메뉴 건너뛰기




Volumn 46, Issue , 2013, Pages 235-262

Toward supervised anomaly detection

Author keywords

[No Author keywords available]

Indexed keywords

INTRUSION DETECTION; MACHINE LEARNING; UNSUPERVISED LEARNING;

EID: 84875512265     PISSN: None     EISSN: 10769757     Source Type: Journal    
DOI: 10.1613/jair.3623     Document Type: Article
Times cited : (374)

References (62)
  • 6
    • 84898950762 scopus 로고    scopus 로고
    • A linear programming approach to novelty detection
    • Leen, T., Dietterich, T., & Tresp, V. (Eds.) MIT Press
    • Campbell, C, & Bennett, K. (2001). A linear programming approach to novelty detection. In Leen, T., Dietterich, T., & Tresp, V. (Eds.), Advances in Neural Information Processing Systems, Vol. 13, pp. 395-401. MIT Press.
    • (2001) Advances in Neural Information Processing Systems , vol.13 , pp. 395-401
    • Campbell, C.1    Bennett, K.2
  • 8
    • 33749257143 scopus 로고    scopus 로고
    • A continuation method for semi-supervised SVMs
    • New York, New York, USA. ACM
    • Chapelle, O., Chi, M., & Zien, A. (2006). A continuation method for semi-supervised SVMs. In ICML, pp. 185-192, New York, New York, USA. ACM.
    • (2006) ICML , pp. 185-192
    • Chapelle, O.1    Chi, M.2    Zien, A.3
  • 11
    • 34249753618 scopus 로고
    • Support vector networks
    • Cortes, C, & Vapnik, V. (1995). Support vector networks. Machine Learning, 20, 273-297.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 16
    • 70350627210 scopus 로고    scopus 로고
    • Active and semi-supervised data domain description
    • Görnitz, N., Kloft, M., & Brefeld, U. (2009). Active and semi-supervised data domain description. In ECML/PKDD (1), pp. 407-422.
    • (2009) ECML/PKDD (1) , pp. 407-422
    • Görnitz, N.1    Kloft, M.2    Brefeld, U.3
  • 19
    • 0000171374 scopus 로고
    • Robust statistics: A review
    • Huber, P. (1972). Robust statistics: a review. Ann. Statist., 43, 1041.
    • (1972) Ann. Statist. , vol.43 , pp. 1041
    • Huber, P.1
  • 20
    • 0001938951 scopus 로고    scopus 로고
    • Transductive inference for text classification using support vector machines
    • Bled, Slowenien
    • Joachims, T. (1999). Transductive inference for text classification using support vector machines. In International Conference on Machine Learning (ICML), pp. 200-209, Bled, Slowenien.
    • (1999) International Conference on Machine Learning (ICML) , pp. 200-209
    • Joachims, T.1
  • 22
    • 18844395404 scopus 로고    scopus 로고
    • A multi-model approach to the detection of web-based attacks
    • Kruegel, C, Vigna, G., & Robertson, W. (2005). A multi-model approach to the detection of web-based attacks. Computer Networks, 48(5).
    • (2005) Computer Networks , vol.48 , Issue.5
    • Kruegel, C.1    Vigna, G.2    Robertson, W.3
  • 25
    • 84875531578 scopus 로고    scopus 로고
    • Learning from positive and unlabeled examples with different data distributions
    • Li, X.-l., & Liu, B. (2005). Learning from Positive and Unlabeled Examples with Different Data Distributions. In ECML.
    • (2005) ECML
    • Li, X.-L.1    Liu, B.2
  • 26
  • 27
    • 34147123690 scopus 로고    scopus 로고
    • Minimum enclosing and maximum excluding machine for pattern description and discrimination
    • Washington, DC, USA. IEEE Computer Society
    • Liu, Y., & Zheng, Y. F. (2006). Minimum enclosing and maximum excluding machine for pattern description and discrimination. In ICPR '06: Proc. of the 18th International Conference on Pattern Recognition, pp. 129-132, Washington, DC, USA. IEEE Computer Society.
    • (2006) ICPR '06: Proc. of the 18th International Conference on Pattern Recognition , pp. 129-132
    • Liu, Y.1    Zheng, Y.F.2
  • 29
    • 85096855936 scopus 로고    scopus 로고
    • One-class svms for document classification
    • Manevitz, L. M., & Yousef, M. (2002). One-class svms for document classification. J. Mach. Learn. Res., 2, 139-154.
    • (2002) J. Mach. Learn. Res. , vol.2 , pp. 139-154
    • Manevitz, L.M.1    Yousef, M.2
  • 31
    • 0142063407 scopus 로고    scopus 로고
    • Novelty detection: A review - Part 1: Statistical approaches
    • Markou, M., & Singh, S. (2003a). Novelty detection: a review - part 1: statistical approaches. Signal Processing, 83, 2481-2497.
    • (2003) Signal Processing , vol.83 , pp. 2481-2497
    • Markou, M.1    Singh, S.2
  • 32
    • 0142126712 scopus 로고    scopus 로고
