메뉴 건너뛰기




Volumn 33, Issue 6, 2011, Pages 1189-1201

Selecting critical patterns based on local geometrical and statistical information

Author keywords

border pattern; data reduction; edge pattern; Pattern selection

Indexed keywords

BENCH-MARK PROBLEMS; BORDER PATTERNS; CLASS BOUNDARY; DECISION SURFACES; EDGE PATTERN; EDGE PATTERNS; INPUT SPACE; MULTI-LAYER PERCEPTRONS; NEAREST NEIGHBORS; PATTERN SELECTION; RADIAL BASIS FUNCTIONS; REDUCED DATA; SPATIAL INFORMATIONS; STATE-OF-THE-ART APPROACH; STATISTICAL INFORMATION; TANGENT HYPERPLANE; TRAINING DATA SETS;

EID: 79955475773     PISSN: 01628828     EISSN: None     Source Type: Journal    
DOI: 10.1109/TPAMI.2010.188     Document Type: Article
Times cited : (145)

References (70)
  • 1
    • 79955466646 scopus 로고    scopus 로고
    • ftp://ftp.dice.ucl.ac.be/pub/neural-nets/ ELENA/databases/REAL/phoneme/
    • ftp://ftp.dice.ucl.ac.be/pub/neural-nets/ELENA/databases/ REAL/phoneme/, 2009.
    • (2009)
  • 2
    • 44649102662 scopus 로고    scopus 로고
    • Fast multidimensional nearest neighbor search algorithm using priority queue
    • S. Ajoka, S. Tsuge, M. Shishibori, and K. Kita, "Fast Multidimensional Nearest Neighbor Search Algorithm Using Priority Queue," Electrical Eng. in Japan, vol. 164, no. 3, pp. 69-77, 2008.
    • (2008) Electrical Eng. in Japan , vol.164 , Issue.3 , pp. 69-77
    • Ajoka, S.1    Tsuge, S.2    Shishibori, M.3    Kita, K.4
  • 3
    • 35348902771 scopus 로고    scopus 로고
    • Fast nearest neighbor condensation for large data sets classification
    • DOI 10.1109/TKDE.2007.190645
    • F. Angiulli, "Fast Nearest Neighbor Condensation for Large Data Sets Classification," IEEE Trans. Knowledge and Data Eng., vol. 19, no. 11, pp. 1450-1464, Nov. 2007. (Pubitemid 47573790)
    • (2007) IEEE Transactions on Knowledge and Data Engineering , vol.19 , Issue.11 , pp. 1450-1464
    • Angiulli, F.1
  • 4
    • 36048938087 scopus 로고    scopus 로고
    • Condensed nearest neighbor data domain description
    • Oct.
    • F. Angiulli, "Condensed Nearest Neighbor Data Domain Description," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 29, no. 10, pp. 1746-1758, Oct. 2007.
    • (2007) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.29 , Issue.10 , pp. 1746-1758
    • Angiulli, F.1
  • 5
    • 25444531678 scopus 로고    scopus 로고
    • Decision boundary preserving prototype selection for nearest neighbor classification
    • DOI 10.1142/S0218001405004332, PII S0218001405004332
    • R. Barandela, F.J. Ferri, and J.S. Sanchez, "Decision Boundary Preserving Prototype Selection for Nearest Neighbour Classification," Int'l J. Pattern Recognition and Artificial Intelligence, vol. 19, no. 6, pp. 787-806, Sept. 2005. (Pubitemid 41374104)
    • (2005) International Journal of Pattern Recognition and Artificial Intelligence , vol.19 , Issue.6 , pp. 787-806
    • Barandela, R.1    Ferri, F.J.2    Sanchez, J.S.3
  • 6
    • 0018702060 scopus 로고
    • Data-structures for range searching
    • J.L. Bentley and J.H. Friedman, "Data-Structures for Range Searching," ACM Computing Surveys, vol. 11, no. 4, pp. 397-409, 1979.
