2
-
41
-
-
10444221886
-
Diversity creation methods: a survey and categorisation
-
Brown G., Wyatt J., Harris R., and Yao X. Diversity creation methods: a survey and categorisation. Journal of Information Fusion 6 1 (2005) 5-20
-
(2005)
Journal of Information Fusion
, vol.6
, Issue.1
, pp. 5-20
-
-
Brown, G.1
Wyatt, J.2
Harris, R.3
Yao, X.4
-
42
-
-
35248848402
-
A new ensemble diversity measure applied to thinning ensembles
-
R. Banfield, L. Hall, K. Bowyer, W. Kegelmeyer, A new ensemble diversity measure applied to thinning ensembles, in: Multiple Classifier Systems, vol. 2709, 2003, pp. 306-316
-
(2003)
Multiple Classifier Systems
, vol.2709
, pp. 306-316
-
-
Banfield, R.1
Hall, L.2
Bowyer, K.3
Kegelmeyer, W.4
-
43
-
-
10444224737
-
Classifier selection for majority voting
-
Ruta D., and Gabrys B. Classifier selection for majority voting. Information Fusion 6 1 (2005) 63-81
-
(2005)
Information Fusion
, vol.6
, Issue.1
, pp. 63-81
-
-
Ruta, D.1
Gabrys, B.2
-
44
-
-
22444454265
-
Combining classifiers: a theoretical framework
-
Kittler J. Combining classifiers: a theoretical framework. Pattern Analysis & Applications 1 1 (1998) 18-27
-
(1998)
Pattern Analysis & Applications
, vol.1
, Issue.1
, pp. 18-27
-
-
Kittler, J.1
-
45
-
-
0026692226
-
Stacked generalization
-
Wolpert D.H. Stacked generalization. Neural Networks 5 (1992) 241-259
-
(1992)
Neural Networks
, vol.5
, pp. 241-259
-
-
Wolpert, D.H.1
-
46
-
-
84901462536
-
Fixed and trained combiners for fusion of imbalanced pattern classifiers
-
F. Roli, G. Fumera, J. Kittler, Fixed and trained combiners for fusion of imbalanced pattern classifiers, in: Proceedings of the Fifth International Conference on Information Fusion, vol. 1, 2002, pp. 278-284
-
(2002)
Proceedings of the Fifth International Conference on Information Fusion
, vol.1
, pp. 278-284
-
-
Roli, F.1
Fumera, G.2
Kittler, J.3
-
49
-
-
0036026248
-
A theoretical analysis of the limits of majority voting errors for multiple classifier systems
-
Ruta D., and Gabrys B. A theoretical analysis of the limits of majority voting errors for multiple classifier systems. Pattern Analysis & Applications 5 4 (2002) 333-350
-
(2002)
Pattern Analysis & Applications
, vol.5
, Issue.4
, pp. 333-350
-
-
Ruta, D.1
Gabrys, B.2
-
50
-
-
27244453282
-
The behavior knowledge space fusion method: Analysis of generalization error and strategies for performance improvement
-
Å. Raudys, F. Roli, The behavior knowledge space fusion method: analysis of generalization error and strategies for performance improvement, in: Multiple Classifier Systems, vol. 2709, 2003, pp. 55-64
-
(2003)
Multiple Classifier Systems
, vol.2709
, pp. 55-64
-
-
Raudys, A.1
Roli, F.2
-
51
-
-
0003598536
-
Ensemble learning for hidden Markov models
-
Technical Report, Cavendish Laboratory, Cambridge, UK
-
D. MacKay, Ensemble learning for hidden Markov models, Technical Report, Cavendish Laboratory, Cambridge, UK, 1997
-
(1997)
-
-
MacKay, D.1
-
52
-
-
0037252253
-
Determining the operational limits of an anomaly-based intrusion detector
-
Tan K., and Maxion R. Determining the operational limits of an anomaly-based intrusion detector. IEEE Journal on Selected Areas in Communications 21 1 (2003) 96-110
-
(2003)
IEEE Journal on Selected Areas in Communications
, vol.21
, Issue.1
, pp. 96-110
-
-
Tan, K.1
Maxion, R.2
-
53
-
-
0031191630
-
The use of the area under the ROC curve in the evaluation of machine learning algorithms
-
Bradley A.P. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition 30 7 (1997) 1145-1159
-
(1997)
Pattern Recognition
, vol.30
, Issue.7
, pp. 1145-1159
-
-
Bradley, A.P.1
-
55
-
-
0037088346
-
A non-parametric method for the comparison of partial areas under ROC curves and its application to large health care data sets
-
Zhang D.D., Zhou X.-H., Freeman Jr. D.H., and Freeman J.L. A non-parametric method for the comparison of partial areas under ROC curves and its application to large health care data sets. Statistics in Medicine 21 5 (2002) 701-715
-
(2002)
Statistics in Medicine
, vol.21
, Issue.5
, pp. 701-715
-
-
Zhang, D.D.1
Zhou, X.-H.2
Freeman Jr., D.H.3
Freeman, J.L.4
-
56
-
-
57349172056
-
Pareto analysis for the selection of classifier ensembles
-
Atlanta, GA, USA
-
E.M. Dos Santos, R. Sabourin, P. Maupin, Pareto analysis for the selection of classifier ensembles, in: Genetic and Evolutionary Computation Conference (GECCO), Atlanta, GA, USA, 2008, pp. 681-688
-
(2008)
Genetic and Evolutionary Computation Conference (GECCO)
, pp. 681-688
-
-
Dos Santos, E.M.1
Sabourin, R.2
Maupin, P.3
|