    • Novelty detection: A review - Part 2: Neural network based approaches
    • Markou, M., & Singh, S. (2003b). Novelty detection: a review - part 2: neural network based approaches. Signal Processing, 83, 2499-2521.
    • (2003) Signal Processing , vol.83 , pp. 2499-2521
    • Markou, M.1    Singh, S.2
  • 37
    • 0033295259 scopus 로고    scopus 로고
    • Bro: A system for detecting network intruders in real-time
    • Paxson, V. (1999). Bro: A System for Detecting Network Intruders in Real-Time. Elsevier Computer Networks, 31(23-24), 2435-2463.
    • (1999) Elsevier Computer Networks , vol.31 , Issue.23-24 , pp. 2435-2463
    • Paxson, V.1
  • 39
    • 61749083929 scopus 로고    scopus 로고
    • McPAD: A multiple classifier system for accurate payload-based anomaly detection
    • Perdisci, R., Ariu, D., Fogla, P., Giacinto, G., & Lee, W. (2009). McPAD: A multiple classifier system for accurate payload-based anomaly detection. Computer Networks, 5(6), 864-881.
    • (2009) Computer Networks , vol.5 , Issue.6 , pp. 864-881
    • Perdisci, R.1    Ariu, D.2    Fogla, P.3    Giacinto, G.4    Lee, W.5
  • 42
    • 33846910249 scopus 로고    scopus 로고
    • Language models for detection of unknown attacks in network traffic
    • Rieck, K., & Laskov, P. (2007). Language models for detection of unknown attacks in network traffic. Journal in Computer Virology, 2(4), 243-256.
    • (2007) Journal in Computer Virology , vol.2 , Issue.4 , pp. 243-256
    • Rieck, K.1    Laskov, P.2
  • 43
    • 38949156579 scopus 로고    scopus 로고
    • Linear-time computation of similarity measures for sequential data
    • (Jan)
    • Rieck, K., & Laskov, P. (2008). Linear-time computation of similarity measures for sequential data. Journal of Machine Learning Research, 9(Jan), 23-48.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 23-48
    • Rieck, K.1    Laskov, P.2
  • 46
    • 0016572913 scopus 로고
    • A vector space model for automatic indexing
    • Salton, G., Wong, A., & Yang, C. (1975). A vector space model for automatic indexing. Communications of the ACM, 18(11), 613-620.
    • (1975) Communications of the ACM , vol.18 , Issue.11 , pp. 613-620
    • Salton, G.1    Wong, A.2    Yang, C.3
  • 50
    • 31844440904 scopus 로고    scopus 로고
    • Beyond the point cloud: From transductive to semi-supervised learning
    • ACM
    • Sindhwani, V., Niyogi, P., & Belkin, M. (2005). Beyond the point cloud: from transductive to semi-supervised learning. In ICML, Vol. 1, pp. 824-831. ACM.
    • (2005) ICML , vol.1 , pp. 824-831
    • Sindhwani, V.1    Niyogi, P.2    Belkin, M.3
  • 51
    • 70450241048 scopus 로고    scopus 로고
    • Ph.D. thesis, Fraunhofer Institute FIRST. supervised by K.-R. Müller and G. Rätsch
    • Sonnenburg, S. (2008). Machine Learning for Genomic Sequence Analysis. Ph.D. thesis, Fraunhofer Institute FIRST. supervised by K.-R. Müller and G. Rätsch.
    • (2008) Machine Learning for Genomic Sequence Analysis
    • Sonnenburg, S.1
  • 54
    • 0037753593 scopus 로고    scopus 로고
    • Ph.D. thesis, Technical University Delft
    • Tax, D. M. J. (2001). One-class classification. Ph.D. thesis, Technical University Delft.
    • (2001) One-class Classification
    • Tax, D.M.J.1
  • 55
    • 0942266514 scopus 로고    scopus 로고
    • Support vector data description
    • Tax, D. M. J., & Duin, R. P. W. (2004). Support vector data description. Machine Learning, 54, 45-66.
    • (2004) Machine Learning , vol.54 , pp. 45-66
    • Tax, D.M.J.1    Duin, R.P.W.2
  • 56
    • 0003007938 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • San Francisco, CA. Morgan Kaufmann
    • Tong, S., & Koller, D. (2000). Support vector machine active learning with applications to text classification. In Proc. of the Seventeenth International Conference on Machine Learning, San Francisco, CA. Morgan Kaufmann.
    • (2000) Proc. of the Seventeenth International Conference on Machine Learning
    • Tong, S.1    Koller, D.2
  • 62
    • 77955014859 scopus 로고    scopus 로고
    • A simple probabilistic approach to learning from positive and unlabeled examples
    • Zhang, D., & Lee, W. S. (2005). A simple probabilistic approach to learning from positive and unlabeled examples. In Proceedings of the 5th Annual UK Workshop on⋯.
    • (2005) Proceedings of the 5th Annual UK Workshop On⋯
    • Zhang, D.1    Lee, W.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.