    • (1979) ACM Computing Surveys , vol.11 , Issue.4 , pp. 397-409
    • Bentley, J.L.1    Friedman, J.H.2
  • 7
    • 0035575921 scopus 로고    scopus 로고
    • Nearest prototype classifier designs: An experimental study
    • DOI 10.1002/int.1068
    • J.C. Bezdek and L.I. Kuncheva, "Nearest Prototype Classifier Designs: An Experimental Study," Int'l J. Intelligent Systems, vol. 16, no. 12, pp. 1445-1473, Dec. 2001. (Pubitemid 33110647)
    • (2001) International Journal of Intelligent Systems , vol.16 , Issue.12 , pp. 1445-1473
    • Bezdek, J.C.1    Kuncheva, L.I.2
  • 8
    • 0000621802 scopus 로고
    • Multivariable function interpolation and adaptive networks
    • D.S. Broomhead and D. Lowe, "Multivariable Function Interpolation and Adaptive Networks," Complex Systems, vol. 2, pp. 321-335, 1988.
    • (1988) Complex Systems , vol.2 , pp. 321-335
    • Broomhead, D.S.1    Lowe, D.2
  • 9
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C.J.C. Burges, "A Tutorial on Support Vector Machines for Pattern Recognition," Data Mining and Knowledge Discovery, vol. 2, pp. 121-167, 1998. (Pubitemid 128695475)
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 10
    • 0028262841 scopus 로고
    • Pedagogical pattern selection-strategies
    • C. Cachin, "Pedagogical Pattern Selection-Strategies," Neural Networks, vol. 7, no. 1, pp. 175-181, 1994.
    • (1994) Neural Networks , vol.7 , Issue.1 , pp. 175-181
    • Cachin, C.1
  • 11
    • 0141639615 scopus 로고    scopus 로고
    • Efficient leave-one-out cross-validation of kernel fisher discriminant classifiers
    • DOI 10.1016/S0031-3203(03)00136-5
    • G.C. Cawley and N.L.C. Talbot, "Efficient Leave-One-Out Cross-Validation of Kernel Fisher Discriminant Classifiers," Pattern Recognition, vol. 36, pp. 2585-2592, 2003. (Pubitemid 37178388)
    • (2003) Pattern Recognition , vol.36 , Issue.11 , pp. 2585-2592
    • Cawley, G.C.1    Talbot, N.L.C.2
  • 12
    • 0035359888 scopus 로고    scopus 로고
    • Another move toward the minimum consistent subset: A tabu search approach to the condensed nearest neighbor rule
    • DOI 10.1109/3477.931531, PII S1083441901048531
    • V. Cerverón and F.J. Ferri, "Another Move Toward the Minimum Consistent Subset: A Tabu Search Approach to the Condensed Nearest Neighbor Rule," IEEE Trans. Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 31, no. 3, pp. 408-413, June 2001. (Pubitemid 32676845)
    • (2001) IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics , vol.31 , Issue.3 , pp. 408-413
    • Cerveron, V.1    Ferri, F.J.2
  • 13
    • 0036466950 scopus 로고    scopus 로고
    • A fast nearest neighbor search algorithm by filtration
    • DOI 10.1016/S0031-3203(01)00032-2, PII S0031320301000322
    • S.H. Cha and S.N. Srihari, "A Fast Nearest Neighbor Search Algorithm by Filtration," Pattern Recognition, vol.35, no. 2, pp. 515-525, Feb. 2002. (Pubitemid 34034625)
    • (2002) Pattern Recognition , vol.35 , Issue.2 , pp. 515-525
    • Cha, S.-H.1    Srihari, S.N.2
  • 18
    • 0028385080 scopus 로고
    • Minimal consistent set (MCS) identification for optimal nearest neighbor decision systems design
    • Mar.
    • B.V. Dasarathy, "Minimal Consistent Set (MCS) Identification for Optimal Nearest Neighbor Decision Systems Design," IEEE Trans. Systems, Man, and Cybernetics, vol. 24, no. 3, pp. 511-517, Mar. 1994.
    • (1994) IEEE Trans. Systems, Man, and Cybernetics , vol.24 , Issue.3 , pp. 511-517
    • Dasarathy, B.V.1
  • 19
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demsar, "Statistical Comparisons of Classifiers over Multiple Data Sets," J. Machine Learning Research, vol. 7, pp. 1-30, Jan. 2006. (Pubitemid 43022939)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1
  • 20
    • 0033372875 scopus 로고    scopus 로고
    • The significance of border training patterns in classification by a feedforward neural network using back propagation learning
    • G.M. Foody, "The Significance of Border Training Patterns in Classification by a Feedforward Neural Network Using Back Propagation Learning," Int'l J. Remote Sensing, vol. 20, no. 18, pp. 3549-3562, Dec. 1999. (Pubitemid 30037566)
    • (1999) International Journal of Remote Sensing , vol.20 , Issue.18 , pp. 3549-3562
    • Foody, G.M.1
  • 21
    • 84945709355 scopus 로고
    • An algorithm for finding best matches in logarithmic expected time
    • Sept.
    • J.H. Friedman, J.L. Bentley, and R.A. Finkel, "An Algorithm for Finding Best Matches in Logarithmic Expected Time," ACM Trans. Math. Software, vol. 3, no. 3, pp. 209-226, Sept. 1977.
    • (1977) ACM Trans. Math. Software , vol.3 , Issue.3 , pp. 209-226
    • Friedman, J.H.1    Bentley, J.L.2    Finkel, R.A.3
  • 23
    • 0016533974 scopus 로고
    • A branch and bound algorithm for computing k-nearest neighbors
    • July
    • K. Fukunage and P.M. Narendra, "A Branch and Bound Algorithm for Computing K-Nearest Neighbors," IEEE Trans. Computers, vol. 24, no. 7, pp. 750-753, July 1975.
    • (1975) IEEE Trans. Computers , vol.24 , Issue.7 , pp. 750-753
    • Fukunage, K.1    Narendra, P.M.2
  • 24
    • 27644572056 scopus 로고
    • Optimization of k nearest-neighbor density estimates
    • May
    • K. Fukunaga and L.D Hostetle, "Optimization of k Nearest-Neighbor Density Estimates," IEEE Trans. Information Theory, vol. 19, no. 3, pp. 320-326, May 1973.
    • (1973) IEEE Trans. Information Theory , vol.19 , Issue.3 , pp. 320-326
    • Fukunaga, K.1    Hostetle, L.D.2
  • 25
    • 34250701071 scopus 로고    scopus 로고
    • On nearest neighbor classification using adaptive choice of k
    • June
    • A.K. Ghosh, "On Nearest Neighbor Classification Using Adaptive Choice of k," J. Computational and Graphical Statistics, vol. 16, no. 2, pp. 482-502, June 2007.
    • (2007) J. Computational and Graphical Statistics , vol.16 , Issue.2 , pp. 482-502
    • Ghosh, A.K.1
  • 26
    • 33646575961 scopus 로고    scopus 로고
    • On optimum choice of k in nearest neighbor classification
    • DOI 10.1016/j.csda.2005.06.007, PII S0167947305001374
    • A.K. Ghosh, "On Optimum Choice of k in Nearest Neighbour Classification," Computational Statistical & Data Analysis, vol. 50, pp. 3113-3123, 2006. (Pubitemid 43729105)
    • (2006) Computational Statistics and Data Analysis , vol.50 , Issue.11 , pp. 3113-3123
    • Ghosh, A.K.1
  • 27
    • 35148840969 scopus 로고    scopus 로고
    • Reducing examples to accelerate support vector regression
    • DOI 10.1016/j.patrec.2007.04.017, PII S0167865507001468
    • G. Guo and J.S. Zhang, "Reducing Examples to Accelerate Support Vector Regression," Pattern Recognition Lectters, vol. 28, no. 16, pp. 2173-2183, 2007. (Pubitemid 47538772)
    • (2007) Pattern Recognition Letters , vol.28 , Issue.16 , pp. 2173-2183
    • Guo, G.1    Zhang, J.-S.2
  • 28
    • 84931162639 scopus 로고
    • The condensed nearest neighbor rule
    • May
    • P. Hart, "The Condensed Nearest Neighbor Rule," IEEE Trans. Information Theory, vol. 14, no. 3, pp. 515-516, May 1968.
    • (1968) IEEE Trans. Information Theory , vol.14 , Issue.3 , pp. 515-516
    • Hart, P.1
  • 29
    • 0036522441 scopus 로고    scopus 로고
    • Complexity measures of supervised classification problems
    • DOI 10.1109/34.990132
    • T.K. Ho and M. Basu, "Complexity Measures of Supervised Classification Problems," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 24, no. 3, pp. 289-300, Mar. 2002. (Pubitemid 35289347)
    • (2002) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.24 , Issue.3 , pp. 289-300
    • Ho, T.K.1    Basu, M.2
  • 30
    • 0346331906 scopus 로고    scopus 로고
    • A brief taxonomy and ranking of creative prototype reduction schemes
    • S.W. Kim and B.J. Oommen, "A Brief Taxonomy and Ranking of Creative Prototype Reduction Schemes," Pattern Analysis and Applications J., vol. 6, no. 3, pp. 232-244, 2004.
    • (2004) Pattern Analysis and Applications J , vol.6 , Issue.3 , pp. 232-244
    • Kim, S.W.1    Oommen, B.J.2
  • 31
    • 0037404505 scopus 로고    scopus 로고
    • Enhancing prototype reduction schemes with LVQ3-type algorithms
    • DOI 10.1016/S0031-3203(02)00115-2, PII S0031320302001152
    • S.W. Kim and B.J. Oommen, "Enhancing Prototype Reduction Schemes with LVQ3-Type Algorithms," Pattern Recognition, vol. 36, no. 5, pp. 1083-1093, 2003. (Pubitemid 36175216)
    • (2003) Pattern Recognition , vol.36 , Issue.5 , pp. 1083-1093
    • Kim, S.-W.1    Oommen, B.J.2
  • 32
    • 0025592836 scopus 로고
    • Diagnosis using backpropaga-tion neural networks-analysis and criticism
    • M.A. Kramer and J.A. Leonard, "Diagnosis Using Backpropaga-tion Neural Networks-Analysis and Criticism," Computers & Chemical Eng., vol. 14, no. 12, pp. 1323-1338, 1990.
    • (1990) Computers & Chemical Eng , vol.14 , Issue.12 , pp. 1323-1338
    • Kramer, M.A.1    Leonard, J.A.2
  • 34
    • 0036501528 scopus 로고    scopus 로고
    • Improving the performance of radial basis function classifiers in condition monitoring and fault diagnosis applications where 'unknown' faults may occur
    • DOI 10.1016/S0167-8655(01)00133-7, PII S0167865501001337
    • Y.H. Li, M.J. Pont, and N.B. Jones, "Improving the Performance of Radial Basis Function Classifiers in Condition Monitoring and Fault Diagnosis Applications Where 'Unknown' Faults May Occur," Pattern Recognition Letters, vol. 23, no. 5, pp. 569-577, Mar. 2002. (Pubitemid 34262287)
    • (2002) Pattern Recognition Letters , vol.23 , Issue.5 , pp. 569-577
    • Li, Y.1    Pont, M.J.2    Barrie Jones, N.3
  • 37
    • 33745421067 scopus 로고    scopus 로고
    • Experimental study on prototype optimisation algorithms for prototype-based classification in vector spaces
    • DOI 10.1016/j.patcog.2006.04.005, PII S0031320306001592
    • M.T. Lozano, J.M. Sotoca, J.S. Sánchez, F. Pla, E. Pekalska, and R.P.W. Duin, "Experimental Study on Prototype Optimisation Algorithms for Prototype-Based Classification in Vector Spaces," Pattern Recognition, vol. 39, no. 10, pp. 1827-1838, 2006. (Pubitemid 43947094)
    • (2006) Pattern Recognition , vol.39 , Issue.10 , pp. 1827-1838
    • Lozano, M.1    Sotoca, J.M.2    Sanchez, J.S.3    Pla, F.4    Pekalska, E.5    Duin, R.P.W.6
  • 39
    • 46249122128 scopus 로고    scopus 로고
    • Hit miss networks with applications to instance selection
    • E. Marchiori, "Hit Miss Networks with Applications to Instance Selection," J. Machine Learning Research, vol. 9, pp. 997-1017, 2008.
    • (2008) J. Machine Learning Research , vol.9 , pp. 997-1017
    • Marchiori, E.1
  • 40
    • 73849133622 scopus 로고    scopus 로고
    • Class conditional nearest neighbor for large margin instance selection
    • Feb.
    • E. Marchiori, "Class Conditional Nearest Neighbor for Large Margin Instance Selection," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 32, no. 2, pp. 364-370, Feb. 2010.
    • (2010) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.32 , Issue.2 , pp. 364-370
    • Marchiori, E.1
  • 41
    • 33750100476 scopus 로고    scopus 로고
    • A neural network-based novelty detector for image sequence analysis
    • DOI 10.1109/TPAMI.2006.196
    • M. Markou and S. Singh, "A Neural Network-Based Novelty Detector for Image Sequence Analysis," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 28, no. 10, pp. 1664-1677, Oct. 2006. (Pubitemid 46414200)
    • (2006) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.28 , Issue.10 , pp. 1664-1677
    • Markou, M.1    Singh, S.2
  • 45
    • 27744468378 scopus 로고    scopus 로고
    • Learning prototypes and distances: A prototype reduction technique based on nearest neighbor error minimization
    • DOI 10.1016/j.patcog.2005.06.001, PII S0031320305002232, Complexity Reduction
    • R. Paredes and E. Vidal, "Learning Prototypes and Distances: A Prototype Reduction Technique Based on Nearest Neighbor Error Minimization," Pattern Recognition, vol. 39, no. 2, pp. 180-188, 2006. (Pubitemid 41586088)
    • (2006) Pattern Recognition , vol.39 , Issue.2 , pp. 180-188
    • Paredes, R.1    Vidal, E.2
  • 46
    • 27744546228 scopus 로고    scopus 로고
    • Prototype selection for dissimilarity-based classifiers
    • DOI 10.1016/j.patcog.2005.06.012, PII S0031320305002633, Complexity Reduction
    • E. Pekalska, R.P.W. Duin, and P. Paclik, "Prototype Selection for Dissimilarity-Based Classifiers," Pattern Recognition, vol. 39, no. 2, pp. 189-208, Feb. 2006. (Pubitemid 41586089)
    • (2006) Pattern Recognition , vol.39 , Issue.2 , pp. 189-208
    • Pekalska, E.1    Duin, R.P.W.2    Paclik, P.3
  • 47
    • 67349218801 scopus 로고    scopus 로고
    • Generalized risk zone: Selecting observations for classification
    • July
    • R.T. Peres and C.E. Pedreira, "Generalized Risk Zone: Selecting Observations for Classification," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 31, no. 7, pp. 1331-1337, July 2009.
    • (2009) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.31 , Issue.7 , pp. 1331-1337
    • Peres, R.T.1    Pedreira, C.E.2
  • 49
    • 19744376790 scopus 로고    scopus 로고
    • A divide-and-conquer approach to the pairwise opposite class-nearest neighbor (POC-NN) algorithm
    • DOI 10.1016/j.patrec.2005.01.003, PII S0167865505000115
    • T. Raicharoen and C. Lursinsap, "A Divide-and-Conquer Approach to the Pairwise Opposite Class-Nearest Neighbor (POC-NN) Algorithm," Pattern Recognition Letters, vol. 26, no. 10, pp. 1554-1567, July 2005. (Pubitemid 40744195)
    • (2005) Pattern Recognition Letters , vol.26 , Issue.10 , pp. 1554-1567
    • Raicharoen, T.1    Lursinsap, C.2
  • 50
    • 0342502195 scopus 로고    scopus 로고
    • Soft margins for AdaBoost
    • DOI 10.1023/A:1007618119488
    • G. Ratsch, T. Onoda, and K.R. Muller, "Soft Margins for AdaBoost," Machine Learning, vol. 42, no. 2, pp.287-320, 2001. (Pubitemid 32188795)
    • (2001) Machine Learning , vol.42 , Issue.3 , pp. 287-320
    • Ratsch, G.1    Onoda, T.2    Muller, K.-R.3
  • 51
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • D.E. Rumelhart, G.E. Hinton, and R.J. Williams, "Learning Representations by Back-Propagating Errors," Nature, vol. 323, pp. 533-536, Oct. 1986. (Pubitemid 16025374)
    • (1986) Nature , vol.323 , Issue.6088 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 52
    • 37549012615 scopus 로고    scopus 로고
    • K-nearest neighbor finding using maxnearestdist
    • Feb.
    • H. Samet, "K-Nearest Neighbor Finding Using MaxNearestDist," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 30, no. 2, pp.243-252, Feb. 2008.
    • (2008) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.30 , Issue.2 , pp. 243-252
    • Samet, H.1
  • 53
    • 33646162415 scopus 로고    scopus 로고
    • Selection of the optimal parameter value for the isomap algorithm
    • June
    • O. Samko, A.D. Marshall, and P.L. Rosin, "Selection of the Optimal Parameter Value for the Isomap Algorithm," Pattern Recognition Letters, vol. 27, no. 9, pp. 968-979, June 2006.
    • (2006) Pattern Recognition Letters , vol.27 , Issue.9 , pp. 968-979
    • Samko, O.1    Marshall, A.D.2    Rosin, P.L.3
  • 54
    • 32544437372 scopus 로고    scopus 로고
    • An LVQ-based adaptive algorithm for learning from very small codebooks
    • DOI 10.1016/j.neucom.2005.10.001, PII S0925231205002675
    • J.S. Sánchez and A.I. Marqués, "An LVQ-Based Adaptive Algorithm for Learning from Very Small Codebooks," Neurocom-puting, vol. 69, nos. 7-9, pp. 922-927, 2006. (Pubitemid 43230405)
    • (2006) Neurocomputing , vol.69 , Issue.7-9 SPEC. ISS. , pp. 922-927
    • Sanchez, J.S.1    Marques, A.I.2
  • 55
    • 18144451785 scopus 로고    scopus 로고
    • High training set size reduction by space partitioning and prototype abstraction
    • DOI 10.1016/j.patcog.2003.12.012, PII S0031320304000147
    • J.S. Sánchez, "High Training Set Size Reduction by Space Partitioning and Prototype Abstraction," Pattern Recognition, vol. 37, no. 7, pp. 1561-1564, 2004. (Pubitemid 38653386)
    • (2004) Pattern Recognition , vol.37 , Issue.7 , pp. 1561-1564
    • Sanchez, J.S.1
  • 56
    • 0031164017 scopus 로고    scopus 로고
    • Prototype selection for the nearest neighbour rule through proximity graphs
    • PII S0167865597000354
    • J.S. Sánchez, F. Pla, and F.J. Ferri, "Prototype Selection for the Nearest Neighbour Rule through Proximity Graphs," Pattern Recognition Letters, vol. 18, no. 6, pp. 507-513, 1997. (Pubitemid 127424198)
    • (1997) Pattern Recognition Letters , vol.18 , Issue.6 , pp. 507-513
    • Sanchez, J.S.1    Pla, F.2    Ferri, F.J.3
  • 57
    • 0034331286 scopus 로고    scopus 로고
    • Class separability estimation and incremental learning using boundary methods
    • Nov.
    • J.L. Sancho, W.E. Pierson, B. Ulug, A.R. Figueiras-Vidal, and S.C. Ahalt, "Class Separability Estimation and Incremental Learning Using Boundary Methods," Neurocomputing, vol. 35, pp. 3-26, Nov. 2000.
    • (2000) Neurocomputing , vol.35 , pp. 3-26
    • Sancho, J.L.1    Pierson, W.E.2    Ulug, B.3    Figueiras-Vidal, A.R.4    Ahalt, S.C.5
  • 58
    • 2342517502 scopus 로고    scopus 로고
    • Think globally, fit locally: Unsupervised learning of low dimensional manifolds
    • Feb.
    • L.K. Saul and S.T. Roweis, "Think Globally, Fit Locally: Unsupervised Learning of Low Dimensional Manifolds," J. Machine Learning Research, vol. 4, no. 2, pp. 119-155, Feb. 2004.
    • (2004) J. Machine Learning Research , vol.4 , Issue.2 , pp. 119-155
    • Saul, L.K.1    Roweis, S.T.2
  • 60
    • 7444235468 scopus 로고    scopus 로고
    • Fast Pattern Selection for Support Vector Classifiers
    • Advances in Knowledge Discovery and Data Mining
    • H. Shin and S. Cho, "Fast Pattern Selection for Support Vector Classifiers," Proc. Conf. Advances in Knowledge Discovery and Data Mining, vol. 2637, pp. 376-387, 2003. (Pubitemid 36557439)
    • (2003) LECTURE NOTES IN COMPUTER SCIENCE , Issue.2637 , pp. 376-387
    • Shin, H.1    Cho, S.2
  • 61
    • 33847676236 scopus 로고    scopus 로고
    • Neighborhood property-based pattern selection for support vector machines
    • Mar.
    • H. Shin and S. Cho, "Neighborhood Property-Based Pattern Selection for Support Vector Machines," Neural Computation, vol. 19, no. 3, pp. 816-855, Mar. 2007.
    • (2007) Neural Computation , vol.19 , Issue.3 , pp. 816-855
    • Shin, H.1    Cho, S.2
  • 62
    • 0033684781 scopus 로고    scopus 로고
    • Counter-clustering for training pattern selection
    • T. Tambouratzis, "Counter-Clustering for Training Pattern Selection," Computer J., vol. 43, no. 3, pp. 177-190, 2000.
    • (2000) Computer J , vol.43 , Issue.3 , pp. 177-190
    • Tambouratzis, T.1
  • 63
    • 0942266514 scopus 로고    scopus 로고
    • Support vector data description
    • D.M.J. Tax and R.P.W. Duin, "Support Vector Data Description," Machine Learning, vol. 54, pp.45-66, 2004.
    • (2004) Machine Learning , vol.54 , pp. 45-66
    • Tax, D.M.J.1    Duin, R.P.W.2
  • 64
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • DOI 10.1126/science.290.5500.2319
    • J.B. Tenenbaum, V.de. Silva, and J.C. Langford, "A Global Geometric Framework for Nonlinear Dimensionality Reduction," Science, vol. 290, no. 5500, pp. 2319-2323, Dec. 2000. (Pubitemid 32041577)
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.B.1    De Silva, V.2    Langford, J.C.3
  • 66
    • 77949501687 scopus 로고    scopus 로고
    • Classification using geometric level sets
    • Feb.
    • K.R. Varshney and A.S. Willsky, "Classification Using Geometric Level Sets," J. Machine Learning Research, vol. 11, pp. 491-516, Feb. 2010.
    • (2010) J. Machine Learning Research , vol.11 , pp. 491-516
    • Varshney, K.R.1    Willsky, A.S.2
  • 67
    • 25844469288 scopus 로고    scopus 로고
    • The nearest subclass classifier: A compromise between the nearest mean and nearest neighbor classifier
    • Sept.
    • C.J. Veenman and M.J.T. Reinders, "The Nearest Subclass Classifier: A Compromise between the Nearest Mean and Nearest Neighbor Classifier," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 27, no. 9, pp. 1417- 1429, Sept. 2005.
    • (2005) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.27 , Issue.9 , pp. 1417-1429
    • Veenman, C.J.1    Reinders, M.J.T.2
  • 68
    • 41549142718 scopus 로고    scopus 로고
    • Using locally estimated geodesic distance to optimize neighborhood graph for isometric data embedding
    • July
    • G.H. Wen, L.J. Jiang, and J. Wen, "Using Locally Estimated Geodesic Distance to Optimize Neighborhood Graph for Isometric Data Embedding," Pattern Recognition, vol. 41, no. 7, pp. 2226-2236, July 2008.
    • (2008) Pattern Recognition , vol.41 , Issue.7 , pp. 2226-2236
    • Wen, G.H.1    Jiang, L.J.2    Wen, J.3
  • 69
    • 0343081513 scopus 로고    scopus 로고
    • Reduction techniques for instance-based learning algorithms
    • DOI 10.1023/A:1007626913721
    • D.R. Wilson and T.R. Martinez, "Reduction Techniques for Instance-Based Learning Algorithms," Machine Learning, vol. 38, no. 3, pp. 257-286, Mar. 2000. (Pubitemid 30572450)
    • (2000) Machine Learning , vol.38 , Issue.3 , pp. 257-286
    • Randall Wilson, D.1    Martinez, T.R.2
  • 70
    • 0036643301 scopus 로고    scopus 로고
    • Optimal reference subset selection for nearest neighbor classification by tabu search
    • DOI 10.1016/S0031-3203(01)00137-6, PII S0031320301001376
    • H. Zhang and G. Sun, "Optimal Reference Subset Selection for Nearest Neighbor Classification by Tabu Search," Pattern Recognition, vol. 35, no. 7, pp. 1481-1490, 2002. (Pubitemid 34440048)
    • (2002) Pattern Recognition , vol.35 , Issue.7 , pp. 1481-1490
    • Zhang, H.1    Sun, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.